diff --git "a/efficiency_nodes.py" "b/efficiency_nodes.py" new file mode 100644--- /dev/null +++ "b/efficiency_nodes.py" @@ -0,0 +1,2464 @@ +# Efficiency Nodes - A collection of my ComfyUI custom nodes to help streamline workflows and reduce total node count. +# by Luciano Cirino (Discord: TSC#9184) - April 2023 + +from comfy.sd import ModelPatcher, CLIP, VAE +from nodes import common_ksampler, CLIPSetLastLayer + +from torch import Tensor +from PIL import Image, ImageOps, ImageDraw, ImageFont +from PIL.PngImagePlugin import PngInfo +import numpy as np +import torch + +import ast +from pathlib import Path +import os +import sys +import subprocess +import json +import folder_paths +import psutil + +# Get the absolute path of the parent directory of the current script +my_dir = os.path.dirname(os.path.abspath(__file__)) + +# Add the My directory path to the sys.path list +sys.path.append(my_dir) + +# Construct the absolute path to the ComfyUI directory +comfy_dir = os.path.abspath(os.path.join(my_dir, '..', '..')) + +# Add the ComfyUI directory path to the sys.path list +sys.path.append(comfy_dir) + +# Construct the path to the font file +font_path = os.path.join(my_dir, 'arial.ttf') + +# Import functions from ComfyUI +import comfy.samplers +import comfy.sd +import comfy.utils + +# Import my util functions +from tsc_utils import * + +MAX_RESOLUTION=8192 + +######################################################################################################################## +# TSC Efficient Loader +class TSC_EfficientLoader: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"),), + "vae_name": (["Baked VAE"] + folder_paths.get_filename_list("vae"),), + "clip_skip": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), + "lora_name": (["None"] + folder_paths.get_filename_list("loras"),), + "lora_model_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_clip_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "positive": ("STRING", {"default": "Positive","multiline": True}), + "negative": ("STRING", {"default": "Negative", "multiline": True}), + "empty_latent_width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}), + "empty_latent_height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}, + "optional": {"lora_stack": ("LORA_STACK", )}, + "hidden": { "prompt": "PROMPT", + "my_unique_id": "UNIQUE_ID",}, + } + + RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "CLIP", "DEPENDENCIES",) + RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", "CLIP", "DEPENDENCIES", ) + FUNCTION = "efficientloader" + CATEGORY = "Efficiency Nodes/Loaders" + + def efficientloader(self, ckpt_name, vae_name, clip_skip, lora_name, lora_model_strength, lora_clip_strength, + positive, negative, empty_latent_width, empty_latent_height, batch_size, lora_stack=None, + prompt=None, my_unique_id=None): + + model: ModelPatcher | None = None + clip: CLIP | None = None + vae: VAE | None = None + + # Create Empty Latent + latent = torch.zeros([batch_size, 4, empty_latent_height // 8, empty_latent_width // 8]).cpu() + + # Clean globally stored objects + globals_cleanup(prompt) + + # Retrieve cache numbers + vae_cache, ckpt_cache, lora_cache = get_cache_numbers("Efficient Loader") + + if lora_name != "None": + lora_params = [(lora_name, lora_model_strength, lora_clip_strength)] + if lora_stack is not None: + lora_params.extend(lora_stack) + model, clip = load_lora(lora_params, ckpt_name, my_unique_id, cache=lora_cache, ckpt_cache=ckpt_cache, cache_overwrite=True) + if vae_name == "Baked VAE": + vae = get_bvae_by_ckpt_name(ckpt_name) + else: + model, clip, vae = load_checkpoint(ckpt_name, my_unique_id, cache=ckpt_cache, cache_overwrite=True) + lora_params = None + + # Check for custom VAE + if vae_name != "Baked VAE": + vae = load_vae(vae_name, my_unique_id, cache=vae_cache, cache_overwrite=True) + + # Debugging + ###print_loaded_objects_entries() + + # CLIP skip + if not clip: + raise Exception("No CLIP found") + clip = clip.clone() + clip.clip_layer(clip_skip) + + # Data for XY Plot + dependencies = (vae_name, ckpt_name, clip, clip_skip, positive, negative, lora_params) + + return (model, [[clip.encode(positive), {}]], [[clip.encode(negative), {}]], {"samples":latent}, vae, clip, dependencies, ) + +######################################################################################################################## +# TSC LoRA Stacker +class TSC_LoRA_Stacker: + + loras = ["None"] + folder_paths.get_filename_list("loras") + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "lora_name_1": (cls.loras,), + "lora_wt_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_2": (cls.loras,), + "lora_wt_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_3": (cls.loras,), + "lora_wt_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})}, + "optional": {"lora_stack": ("LORA_STACK",)}, + } + + RETURN_TYPES = ("LORA_STACK",) + RETURN_NAMES = ("LORA_STACK",) + FUNCTION = "lora_stacker" + CATEGORY = "Efficiency Nodes/Misc" + + def lora_stacker(self, lora_name_1, lora_wt_1, lora_name_2, lora_wt_2, lora_name_3, lora_wt_3, lora_stack=None): + # Create a list of tuples using provided parameters, exclude tuples with lora_name as "None" + loras = [(lora_name, lora_wt, lora_wt) for lora_name, lora_wt, lora_wt in + [(lora_name_1, lora_wt_1, lora_wt_1), + (lora_name_2, lora_wt_2, lora_wt_2), + (lora_name_3, lora_wt_3, lora_wt_3)] + if lora_name != "None"] + + # If lora_stack is not None, extend the loras list with lora_stack + if lora_stack is not None: + loras.extend([l for l in lora_stack if l[0] != "None"]) + + return (loras,) + +# TSC LoRA Stacker Advanced +class TSC_LoRA_Stacker_Adv: + + loras = ["None"] + folder_paths.get_filename_list("loras") + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "lora_name_1": (cls.loras,), + "model_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_2": (cls.loras,), + "model_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_3": (cls.loras,), + "model_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})}, + "optional": {"lora_stack": ("LORA_STACK",)}, + } + + RETURN_TYPES = ("LORA_STACK",) + RETURN_NAMES = ("LORA_STACK",) + FUNCTION = "lora_stacker" + CATEGORY = "Efficiency Nodes/Misc" + + def lora_stacker(self, lora_name_1, model_str_1, clip_str_1, lora_name_2, model_str_2, clip_str_2, + lora_name_3, model_str_3, clip_str_3, lora_stack=None): + # Create a list of tuples using provided parameters, exclude tuples with lora_name as "None" + loras = [(lora_name, model_str, clip_str) for lora_name, model_str, clip_str in + [(lora_name_1, model_str_1, clip_str_1), + (lora_name_2, model_str_2, clip_str_2), + (lora_name_3, model_str_3, clip_str_3)] + if lora_name != "None"] + + # If lora_stack is not None, extend the loras list with lora_stack + if lora_stack is not None: + loras.extend([l for l in lora_stack if l[0] != "None"]) + + return (loras,) + +######################################################################################################################## +# TSC KSampler (Efficient) +class TSC_KSampler: + + empty_image = pil2tensor(Image.new('RGBA', (1, 1), (0, 0, 0, 0))) + + def __init__(self): + self.output_dir = os.path.join(comfy_dir, 'temp') + self.type = "temp" + + @classmethod + def INPUT_TYPES(cls): + return {"required": + {"sampler_state": (["Sample", "Hold", "Script"], ), + "model": ("MODEL",), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}), + "sampler_name": (comfy.samplers.KSampler.SAMPLERS,), + "scheduler": (comfy.samplers.KSampler.SCHEDULERS,), + "positive": ("CONDITIONING",), + "negative": ("CONDITIONING",), + "latent_image": ("LATENT",), + "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "preview_image": (["Disabled", "Enabled", "Output Only"],), + }, + "optional": { "optional_vae": ("VAE",), + "script": ("SCRIPT",),}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO", "my_unique_id": "UNIQUE_ID",}, + } + + RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "IMAGE", ) + RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", "IMAGE", ) + OUTPUT_NODE = True + FUNCTION = "sample" + CATEGORY = "Efficiency Nodes/Sampling" + + def sample(self, sampler_state, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, + latent_image, preview_image, denoise=1.0, prompt=None, extra_pnginfo=None, my_unique_id=None, + optional_vae=(None,), script=None): + + # Extract node_settings from json + def get_settings(): + # Get the directory path of the current file + my_dir = os.path.dirname(os.path.abspath(__file__)) + # Construct the file path for node_settings.json + settings_file = os.path.join(my_dir, 'node_settings.json') + # Load the settings from the JSON file + with open(settings_file, 'r') as file: + node_settings = json.load(file) + # Retrieve the settings + kse_vae_tiled = node_settings.get("KSampler (Efficient)", {}).get('vae_tiled', False) + xy_vae_tiled = node_settings.get("XY Plot", {}).get('vae_tiled', False) + return kse_vae_tiled, xy_vae_tiled + + kse_vae_tiled, xy_vae_tiled = get_settings() + + # Functions for previewing images in Ksampler + def map_filename(filename): + prefix_len = len(os.path.basename(filename_prefix)) + prefix = filename[:prefix_len + 1] + try: + digits = int(filename[prefix_len + 1:].split('_')[0]) + except: + digits = 0 + return (digits, prefix) + + def compute_vars(input): + input = input.replace("%width%", str(images[0].shape[1])) + input = input.replace("%height%", str(images[0].shape[0])) + return input + + def preview_images(images, filename_prefix): + filename_prefix = compute_vars(filename_prefix) + + subfolder = os.path.dirname(os.path.normpath(filename_prefix)) + filename = os.path.basename(os.path.normpath(filename_prefix)) + + full_output_folder = os.path.join(self.output_dir, subfolder) + + try: + counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", + map(map_filename, os.listdir(full_output_folder))))[0] + 1 + except ValueError: + counter = 1 + except FileNotFoundError: + os.makedirs(full_output_folder, exist_ok=True) + counter = 1 + + if not os.path.exists(self.output_dir): + os.makedirs(self.output_dir) + + results = list() + for image in images: + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + metadata = PngInfo() + if prompt is not None: + metadata.add_text("prompt", json.dumps(prompt)) + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata.add_text(x, json.dumps(extra_pnginfo[x])) + file = f"{filename}_{counter:05}_.png" + img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4) + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }); + counter += 1 + return results + + def get_value_by_id(key: str, my_unique_id): + global last_helds + for value, id_ in last_helds[key]: + if id_ == my_unique_id: + return value + return None + + def update_value_by_id(key: str, my_unique_id, new_value): + global last_helds + + for i, (value, id_) in enumerate(last_helds[key]): + if id_ == my_unique_id: + last_helds[key][i] = (new_value, id_) + return True + + last_helds[key].append((new_value, my_unique_id)) + return True + + # Clean globally stored objects of non-existant nodes + globals_cleanup(prompt) + + # Convert ID string to an integer + my_unique_id = int(my_unique_id) + + # Vae input check + vae = optional_vae + if vae == (None,): + print('\033[33mKSampler(Efficient) Warning:\033[0m No vae input detected, preview and output image disabled.\n') + preview_image = "Disabled" + + # Init last_results + if get_value_by_id("results", my_unique_id) is None: + last_results = list() + else: + last_results = get_value_by_id("results", my_unique_id) + + # Init last_latent + if get_value_by_id("latent", my_unique_id) is None: + last_latent = latent_image + else: + last_latent = {"samples": None} + last_latent["samples"] = get_value_by_id("latent", my_unique_id) + + # Init last_images + if get_value_by_id("images", my_unique_id) == None: + last_images = TSC_KSampler.empty_image + else: + last_images = get_value_by_id("images", my_unique_id) + + # Initialize latent + latent: Tensor|None = None + + # Define filename_prefix + filename_prefix = "KSeff_{:02d}".format(my_unique_id) + + # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + # Check the current sampler state + if sampler_state == "Sample": + + # Sample using the common KSampler function and store the samples + samples = common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, + latent_image, denoise=denoise) + + # Extract the latent samples from the returned samples dictionary + latent = samples[0]["samples"] + + # Store the latent samples in the 'last_helds' dictionary with a unique ID + update_value_by_id("latent", my_unique_id, latent) + + # If not in preview mode, return the results in the specified format + if preview_image == "Disabled": + # Enable vae decode on next Hold + update_value_by_id("vae_decode", my_unique_id, True) + return {"ui": {"images": list()}, + "result": (model, positive, negative, {"samples": latent}, vae, TSC_KSampler.empty_image,)} + else: + # Decode images and store + if kse_vae_tiled == False: + images = vae.decode(latent).cpu() + else: + images = vae.decode_tiled(latent).cpu() + update_value_by_id("images", my_unique_id, images) + + # Disable vae decode on next Hold + update_value_by_id("vae_decode", my_unique_id, False) + + # Generate image results and store + results = preview_images(images, filename_prefix) + update_value_by_id("results", my_unique_id, results) + + # Determine what the 'images' value should be + images_value = list() if preview_image == "Output Only" else results + + # Output image results to ui and node outputs + return {"ui": {"images": images_value}, + "result": (model, positive, negative, {"samples": latent}, vae, images,)} + + + # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + # If the sampler state is "Hold" + elif sampler_state == "Hold": + + # If not in preview mode, return the results in the specified format + if preview_image == "Disabled": + return {"ui": {"images": list()}, + "result": (model, positive, negative, last_latent, vae, TSC_KSampler.empty_image,)} + + else: + latent = last_latent["samples"] + + if get_value_by_id("vae_decode", my_unique_id) == True: + + # Decode images and store + if kse_vae_tiled == False: + images = vae.decode(latent).cpu() + else: + images = vae.decode_tiled(latent).cpu() + update_value_by_id("images", my_unique_id, images) + + # Disable vae decode on next Hold + update_value_by_id("vae_decode", my_unique_id, False) + + # Generate image results and store + results = preview_images(images, filename_prefix) + update_value_by_id("results", my_unique_id, results) + + else: + images = last_images + results = last_results + + # Determine what the 'images' value should be + images_value = list() if preview_image == "Output Only" else results + + # Output image results to ui and node outputs + return {"ui": {"images": images_value}, + "result": (model, positive, negative, {"samples": latent}, vae, images,)} + + # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + elif sampler_state == "Script": + + # Store name of connected node to script input + script_node_name, script_node_id = extract_node_info(prompt, my_unique_id, 'script') + + # If no valid script input connected, error out + if script == None or script == (None,) or script_node_name!="XY Plot": + if script_node_name!="XY Plot": + print('\033[31mKSampler(Efficient) Error:\033[0m No valid script input detected') + return {"ui": {"images": list()}, + "result": (model, positive, negative, last_latent, vae, last_images,)} + + # If no vae connected, throw errors + if vae == (None,): + print('\033[31mKSampler(Efficient) Error:\033[0m VAE must be connected to use Script mode.') + return {"ui": {"images": list()}, + "result": (model, positive, negative, last_latent, vae, last_images,)} + + # If preview_image set to disabled, run script anyways with message + if preview_image == "Disabled": + print('\033[33mKSampler(Efficient) Warning:\033[0m The preview image cannot be disabled when running' + ' the XY Plot script, proceeding as if it was enabled.