Create modeling_csumlm.py
Browse files- modeling_csumlm.py +94 -0
modeling_csumlm.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import PreTrainedModel, PreTrainedEncoder, PreTrainedDecoder
|
6 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
7 |
+
from transformers.utils import logging
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
class CSUMLMEncoder(PreTrainedEncoder):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
# Define the text encoder, image encoder, and audio encoder architectures
|
15 |
+
# ...
|
16 |
+
|
17 |
+
def forward(
|
18 |
+
self,
|
19 |
+
input_ids=None,
|
20 |
+
attention_mask=None,
|
21 |
+
token_type_ids=None,
|
22 |
+
position_ids=None,
|
23 |
+
head_mask=None,
|
24 |
+
inputs_embeds=None,
|
25 |
+
encoder_hidden_states=None,
|
26 |
+
encoder_attention_mask=None,
|
27 |
+
past_key_values=None,
|
28 |
+
use_cache=None,
|
29 |
+
output_attentions=None,
|
30 |
+
output_hidden_states=None,
|
31 |
+
return_dict=None,
|
32 |
+
):
|
33 |
+
# Implement the forward pass for the encoder
|
34 |
+
# ...
|
35 |
+
return encoder_outputs
|
36 |
+
|
37 |
+
class CSUMLMDecoder(PreTrainedDecoder):
|
38 |
+
def __init__(self, config):
|
39 |
+
super().__init__(config)
|
40 |
+
# Define the decoder architecture
|
41 |
+
# ...
|
42 |
+
|
43 |
+
def forward(
|
44 |
+
self,
|
45 |
+
input_ids=None,
|
46 |
+
attention_mask=None,
|
47 |
+
encoder_hidden_states=None,
|
48 |
+
encoder_attention_mask=None,
|
49 |
+
head_mask=None,
|
50 |
+
cross_attn_head_mask=None,
|
51 |
+
past_key_values=None,
|
52 |
+
inputs_embeds=None,
|
53 |
+
use_cache=None,
|
54 |
+
output_attentions=None,
|
55 |
+
output_hidden_states=None,
|
56 |
+
return_dict=None,
|
57 |
+
):
|
58 |
+
# Implement the forward pass for the decoder
|
59 |
+
# ...
|
60 |
+
return decoder_outputs
|
61 |
+
|
62 |
+
class CSUMLMModel(PreTrainedModel):
|
63 |
+
def __init__(self, config):
|
64 |
+
super().__init__(config)
|
65 |
+
self.encoder = CSUMLMEncoder(config)
|
66 |
+
self.decoder = CSUMLMDecoder(config)
|
67 |
+
self.multimodal_fusion = MultimodalFusion(config)
|
68 |
+
# Initialize other components (e.g., attention mechanism, belief desire intent tree)
|
69 |
+
# ...
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self,
|
73 |
+
input_ids=None,
|
74 |
+
attention_mask=None,
|
75 |
+
decoder_input_ids=None,
|
76 |
+
decoder_attention_mask=None,
|
77 |
+
head_mask=None,
|
78 |
+
decoder_head_mask=None,
|
79 |
+
cross_attn_head_mask=None,
|
80 |
+
encoder_outputs=None,
|
81 |
+
past_key_values=None,
|
82 |
+
inputs_embeds=None,
|
83 |
+
decoder_inputs_embeds=None,
|
84 |
+
use_cache=None,
|
85 |
+
output_attentions=None,
|
86 |
+
output_hidden_states=None,
|
87 |
+
return_dict=None,
|
88 |
+
):
|
89 |
+
# Implement the forward pass for the CSUMLM model
|
90 |
+
# ...
|
91 |
+
return output
|
92 |
+
|
93 |
+
# Register the custom model with Hugging Face Transformers
|
94 |
+
CSUMLMModel.register_for_auto_class()
|