Antoine-caubriere commited on
Commit
abb4b8a
1 Parent(s): 58e65f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -15,11 +15,6 @@ It is a balanced version in gender and languages representation compared to the
15
 
16
  - Languages: Bambara (bam), Dyula (dyu), French (fra), Fula (ful), Fulfulde (ffm), Fulfulde (fuh), Gulmancema (gux), Hausa (hau), Kinyarwanda (kin), Kituba (ktu), Lingala (lin), Luba-Lulua (lua), Mossi (mos), Maninkakan (mwk), Sango (sag), Songhai (son), Swahili (swc), Swahili (swh), Tamasheq (taq), Wolof (wol), Zarma (dje).
17
 
18
- ## ASR fine-tuning
19
- The SpeechBrain toolkit (Ravanelli et al., 2021) is used to fine-tune the model.
20
- Fine-tuning is done for each language using the FLEURS dataset [2].
21
- The pretrained model (SSA-HuBERT-base-5k) is considered as a speech encoder and is fully fine-tuned with two 1024 linear layers and a softmax output at the top.
22
-
23
  ## License
24
  This model is released under the CC-by-NC 4.0 conditions.
25
 
@@ -52,10 +47,17 @@ Please cite our paper when using SSA-HuBERT-base-5k model:
52
  }
53
  ```
54
 
55
- ## Results
 
 
 
 
 
 
56
  The following results are obtained in a greedy mode (no language model rescoring).
57
  Character error rates (CERs) and Word error rates (WERs) are given in the table below, on the 20 languages of the SSA subpart of the FLEURS dataset.
58
 
 
59
  | **Languages** | **CER** | **WER** |
60
  |:--------------------------------|:--------|:--------|
61
  | **Afrikaans** | 23.8 | 68.3 |
 
15
 
16
  - Languages: Bambara (bam), Dyula (dyu), French (fra), Fula (ful), Fulfulde (ffm), Fulfulde (fuh), Gulmancema (gux), Hausa (hau), Kinyarwanda (kin), Kituba (ktu), Lingala (lin), Luba-Lulua (lua), Mossi (mos), Maninkakan (mwk), Sango (sag), Songhai (son), Swahili (swc), Swahili (swh), Tamasheq (taq), Wolof (wol), Zarma (dje).
17
 
 
 
 
 
 
18
  ## License
19
  This model is released under the CC-by-NC 4.0 conditions.
20
 
 
47
  }
48
  ```
49
 
50
+ ## ASR fine-tuning
51
+ The SpeechBrain toolkit (Ravanelli et al., 2021) is used to fine-tune the model.
52
+ Fine-tuning is done for each language using the FLEURS dataset [2].
53
+ The pretrained model (SSA-HuBERT-base-5k) is considered as a speech encoder and is fully fine-tuned with two 1024 linear layers and a softmax output at the top.
54
+
55
+
56
+ ### Results
57
  The following results are obtained in a greedy mode (no language model rescoring).
58
  Character error rates (CERs) and Word error rates (WERs) are given in the table below, on the 20 languages of the SSA subpart of the FLEURS dataset.
59
 
60
+
61
  | **Languages** | **CER** | **WER** |
62
  |:--------------------------------|:--------|:--------|
63
  | **Afrikaans** | 23.8 | 68.3 |