\n') + + # Extract the 'samples' tensor and split it into individual image tensors + image_tensors = torch.split(latent_image['samples'], 1, dim=0) + + # Get the shape of the first image tensor + shape = image_tensors[0].shape + + # Extract the original height and width + latent_height, latent_width = shape[2] * 8, shape[3] * 8 + + # Set latent only to the first latent of batch + latent_image = {'samples': image_tensors[0]} + + #___________________________________________________________________________________________________________ + # Initialize, unpack, and clean variables for the XY Plot script + if script_node_name == "XY Plot": + + # Initialize variables + vae_name = None + ckpt_name = None + clip = None + lora_params = None + positive_prompt = None + negative_prompt = None + clip_skip = None + + # Unpack script Tuple (X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, dependencies) + X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, cache_models, xyplot_as_output_image,\ + flip_xy, dependencies = script + + # Unpack Effficient Loader dependencies + if dependencies is not None: + vae_name, ckpt_name, clip, clip_skip, positive_prompt, negative_prompt, lora_params = dependencies + + # Helper function to process printout values + def process_xy_for_print(value, replacement, type_): + if isinstance(value, tuple) and type_ == "Scheduler": + return value[0] # Return only the first entry of the tuple + elif isinstance(value, tuple): + return tuple(replacement if v is None else v for v in value) + else: + return replacement if value is None else value + + # Determine the replacements based on X_type and Y_type + replacement_X = scheduler if X_type == 'Sampler' else clip_skip if X_type == 'Checkpoint' else None + replacement_Y = scheduler if Y_type == 'Sampler' else clip_skip if Y_type == 'Checkpoint' else None + + # Process X_value and Y_value + X_value_processed = [process_xy_for_print(v, replacement_X, X_type) for v in X_value] + Y_value_processed = [process_xy_for_print(v, replacement_Y, Y_type) for v in Y_value] + + # Print XY Plot Inputs + print("-" * 40) + print("XY Plot Script Inputs:") + print(f"(X) {X_type}: {X_value_processed}") + print(f"(Y) {Y_type}: {Y_value_processed}") + print("-" * 40) + + # If not caching models, set to 1. + if cache_models == "False": + vae_cache = ckpt_cache = lora_cache = 1 + else: + # Retrieve cache numbers + vae_cache, ckpt_cache, lora_cache = get_cache_numbers("XY Plot") + # Pack cache numbers in a tuple + cache = (vae_cache, ckpt_cache, lora_cache) + + # Embedd original prompts into prompt variables + positive_prompt = (positive_prompt, positive_prompt) + negative_prompt = (negative_prompt, negative_prompt) + + #_______________________________________________________________________________________________________ + #The below code will clean from the cache any ckpt/vae/lora models it will not be reusing. + + # Map the type names to the dictionaries + dict_map = {"VAE": [], "Checkpoint": [], "LoRA": []} + + # Create a list of tuples with types and values + type_value_pairs = [(X_type, X_value), (Y_type, Y_value)] + + # Iterate over type-value pairs + for t, v in type_value_pairs: + if t in dict_map: + # Flatten the list of lists of tuples if the type is "LoRA" + if t == "LoRA": + dict_map[t] = [item for sublist in v for item in sublist] + else: + dict_map[t] = v + + ckpt_dict = [t[0] for t in dict_map.get("Checkpoint", [])] if dict_map.get("Checkpoint", []) else [] + + lora_dict = [[t,] for t in dict_map.get("LoRA", [])] if dict_map.get("LoRA", []) else [] + + # If both ckpt_dict and lora_dict are not empty, manipulate lora_dict as described + if ckpt_dict and lora_dict: + lora_dict = [(lora_params, ckpt) for ckpt in ckpt_dict for lora_params in lora_dict] + # If lora_dict is not empty and ckpt_dict is empty, insert ckpt_name into each tuple in lora_dict + elif lora_dict: + lora_dict = [(lora_params, ckpt_name) for lora_params in lora_dict] + + vae_dict = dict_map.get("VAE", []) + + # prioritize Caching Checkpoints over LoRAs but not both. + if X_type == "LoRA": + ckpt_dict = [] + if X_type == "Checkpoint": + lora_dict = [] + + # Print dict_arrays for debugging + ###print(f"vae_dict={vae_dict}\nckpt_dict={ckpt_dict}\nlora_dict={lora_dict}") + + # Clean values that won't be reused + clear_cache_by_exception(script_node_id, vae_dict=vae_dict, ckpt_dict=ckpt_dict, lora_dict=lora_dict) + + # Print loaded_objects for debugging + ###print_loaded_objects_entries() + + #_______________________________________________________________________________________________________ + # Function that changes appropiate variables for next processed generations (also generates XY_labels) + def define_variable(var_type, var, seed, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, + clip_skip, positive_prompt, negative_prompt, lora_params, var_label, num_label): + + # Define default max label size limit + max_label_len = 36 + + # If var_type is "Seeds++ Batch", update var and seed, and generate labels + if var_type == "Seeds++ Batch": + text = f"Seed: {seed}" + + # If var_type is "Steps", update steps and generate labels + elif var_type == "Steps": + steps = var + text = f"steps: {steps}" + + # If var_type is "CFG Scale", update cfg and generate labels + elif var_type == "CFG Scale": + cfg = var + text = f"CFG: {round(cfg,2)}" + + # If var_type is "Sampler", update sampler_name, scheduler, and generate labels + elif var_type == "Sampler": + sampler_name = var[0] + if var[1] == "": + text = f"{sampler_name}" + else: + if var[1] != None: + scheduler = (var[1], scheduler[1]) + else: + scheduler = (scheduler[1], scheduler[1]) + text = f"{sampler_name} ({scheduler[0]})" + text = text.replace("ancestral", "a").replace("uniform", "u").replace("exponential","exp") + + # If var_type is "Scheduler", update scheduler and generate labels + elif var_type == "Scheduler": + if len(var) == 2: + scheduler = (var[0], scheduler[1]) + text = f"{sampler_name} ({scheduler[0]})" + else: + scheduler = (var, scheduler[1]) + text = f"{scheduler[0]}" + text = text.replace("ancestral", "a").replace("uniform", "u").replace("exponential","exp") + + # If var_type is "Denoise", update denoise and generate labels + elif var_type == "Denoise": + denoise = var + text = f"denoise: {round(denoise, 2)}" + + # If var_type is "VAE", update vae_name and generate labels + elif var_type == "VAE": + vae_name = var + vae_filename = os.path.splitext(os.path.basename(vae_name))[0] + text = f"VAE: {vae_filename}" + + # If var_type is "Positive Prompt S/R", update positive_prompt and generate labels + elif var_type == "Positive Prompt S/R": + search_txt, replace_txt = var + if replace_txt != None: + positive_prompt = (positive_prompt[1].replace(search_txt, replace_txt, 1), positive_prompt[1]) + else: + positive_prompt = (positive_prompt[1], positive_prompt[1]) + replace_txt = search_txt + text = f"{replace_txt}" + + # If var_type is "Negative Prompt S/R", update negative_prompt and generate labels + elif var_type == "Negative Prompt S/R": + search_txt, replace_txt = var + if replace_txt: + negative_prompt = (negative_prompt[1].replace(search_txt, replace_txt, 1), negative_prompt[1]) + else: + negative_prompt = (negative_prompt[1], negative_prompt[1]) + replace_txt = search_txt + text = f"(-) {replace_txt}" + + # If var_type is "Checkpoint", update model and clip (if needed) and generate labels + elif var_type == "Checkpoint": + ckpt_name = var[0] + if var[1] == None: + clip_skip = (clip_skip[1],clip_skip[1]) + else: + clip_skip = (var[1],clip_skip[1]) + ckpt_filename = os.path.splitext(os.path.basename(ckpt_name))[0] + text = f"{ckpt_filename}" + + elif var_type == "Clip Skip": + clip_skip = (var, clip_skip[1]) + text = f"Clip Skip ({clip_skip[0]})" + + elif var_type == "LoRA": + lora_params = var + max_label_len = 30 + (12 * (len(lora_params)-1)) + if