OsakanaTeishoku commited on
Commit
3cdcba2
·
verified ·
1 Parent(s): be18f2d

Upload CustomMixtralForCausalLM

Browse files
Files changed (6) hide show
  1. README.md +199 -0
  2. config.json +33 -0
  3. custom_mixtral.py +131 -0
  4. generation_config.json +6 -0
  5. model.safetensors +3 -0
  6. noisy_gate.py +25 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "None",
3
+ "architectures": [
4
+ "CustomMixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoModelForCausalLM": "custom_mixtral.CustomMixtralForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 1024,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 2400,
16
+ "max_position_embeddings": 131072,
17
+ "model_type": "mixtral",
18
+ "num_attention_heads": 16,
19
+ "num_experts_per_tok": 1,
20
+ "num_hidden_layers": 24,
21
+ "num_key_value_heads": 8,
22
+ "num_local_experts": 2,
23
+ "output_router_logits": true,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_theta": 10000.0,
26
+ "router_aux_loss_coef": 0.01,
27
+ "sliding_window": 1024,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.39.1",
31
+ "use_cache": true,
32
+ "vocab_size": 32000
33
+ }
custom_mixtral.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import MixtralForCausalLM, MixtralConfig
2
+ from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoECausalLMOutputWithPast
3
+ from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer, MixtralSparseMoeBlock, load_balancing_loss_func
4
+ from .noisy_gate import NoisyGate
5
+ import torch
6
+ import torch.nn as nn
7
+ from typing import List, Optional, Tuple, Union
8
+
9
+ def router_z_loss_func(
10
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2
11
+ ) -> float:
12
+ """Router z-loss used in ST-MoE."""
13
+ if gate_logits is None or not isinstance(gate_logits, tuple):
14
+ return 0
15
+
16
+ if isinstance(gate_logits, tuple):
17
+ compute_device = gate_logits[0].device
18
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
19
+
20
+ router_z_loss = torch.logsumexp(concatenated_gate_logits, dim = -1)
21
+ router_z_loss = torch.square(router_z_loss)
22
+ router_z_loss = router_z_loss.mean()
23
+
24
+ return router_z_loss
25
+
26
+ class CustomMixtralConfig(MixtralConfig):
27
+ def __init__(self, **kwargs):
28
+ super().__init__(**kwargs)
29
+
30
+ class CustomMixtralForCausalLM(MixtralForCausalLM):
31
+ """Mixtral with z-loss. Gating improvement based on ST-MoE."""
32
+ def __init__(self, config):
33
+ super().__init__(config)
34
+ self.router_z_loss_coef = 1e-3
35
+ for layer in self.model.layers:
36
+ layer.block_sparse_moe.gate = NoisyGate(config.hidden_size, config.num_local_experts, noise_mult=1.0, bias=False)
37
+
38
+
39
+ def forward(
40
+ self,
41
+ input_ids: torch.LongTensor = None,
42
+ attention_mask: Optional[torch.Tensor] = None,
43
+ position_ids: Optional[torch.LongTensor] = None,
44
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
45
+ inputs_embeds: Optional[torch.FloatTensor] = None,
46
+ labels: Optional[torch.LongTensor] = None,
47
+ use_cache: Optional[bool] = None,
48
+ output_attentions: Optional[bool] = None,
49
+ output_hidden_states: Optional[bool] = None,
50
+ output_router_logits: Optional[bool] = None,
51
+ return_dict: Optional[bool] = None,
52
+ ):
53
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
54
+ output_router_logits = (
55
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
56
+ )
57
+
58
+ output_hidden_states = (
59
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
60
+ )
61
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
62
+
63
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
64
+ outputs = self.model(
65
+ input_ids=input_ids,
66
+ attention_mask=attention_mask,
67
+ position_ids=position_ids,
68
+ past_key_values=past_key_values,
69
+ inputs_embeds=inputs_embeds,
70
+ use_cache=use_cache,
71
+ output_attentions=output_attentions,
72
+ output_hidden_states=output_hidden_states,
73
+ output_router_logits=output_router_logits,
74
+ return_dict=return_dict,
75
+ )
76
+
77
+ hidden_states = outputs[0]
78
+ logits = self.lm_head(hidden_states)
79
+ logits = logits.float()
80
+
81
+ loss = None
82
+ if labels is not None:
83
+ # Shift so that tokens < n predict n
84
+ shift_logits = logits[..., :-1, :].contiguous()
85
+ shift_labels = labels[..., 1:].contiguous()
86
+ # Flatten the tokens
87
+ loss_fct = nn.CrossEntropyLoss()
88
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
89
+ shift_labels = shift_labels.view(-1)
90
+ # Enable model parallelism
91
+ shift_labels = shift_labels.to(shift_logits.device)
92
+ loss = loss_fct(shift_logits, shift_labels)
93
+
94
+ aux_loss = None
95
+ if output_router_logits:
96
+ aux_loss = load_balancing_loss_func(
97
+ outputs.router_logits if return_dict else outputs[-1],
98
+ self.num_experts,
99
+ self.num_experts_per_tok,
100
+ attention_mask,
101
+ )
102
+ if labels is not None:
103
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
104
+
105
+ router_z_loss = None
106
+ if output_router_logits:
107
+ router_z_loss = router_z_loss_func(
108
+ outputs.router_logits if return_dict else outputs[-1],
109
+ self.num_experts,
110
+ self.num_experts_per_tok,
111
+ )
112
+ if labels is not None:
113
+ loss += self.router_z_loss_coef * router_z_loss.to(loss.device)
114
+
115
+ if not return_dict:
116
+ output = (logits,) + outputs[1:]
117
+ if output_router_logits:
118
+ output = (router_z_loss,) + output
119
+ output = (aux_loss,) + output
120
+ return (loss,) + output if loss is not None else output
121
+
122
+ return MoECausalLMOutputWithPast(
123
+ loss=loss,
124
+ aux_loss=aux_loss,
125
+ z_loss=router_z_loss,
126
+ logits=logits,
127
+ past_key_values=outputs.past_key_values,
128
+ hidden_states=outputs.hidden_states,
129
+ attentions=outputs.attentions,
130
+ router_logits=outputs.router_logits,
131
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.39.1"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80f0da679083496945248327ff3da30b282a5f119f83812614efa17f14be6214
3
+ size 990092384
noisy_gate.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ def log(t, eps = 1e-20):
5
+ return torch.log(t.clamp(min = eps))
6
+
7
+ def gumbel_noise(t):
8
+ noise = torch.zeros_like(t).uniform_(0, 1)
9
+ return -log(-log(noise))
10
+
11
+ class NoisyGate(nn.Module):
12
+ def __init__(self, hidden_dim, num_experts, noise_mult=1.0, bias=False):
13
+ super().__init__()
14
+ self.hidden_dim = hidden_dim
15
+ self.num_experts = num_experts
16
+ self.noise_mult = noise_mult
17
+ self.bias = bias
18
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=self.bias)
19
+
20
+ def forward(self, x):
21
+ x = self.gate(x)
22
+ noise = gumbel_noise(x)
23
+ out = x + noise * self.noise_mult
24
+ return out
25
+