len(lora_params) == 1: + lora_name, lora_model_wt, lora_clip_wt = lora_params[0] + lora_filename = os.path.splitext(os.path.basename(lora_name))[0] + lora_model_wt = format(float(lora_model_wt), ".2f").rstrip('0').rstrip('.') + lora_clip_wt = format(float(lora_clip_wt), ".2f").rstrip('0').rstrip('.') + lora_filename = lora_filename[:max_label_len - len(f"LoRA: ({lora_model_wt})")] + if lora_model_wt == lora_clip_wt: + text = f"LoRA: {lora_filename}({lora_model_wt})" + else: + text = f"LoRA: {lora_filename}({lora_model_wt},{lora_clip_wt})" + elif len(lora_params) > 1: + lora_filenames = [os.path.splitext(os.path.basename(lora_name))[0] for lora_name, _, _ in lora_params] + lora_details = [(format(float(lora_model_wt), ".2f").rstrip('0').rstrip('.'), + format(float(lora_clip_wt), ".2f").rstrip('0').rstrip('.')) for _, lora_model_wt, lora_clip_wt in lora_params] + non_name_length = sum(len(f"({lora_details[i][0]},{lora_details[i][1]})") + 2 for i in range(len(lora_params))) + available_space = max_label_len - non_name_length + max_name_length = available_space // len(lora_params) + lora_filenames = [filename[:max_name_length] for filename in lora_filenames] + text_elements = [f"{lora_filename}({lora_details[i][0]})" if lora_details[i][0] == lora_details[i][1] else f"{lora_filename}({lora_details[i][0]},{lora_details[i][1]})" for i, lora_filename in enumerate(lora_filenames)] + text = " ".join(text_elements) + + def truncate_texts(texts, num_label, max_label_len): + truncate_length = max(min(max(len(text) for text in texts), max_label_len), 24) + + return [text if len(text) <= truncate_length else text[:truncate_length] + "..." for text in + texts] + + # Add the generated text to var_label if it's not full + if len(var_label) < num_label: + var_label.append(text) + + # If var_type VAE , truncate entries in the var_label list when it's full + if len(var_label) == num_label and (var_type == "VAE" or var_type == "Checkpoint" or var_type == "LoRA"): + var_label = truncate_texts(var_label, num_label, max_label_len) + + # Return the modified variables + return steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, \ + positive_prompt, negative_prompt, lora_params, var_label + + # _______________________________________________________________________________________________________ + # The function below is used to smartly load Checkpoint/LoRA/VAE models between generations. + def define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip, vae, + vae_name, ckpt_name, lora_params, index, types, script_node_id, cache): + + # Encode prompt and apply clip_skip. Return new conditioning. + def encode_prompt(positive_prompt, negative_prompt, clip, clip_skip): + clip = CLIPSetLastLayer().set_last_layer(clip, clip_skip)[0] + return [[clip.encode(positive_prompt), {}]], [[clip.encode(negative_prompt), {}]] + + # Variable to track wether to encode prompt or not + encode = False + + # Unpack types tuple + X_type, Y_type = types + + # Note: Index is held at 0 when Y_type == "Nothing" + + # Load VAE if required + if (X_type == "VAE" and index == 0) or Y_type == "VAE": + vae = load_vae(vae_name, script_node_id, cache=cache[0]) + + # Load Checkpoint if required. If Y_type is LoRA, required models will be loaded by load_lora func. + if (X_type == "Checkpoint" and index == 0 and Y_type != "LoRA"): + if lora_params is None: + model, clip, _ = load_checkpoint(ckpt_name, script_node_id, output_vae=False, cache=cache[1]) + else: # Load Efficient Loader LoRA + model, clip = load_lora(lora_params, ckpt_name, script_node_id, + cache=None, ckpt_cache=cache[1]) + encode = True + + # Load LoRA if required + elif (X_type == "LoRA" and index == 0): + # Don't cache Checkpoints + model, clip = load_lora(lora_params, ckpt_name, script_node_id, cache=cache[2]) + encode = True + + elif Y_type == "LoRA": # X_type must be Checkpoint, so cache those as defined + model, clip = load_lora(lora_params, ckpt_name, script_node_id, + cache=None, ckpt_cache=cache[1]) + encode = True + + # Encode Prompt if required + prompt_types = ["Positive Prompt S/R", "Negative Prompt S/R", "Clip Skip"] + if (X_type in prompt_types and index == 0) or Y_type in prompt_types: + encode = True + + # Encode prompt if needed + if encode == True: + positive, negative = encode_prompt(positive_prompt[0], negative_prompt[0], clip, clip_skip) + + return model, positive, negative, vae + + # ______________________________________________________________________________________________________ + # The below function is used to generate the results based on all the processed variables + def process_values(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, + denoise, vae, latent_list=[], image_tensor_list=[], image_pil_list=[]): + + # Sample + samples = common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, + latent_image, denoise=denoise) + + # Decode images and store + latent = samples[0]["samples"] + + # Add the latent tensor to the tensors list + latent_list.append(latent) + + # Decode the latent tensor + if xy_vae_tiled == False: + image = vae.decode(latent).cpu() + else: + image = vae.decode_tiled(latent).cpu() + + # Add the resulting image tensor to image_tensor_list + image_tensor_list.append(image) + + # Convert the image from tensor to PIL Image and add it to the image_pil_list + image_pil_list.append(tensor2pil(image)) + + # Return the touched variables + return latent_list, image_tensor_list, image_pil_list + + # ______________________________________________________________________________________________________ + # The below section is the heart of the XY Plot image generation + + # Initiate Plot label text variables X/Y_label + X_label = [] + Y_label = [] + + # Seed_updated for "Seeds++ Batch" incremental seeds + seed_updated = seed + + # Store the KSamplers original scheduler inside the same scheduler variable + scheduler = (scheduler, scheduler) + + # Store the Eff Loaders original clip_skip inside the same clip_skip variable + clip_skip = (clip_skip, clip_skip) + + # Store types in a Tuple for easy function passing + types = (X_type, Y_type) + + # Fill Plot Rows (X) + for X_index, X in enumerate(X_value): + + # Seed control based on loop index during Batch + if X_type == "Seeds++ Batch": + # Update seed based on the inner loop index + seed_updated = seed + X_index + + # Define X parameters and generate labels + steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, positive_prompt, negative_prompt, \ + lora_params, X_label = \ + define_variable(X_type, X, seed_updated, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, + clip_skip, positive_prompt, negative_prompt, lora_params, X_label, len(X_value)) + + if X_type != "Nothing" and Y_type == "Nothing": + + # Models & Conditionings + model, positive, negative , vae = \ + define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip[0], vae, + vae_name, ckpt_name, lora_params, 0, types, script_node_id, cache) + + # Generate Results + latent_list, image_tensor_list, image_pil_list = \ + process_values(model, seed_updated, steps, cfg, sampler_name, scheduler[0], + positive, negative, latent_image, denoise, vae) + + elif X_type != "Nothing" and Y_type != "Nothing": + # Seed control based on loop index during Batch + for Y_index, Y in enumerate(Y_value): + + if Y_type == "Seeds++ Batch": + # Update seed based on the inner loop index + seed_updated = seed + Y_index + + # Define Y parameters and generate labels + steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, positive_prompt, negative_prompt, lora_params, Y_label = \ + define_variable(Y_type, Y, seed_updated, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, + clip_skip, positive_prompt, negative_prompt, lora_params, Y_label, len(Y_value)) + + # Models & Conditionings + model, positive, negative, vae = \ + define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip[0], vae, + vae_name, ckpt_name, lora_params, Y_index, types, script_node_id, cache) + + # Generate Results + latent_list, image_tensor_list, image_pil_list = \ + process_values(model, seed_updated, steps, cfg, sampler_name, scheduler[0], + positive, negative, latent_image, denoise, vae) + + # Clean up cache + if cache_models == "False": + clear_cache_by_exception(script_node_id, vae_dict=[], ckpt_dict=[], lora_dict=[]) + # + else: + # Prioritrize Caching Checkpoints over LoRAs. + if X_type == "LoRA": + clear_cache_by_exception(script_node_id, ckpt_dict=[]) + elif X_type == "Checkpoint": + clear_cache_by_exception(script_node_id, lora_dict=[]) + + # ______________________________________________________________________________________________________ + def print_plot_variables(X_type, Y_type, X_value, Y_value, seed, ckpt_name, lora_params, + vae_name, clip_skip, steps, cfg, sampler_name, scheduler, denoise, + num_rows, num_cols, latent_height, latent_width): + + print("-" * 40) # Print an empty line followed by a separator line + print("\033[32mXY Plot Results:\033[0m") + + def get_vae_name(X_type, Y_type, X_value, Y_value, vae_name): + if X_type == "VAE": + vae_name = ", ".join(map(lambda x: os.path.splitext(os.path.basename(str(x)))[0], X_value)) + elif Y_type == "VAE": + vae_name = ", ".join(map(lambda y: os.path.splitext(os.path.basename(str(y)))[0], Y_value)) + else: + vae_name = os.path.splitext(os.path.basename(str(vae_name)))[0] + return vae_name + + def get_clip_skip(X_type, Y_type, X_value, Y_value, clip_skip): + if X_type == "Clip Skip": + clip_skip = ", ".join(map(str, X_value)) + elif Y_type == "Clip Skip": + clip_skip = ", ".join(map(str, Y_value)) + else: + clip_skip = clip_skip[1] + return clip_skip + + def get_checkpoint_name(ckpt_type, ckpt_values, clip_skip_type, clip_skip_values, ckpt_name, clip_skip): + if ckpt_type == "Checkpoint": + if clip_skip_type == "Clip Skip": + ckpt_name = ", ".join([os.path.splitext(os.path.basename(str(ckpt[0])))[0] for ckpt in ckpt_values]) + else: + ckpt_name = ", ".join([f"{os.path.splitext(os.path.basename(str(ckpt[0])))[0]}({str(ckpt[1]) if ckpt[1] is not None else str(clip_skip_values)})" + for ckpt in ckpt_values]) + clip_skip = "_" + else: + ckpt_name = os.path.splitext(os.path.basename(str(ckpt_name)))[0] + + return ckpt_name, clip_skip + + def get_lora_name(X_type, Y_type, X_value, Y_value, lora_params=None): + if X_type != "LoRA" and Y_type != "LoRA": + if lora_params: + return f"[{', '.join([f'{os.path.splitext(os.path.basename(name))[0]}({round(model_wt, 3)},{round(clip_wt, 3)})' for name, model_wt, clip_wt in lora_params])}]" + else: + return None + else: + return get_lora_sublist_name(X_type, + X_value) if X_type == "LoRA" else get_lora_sublist_name(Y_type, Y_value) if Y_type == "LoRA" else None + + def get_lora_sublist_name(lora_type, lora_value): + return ", ".join([ + f"[{', '.join([f'{os.path.splitext(os.path.basename(str(x[0])))[0]}({round(x[1], 3)},{round(x[2], 3)})' for x in sublist])}]" + for sublist in lora_value]) + + # use these functions: + ckpt_type, clip_skip_type = (X_type, Y_type) if X_type in ["Checkpoint", "Clip Skip"] else (Y_type, X_type) + ckpt_values, clip_skip_values = (X_value, Y_value) if X_type in ["Checkpoint", "Clip Skip"] else (Y_value, X_value) + + clip_skip = get_clip_skip(X_type, Y_type, X_value, Y_value, clip_skip) + ckpt_name, clip_skip = get_checkpoint_name(ckpt_type, ckpt_values, clip_skip_type, clip_skip_values, ckpt_name, clip_skip) + vae_name = get_vae_name(X_type, Y_type, X_value, Y_value, vae_name) + lora_name = get_lora_name(X_type, Y_type, X_value, Y_value, lora_params) + + seed_list = [seed + x for x in X_value] if X_type == "Seeds++ Batch" else\ + [seed + y for y in Y_value] if Y_type == "Seeds++ Batch" else [seed] + seed = ", ".join(map(str, seed_list)) + + steps = ", ".join(map(str, X_value)) if X_type == "Steps" else ", ".join( + map(str, Y_value)) if Y_type == "Steps" else steps + + cfg = ", ".join(map(str, X_value)) if X_type == "CFG Scale" else ", ".join( + map(str, Y_value)) if Y_type == "CFG Scale" else cfg + + if X_type == "Sampler": + if Y_type == "Scheduler": + sampler_name = ", ".join([f"{x[0]}" for x in X_value]) + scheduler = ", ".join([f"{y}" for y in Y_value]) + else: + sampler_name = ", ".join( + [f"{x[0]}({x[1] if x[1] != '' and x[1] is not None else scheduler[1]})" for x in X_value]) + scheduler = "_" + elif Y_type == "Sampler": + if X_type == "Scheduler": + sampler_name = ", ".join([f"{y[0]}" for y in Y_value]) + scheduler = ", ".join([f"{x}" for x in X_value]) + else: + sampler_name = ", ".join( + [f"{y[0]}({y[1] if y[1] != '' and y[1] is not None else scheduler[1]})" for y in Y_value]) + scheduler = "_" + else: + scheduler = ", ".join([str(x[0]) if isinstance(x, tuple) else str(x) for x in X_value]) if X_type == "Scheduler" else \ + ", ".join([str(y[0]) if isinstance(y, tuple) else str(y) for y in Y_value]) if Y_type == "Scheduler" else scheduler[0] + + denoise = ", ".join(map(str, X_value)) if X_type == "Denoise" else ", ".join( + map(str, Y_value)) if Y_type == "Denoise" else denoise + + # Printouts + print(f"img_count: {len(X_value)*len(Y_value)}") + print(f"img_dims: {latent_height} x {latent_width}") + print(f"plot_dim: {num_cols} x {num_rows}") + if clip_skip == "_": + print(f"ckpt(clipskip): {ckpt_name if ckpt_name is not None else ''}") + else: + print(f"ckpt: {ckpt_name if ckpt_name is not None else ''}") + print(f"clip_skip: {clip_skip if clip_skip is not None else ''}") + if lora_name: + print(f"lora(mod,clip): {lora_name if lora_name is not None else ''}") + print(f"vae: {vae_name if vae_name is not None else ''}") + print(f"seed: {seed}") + print(f"steps: {steps}") + print(f"cfg: {cfg}") + if scheduler == "_": + print(f"sampler(schr): {sampler_name}") + else: + print(f"sampler: {sampler_name}") + print(f"scheduler: {scheduler}") + print(f"denoise: {denoise}") + + if X_type == "Positive Prompt S/R" or Y_type == "Positive Prompt S/R": + positive_prompt = ", ".join([str(x[0]) if i == 0 else str(x[1]) for i, x in enumerate( + X_value)]) if X_type == "Positive Prompt S/R" else ", ".join( + [str(y[0]) if i == 0 else str(y[1]) for i, y in + enumerate(Y_value)]) if Y_type == "Positive Prompt S/R" else positive_prompt + print(f"+prompt_s/r: {positive_prompt}") + + if X_type == "Negative Prompt S/R" or Y_type == "Negative Prompt S/R": + negative_prompt = ", ".join([str(x[0]) if i == 0 else str(x[1]) for i, x in enumerate( + X_value)]) if X_type == "Negative Prompt S/R" else ", ".join( + [str(y[0]) if i == 0 else str(y[1]) for i, y in + enumerate(Y_value)]) if Y_type == "Negative Prompt S/R" else negative_prompt + print(f"-prompt_s/r: {negative_prompt}") + + # ______________________________________________________________________________________________________ + def adjusted_font_size(text, initial_font_size, latent_width): + font = ImageFont.truetype(str(Path(font_path)), initial_font_size) + text_width = font.getlength(text) + + if text_width > (latent_width * 0.9): + scaling_factor = 0.9 # A value less than 1 to shrink the font size more aggressively + new_font_size = int(initial_font_size * (latent_width / text_width) * scaling_factor) + else: + new_font_size = initial_font_size + + return new_font_size + + # ______________________________________________________________________________________________________ + + # Disable vae decode on next Hold + update_value_by_id("vae_decode", my_unique_id, False) + + def rearrange_list_A(arr, num_cols, num_rows): + new_list = [] + for i in range(num_rows): + for j in range(num_cols): + index = j * num_rows + i + new_list.append(arr[index]) + return new_list + + def rearrange_list_B(arr, num_rows, num_cols): + new_list = [] + for i in range(num_rows): + for j in range(num_cols): + index = i * num_cols + j + new_list.append(arr[index]) + return new_list + + # Extract plot dimensions + num_rows = max(len(Y_value) if Y_value is not None else 0, 1) + num_cols = max(len(X_value) if X_value is not None else 0, 1) + + # Flip X & Y results back if flipped earlier (for Checkpoint/LoRA For loop optimizations) + if flip_xy == True: + X_type, Y_type = Y_type, X_type + X_value, Y_value = Y_value, X_value + X_label, Y_label = Y_label, X_label + num_rows, num_cols = num_cols, num_rows + image_pil_list = rearrange_list_A(image_pil_list, num_rows, num_cols) + else: + image_pil_list = rearrange_list_B(image_pil_list, num_rows, num_cols) + image_tensor_list = rearrange_list_A(image_tensor_list, num_cols, num_rows) + latent_list = rearrange_list_A(latent_list, num_cols, num_rows) + + # Print XY Plot Results + print_plot_variables(X_type, Y_type, X_value, Y_value, seed, ckpt_name, lora_params, vae_name, + clip_skip, steps, cfg, sampler_name, scheduler, denoise, + num_rows, num_cols, latent_height, latent_width) + + # Concatenate the tensors along the first dimension (dim=0) + latent_list = torch.cat(latent_list, dim=0) + + # Store latent_list as last latent + update_value_by_id("latent", my_unique_id, latent_list) + + # Calculate the dimensions of the white background image + border_size_top = latent_width // 15 + + # Longest Y-label length + if len(Y_label) > 0: + Y_label_longest = max(len(s) for s in Y_label) + else: + # Handle the case when the sequence is empty + Y_label_longest = 0 # or any other appropriate value + + Y_label_scale = min(Y_label_longest + 4,24) / 24 + + if Y_label_orientation == "Vertical": + border_size_left = border_size_top + else: # Assuming Y_label_orientation is "Horizontal" + # border_size_left is now min(latent_width, latent_height) plus 20% of the difference between the two + border_size_left = min(latent_width, latent_height) + int(0.2 * abs(latent_width - latent_height)) + border_size_left = int(border_size_left * Y_label_scale) + + # Modify the border size, background width and x_offset initialization based on Y_type and Y_label_orientation + if Y_type == "Nothing": + bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing + x_offset_initial = 0 + else: + if Y_label_orientation == "Vertical": + bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing + 3 * border_size_left + x_offset_initial = border_size_left * 3 + else: # Assuming Y_label_orientation is "Horizontal" + bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing + border_size_left + x_offset_initial = border_size_left + + # Modify the background height based on X_type + if X_type == "Nothing": + bg_height = num_rows * latent_height + (num_rows - 1) * grid_spacing + y_offset = 0 + else: + bg_height = num_rows * latent_height + (num_rows - 1) * grid_spacing + 3 * border_size_top + y_offset = border_size_top * 3 + + # Create the white background image + background = Image.new('RGBA', (int(bg_width), int(bg_height)), color=(255, 255, 255, 255)) + + for row in range(num_rows): + + # Initialize the X_offset + x_offset = x_offset_initial + + for col in range(num_cols): + # Calculate the index for image_pil_list + index = col * num_rows + row + img = image_pil_list[index] + + # Paste the image + background.paste(img, (x_offset, y_offset)) + + if row == 0 and X_type != "Nothing": + # Assign text + text = X_label[col] + + # Add the corresponding X_value as a label above the image + initial_font_size = int(48 * img.width / 512) + font_size = adjusted_font_size(text, initial_font_size, img.width) + label_height = int(font_size*1.5) + + # Create a white background label image + label_bg = Image.new('RGBA', (img.width, label_height), color=(255, 255, 255, 0)) + d = ImageDraw.Draw(label_bg) + + # Create the font object + font = ImageFont.truetype(str(Path(font_path)), font_size) + + # Calculate the text size and the starting position + _, _, text_width, text_height = d.textbbox([0,0], text, font=font) + text_x = (img.width - text_width) // 2 + text_y = (label_height - text_height) // 2 + + # Add the text to the label image + d.text((text_x, text_y), text, fill='black', font=font) + + # Calculate the available space between the top of the background and the top of the image + available_space = y_offset - label_height + + # Calculate the new Y position for the label image + label_y = available_space // 2 + + # Paste the label image above the image on the background using alpha_composite() + background.alpha_composite(label_bg, (x_offset, label_y)) + + if col == 0 and Y_type != "Nothing": + # Assign text + text = Y_label[row] + + # Add the corresponding Y_value as a label to the left of the image + if Y_label_orientation == "Vertical": + initial_font_size = int(48 * latent_width / 512) # Adjusting this to be same as X_label size + font_size = adjusted_font_size(text, initial_font_size, latent_width) + else: # Assuming Y_label_orientation is "Horizontal" + initial_font_size = int(48 * (border_size_left/Y_label_scale) / 512) # Adjusting this to be same as X_label size + font_size = adjusted_font_size(text, initial_font_size, int(border_size_left/Y_label_scale)) + + # Create a white background label image + label_bg = Image.new('RGBA', (img.height, int(font_size*1.2)), color=(255, 255, 255, 0)) + d = ImageDraw.Draw(label_bg) + + # Create the font object + font = ImageFont.truetype(str(Path(font_path)), font_size) + + # Calculate the text size and the starting position + _, _, text_width, text_height = d.textbbox([0,0], text, font=font) + text_x = (img.height - text_width) // 2 + text_y = (font_size - text_height) // 2 + + # Add the text to the label image + d.text((text_x, text_y), text, fill='black', font=font) + + # Rotate the label_bg 90 degrees counter-clockwise only if Y_label_orientation is "Vertical" + if Y_label_orientation == "Vertical": + label_bg = label_bg.rotate(90, expand=True) + + # Calculate the available space between the left of the background and the left of the image + available_space = x_offset - label_bg.width + + # Calculate the new X position for the label image + label_x = available_space // 2 + + # Calculate the Y position for the label image based on its orientation + if Y_label_orientation == "Vertical": + label_y = y_offset + (img.height - label_bg.height) // 2 + else: # Assuming Y_label_orientation is "Horizontal" + label_y = y_offset + img.height - (img.height - label_bg.height) // 2 + + # Paste the label image to the left of the image on the background using alpha_composite() + background.alpha_composite(label_bg, (label_x, label_y)) + + # Update the x_offset + x_offset += img.width + grid_spacing + + # Update the y_offset + y_offset += img.height + grid_spacing + + images = pil2tensor(background) + + # Generate image results and store + results = preview_images(images, filename_prefix) + update_value_by_id("results", my_unique_id, results) + + # Squeeze and Stack the tensors, and store results + if xyplot_as_output_image == False: + image_tensor_list = torch.stack([tensor.squeeze() for tensor in image_tensor_list]) + else: + image_tensor_list = images + update_value_by_id("images", my_unique_id, image_tensor_list) + + # Print cache if set to true + if cache_models == "True": + print_loaded_objects_entries(script_node_id, prompt) + + print("-" * 40) # Print an empty line followed by a separator line + + images = list() if preview_image == "Output Only" else results + + return { + "ui": {"images": images}, + "result": (model, positive, negative, {"samples": latent_list}, vae, image_tensor_list,) + } + +######################################################################################################################## +# TSC XY Plot +class TSC_XYplot: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "grid_spacing": ("INT", {"default": 0, "min": 0, "max": 500, "step": 5}), + "XY_flip": (["False","True"],), + "Y_label_orientation": (["Horizontal", "Vertical"],), + "cache_models": (["True", "False"],), + "ksampler_output_image": (["Plot", "Images"],),}, + "optional": { + "dependencies": ("DEPENDENCIES", ), + "X": ("XY", ), + "Y": ("XY", ),}, + } + + RETURN_TYPES = ("SCRIPT",) + RETURN_NAMES = ("SCRIPT",) + FUNCTION = "XYplot" + CATEGORY = "Efficiency Nodes/XY Plot" + + def XYplot(self, grid_spacing, XY_flip, Y_label_orientation, cache_models, ksampler_output_image, dependencies=None, X=None, Y=None): + + # Unpack X & Y Tuples if connected + if X != None: + X_type, X_value = X + else: + X_type = "Nothing" + X_value = [""] + if Y != None: + Y_type, Y_value = Y + else: + Y_type = "Nothing" + Y_value = [""] + + # If types are the same exit. If one isn't "Nothing", print error + if (X_type == Y_type): + if X_type != "Nothing": + print(f"\033[31mXY Plot Error:\033[0m X and Y input types must be different.") + return (None,) + + # Check that dependencies is connected for Checkpoint and LoRA plots + types = ("Checkpoint", "LoRA", "Positive Prompt S/R", "Negative Prompt S/R") + if X_type in types or Y_type in types: + if dependencies == None: # Not connected + print(f"\033[31mXY Plot Error:\033[0m The dependencies input must be connected for certain plot types.") + # Return None + return (None,) + + # Define X/Y_values for "Seeds++ Batch" + if X_type == "Seeds++ Batch": + X_value = [i for i in range(X_value[0])] + if Y_type == "Seeds++ Batch": + Y_value = [i for i in range(Y_value[0])] + + # Clean Schedulers from Sampler data (if other type is Scheduler) + if X_type == "Sampler" and Y_type == "Scheduler": + # Clear X_value Scheduler's + X_value = [(x[0], "") for x in X_value] + elif Y_type == "Sampler" and X_type == "Scheduler": + # Clear Y_value Scheduler's + Y_value = [(y[0], "") for y in Y_value] + + # Embed information into "Scheduler" X/Y_values for text label + if X_type == "Scheduler" and Y_type != "Sampler": + # X_value second tuple value of each array entry = None + X_value = [(x, None) for x in X_value] + + if Y_type == "Scheduler" and X_type != "Sampler": + # Y_value second tuple value of each array entry = None + Y_value = [(y, None) for y in Y_value] + + # Optimize image generation by prioritizing Checkpoint>LoRA>VAE>PromptSR as X in For Loop. Flip back when done. + if Y_type == "Checkpoint" or \ + Y_type == "LoRA" and X_type not in {"Checkpoint"} or \ + Y_type == "VAE" and X_type not in {"Checkpoint", "LoRA"} or \ + Y_type == "Positive Prompt S/R" and X_type not in {"Checkpoint", "LoRA", "VAE", + "Negative Prompt S/R"} or \ + Y_type == "Negative Prompt S/R" and X_type not in {"Checkpoint", "LoRA", "VAE", + "Positive Prompt S/R"} or \ + X_type == "Nothing" and Y_type != "Nothing": + flip_xy = True + X_type, Y_type = Y_type, X_type + X_value, Y_value = Y_value, X_value + else: + flip_xy = False + + # Flip X and Y + if XY_flip == "True": + X_type, Y_type = Y_type, X_type + X_value, Y_value = Y_value, X_value + + # Define Ksampler output image behavior + xyplot_as_output_image = ksampler_output_image == "Plot" + + return ((X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, cache_models, + xyplot_as_output_image, flip_xy, dependencies),) + + +# TSC XY Plot: Seeds Values +class TSC_XYplot_SeedsBatch: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "batch_count": ("INT", {"default": 1, "min": 0, "max": 50}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, batch_count): + if batch_count == 0: + return (None,) + xy_type = "Seeds++ Batch" + xy_value = [batch_count] + return ((xy_type, xy_value),) + +# TSC XY Plot: Step Values +class TSC_XYplot_Steps: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "select_count": ("INT", {"default": 0, "min": 0, "max": 5}), + "steps_1": ("INT", {"default": 20, "min": 1, "max": 10000}), + "steps_2": ("INT", {"default": 20, "min": 1, "max": 10000}), + "steps_3": ("INT", {"default": 20, "min": 1, "max": 10000}), + "steps_4": ("INT", {"default": 20, "min": 1, "max": 10000}), + "steps_5": ("INT", {"default": 20, "min": 1, "max": 10000}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, select_count, steps_1, steps_2, steps_3, steps_4, steps_5): + xy_type = "Steps" + xy_value = [step for idx, step in enumerate([steps_1, steps_2, steps_3, steps_4, steps_5], start=1) if + idx <= select_count] + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: CFG Values +class TSC_XYplot_CFG: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "select_count": ("INT", {"default": 0, "min": 0, "max": 5}), + "cfg_1": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}), + "cfg_2": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}), + "cfg_3": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}), + "cfg_4": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}), + "cfg_5": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, select_count, cfg_1, cfg_2, cfg_3, cfg_4, cfg_5): + xy_type = "CFG Scale" + xy_value = [cfg for idx, cfg in enumerate([cfg_1, cfg_2, cfg_3, cfg_4, cfg_5], start=1) if idx <= select_count] + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: Sampler Values +class TSC_XYplot_Sampler: + + samplers = ["None"] + comfy.samplers.KSampler.SAMPLERS + schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "sampler_1": (cls.samplers,), + "scheduler_1": (cls.schedulers,), + "sampler_2": (cls.samplers,), + "scheduler_2": (cls.schedulers,), + "sampler_3": (cls.samplers,), + "scheduler_3": (cls.schedulers,), + "sampler_4": (cls.samplers,), + "scheduler_4": (cls.schedulers,), + "sampler_5": (cls.samplers,), + "scheduler_5": (cls.schedulers,),}, + } + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, sampler_1, scheduler_1, sampler_2, scheduler_2, sampler_3, scheduler_3, + sampler_4, scheduler_4, sampler_5, scheduler_5): + + samplers = [sampler_1, sampler_2, sampler_3, sampler_4, sampler_5] + schedulers = [scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5] + + pairs = [] + for sampler, scheduler in zip(samplers, schedulers): + if sampler != "None": + if scheduler != "None": + pairs.append((sampler, scheduler)) + else: + pairs.append((sampler,None)) + + xy_type = "Sampler" + xy_value = pairs + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: Scheduler Values +class TSC_XYplot_Scheduler: + + schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "scheduler_1": (cls.schedulers,), + "scheduler_2": (cls.schedulers,), + "scheduler_3": (cls.schedulers,), + "scheduler_4": (cls.schedulers,), + "scheduler_5": (cls.schedulers,),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5): + xy_type = "Scheduler" + xy_value = [scheduler for scheduler in [scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5] if + scheduler != "None"] + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: Denoise Values +class TSC_XYplot_Denoise: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "select_count": ("INT", {"default": 0, "min": 0, "max": 5}), + "denoise_1": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}), + "denoise_2": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}), + "denoise_3": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}), + "denoise_4": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}), + "denoise_5": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, select_count, denoise_1, denoise_2, denoise_3, denoise_4, denoise_5): + xy_type = "Denoise" + xy_value = [denoise for idx, denoise in + enumerate([denoise_1, denoise_2, denoise_3, denoise_4, denoise_5], start=1) if idx <= select_count] + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: VAE Values +class TSC_XYplot_VAE: + + vaes = ["None"] + folder_paths.get_filename_list("vae") + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "vae_name_1": (cls.vaes,), + "vae_name_2": (cls.vaes,), + "vae_name_3": (cls.vaes,), + "vae_name_4": (cls.vaes,), + "vae_name_5": (cls.vaes,),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, vae_name_1, vae_name_2, vae_name_3, vae_name_4, vae_name_5): + xy_type = "VAE" + xy_value = [vae for vae in [vae_name_1, vae_name_2, vae_name_3, vae_name_4, vae_name_5] if vae != "None"] + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: Prompt S/R Positive +class TSC_XYplot_PromptSR_Positive: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "search_txt": ("STRING", {"default": "", "multiline": False}), + "replace_count": ("INT", {"default": 0, "min": 0, "max": 4}), + "replace_1":("STRING", {"default": "", "multiline": False}), + "replace_2": ("STRING", {"default": "", "multiline": False}), + "replace_3": ("STRING", {"default": "", "multiline": False}), + "replace_4": ("STRING", {"default": "", "multiline": False}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, search_txt, replace_count, replace_1, replace_2, replace_3, replace_4): + # If search_txt is empty, return (None,) + if search_txt == "": + return (None,) + + xy_type = "Positive Prompt S/R" + + # Create a list of replacement arguments + replacements = [replace_1, replace_2, replace_3, replace_4] + + # Create base entry + xy_values = [(search_txt, None)] + + if replace_count > 0: + # Append additional entries based on replace_count + xy_values.extend([(search_txt, replacements[i]) for i in range(replace_count)]) + + return ((xy_type, xy_values),) + +# TSC XY Plot: Prompt S/R Negative +class TSC_XYplot_PromptSR_Negative: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "search_txt": ("STRING", {"default": "", "multiline": False}), + "replace_count": ("INT", {"default": 0, "min": 0, "max": 4}), + "replace_1":("STRING", {"default": "", "multiline": False}), + "replace_2": ("STRING", {"default": "", "multiline": False}), + "replace_3": ("STRING", {"default": "", "multiline": False}), + "replace_4": ("STRING", {"default": "", "multiline": False}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, search_txt, replace_count, replace_1, replace_2, replace_3, replace_4): + # If search_txt is empty, return (None,) + if search_txt == "": + return (None,) + + xy_type = "Negative Prompt S/R" + + # Create a list of replacement arguments + replacements = [replace_1, replace_2, replace_3, replace_4] + + # Create base entry + xy_values = [(search_txt, None)] + + if replace_count > 0: + # Append additional entries based on replace_count + xy_values.extend([(search_txt, replacements[i]) for i in range(replace_count)]) + + return ((xy_type, xy_values),) + +# TSC XY Plot: Checkpoint Values +class TSC_XYplot_Checkpoint: + + checkpoints = ["None"] + folder_paths.get_filename_list("checkpoints") + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "ckpt_name_1": (cls.checkpoints,), + "clip_skip1": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), + "ckpt_name_2": (cls.checkpoints,), + "clip_skip2": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), + "ckpt_name_3": (cls.checkpoints,), + "clip_skip3": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), + "ckpt_name_4": (cls.checkpoints,), + "clip_skip4": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), + "ckpt_name_5": (cls.checkpoints,), + "clip_skip5": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, ckpt_name_1, clip_skip1, ckpt_name_2, clip_skip2, ckpt_name_3, clip_skip3, + ckpt_name_4, clip_skip4, ckpt_name_5, clip_skip5): + xy_type = "Checkpoint" + checkpoints = [ckpt_name_1, ckpt_name_2, ckpt_name_3, ckpt_name_4, ckpt_name_5] + clip_skips = [clip_skip1, clip_skip2, clip_skip3, clip_skip4, clip_skip5] + xy_value = [(checkpoint, clip_skip) for checkpoint, clip_skip in zip(checkpoints, clip_skips) if + checkpoint != "None"] + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + +# TSC XY Plot: Clip Skip +class TSC_XYplot_ClipSkip: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "select_count": ("INT", {"default": 0, "min": 0, "max": 5}), + "clip_skip_1": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), + "clip_skip_2": ("INT", {"default": -2, "min": -24, "max": -1, "step": 1}), + "clip_skip_3": ("INT", {"default": -3, "min": -24, "max": -1, "step": 1}), + "clip_skip_4": ("INT", {"default": -4, "min": -24, "max": -1, "step": 1}), + "clip_skip_5": ("INT", {"default": -5, "min": -24, "max": -1, "step": 1}),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, select_count, clip_skip_1, clip_skip_2, clip_skip_3, clip_skip_4, clip_skip_5): + xy_type = "Clip Skip" + xy_value = [clip_skip for idx, clip_skip in + enumerate([clip_skip_1, clip_skip_2, clip_skip_3, clip_skip_4, clip_skip_5], start=1) if idx <= select_count] + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + +# TSC XY Plot: LoRA Values +class TSC_XYplot_LoRA: + + loras = ["None"] + folder_paths.get_filename_list("loras") + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "model_strengths": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_strengths": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_1": (cls.loras,), + "lora_name_2": (cls.loras,), + "lora_name_3": (cls.loras,), + "lora_name_4": (cls.loras,), + "lora_name_5": (cls.loras,)}, + "optional": {"lora_stack": ("LORA_STACK", )} + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, model_strengths, clip_strengths, lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5, + lora_stack=None): + xy_type = "LoRA" + loras = [lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5] + + # Extend each sub-array with lora_stack if it's not None + xy_value = [[(lora, model_strengths, clip_strengths)] + (lora_stack if lora_stack else []) for lora in loras if + lora != "None"] + + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: LoRA Advanced +class TSC_XYplot_LoRA_Adv: + + loras = ["None"] + folder_paths.get_filename_list("loras") + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "lora_name_1": (cls.loras,), + "model_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_2": (cls.loras,), + "model_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_3": (cls.loras,), + "model_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_4": (cls.loras,), + "model_str_4": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_4": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "lora_name_5": (cls.loras,), + "model_str_5": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "clip_str_5": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),}, + "optional": {"lora_stack": ("LORA_STACK",)} + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, lora_name_1, model_str_1, clip_str_1, lora_name_2, model_str_2, clip_str_2, lora_name_3, + model_str_3, + clip_str_3, lora_name_4, model_str_4, clip_str_4, lora_name_5, model_str_5, clip_str_5, + lora_stack=None): + xy_type = "LoRA" + loras = [lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5] + model_strs = [model_str_1, model_str_2, model_str_3, model_str_4, model_str_5] + clip_strs = [clip_str_1, clip_str_2, clip_str_3, clip_str_4, clip_str_5] + + # Extend each sub-array with lora_stack if it's not None + xy_value = [[(lora, model_str, clip_str)] + (lora_stack if lora_stack else []) for lora, model_str, clip_str in + zip(loras, model_strs, clip_strs) if lora != "None"] + + if not xy_value: # Check if the list is empty + return (None,) + return ((xy_type, xy_value),) + + +# TSC XY Plot: LoRA Stacks +class TSC_XYplot_LoRA_Stacks: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "node_state": (["Enabled", "Disabled"],)}, + "optional": { + "lora_stack_1": ("LORA_STACK",), + "lora_stack_2": ("LORA_STACK",), + "lora_stack_3": ("LORA_STACK",), + "lora_stack_4": ("LORA_STACK",), + "lora_stack_5": ("LORA_STACK",),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, node_state, lora_stack_1=None, lora_stack_2=None, lora_stack_3=None, lora_stack_4=None, lora_stack_5=None): + xy_type = "LoRA" + xy_value = [stack for stack in [lora_stack_1, lora_stack_2, lora_stack_3, lora_stack_4, lora_stack_5] if stack is not None] + if not xy_value or not any(xy_value) or node_state == "Disabled": + return (None,) + else: + return ((xy_type, xy_value),) + +# TSC XY Plot: Manual Entry Notes +class TSC_XYplot_Manual_XY_Entry_Info: + + syntax = "(X/Y_types) (X/Y_values)\n" \ + "Seeds++ Batch batch_count\n" \ + "Steps steps_1;steps_2;...\n" \ + "CFG Scale cfg_1;cfg_2;...\n" \ + "Sampler(1) sampler_1;sampler_2;...\n" \ + "Sampler(2) sampler_1,scheduler_1;...\n" \ + "Sampler(3) sampler_1;...;,default_scheduler\n" \ + "Scheduler scheduler_1;scheduler_2;...\n" \ + "Denoise denoise_1;denoise_2;...\n" \ + "VAE vae_1;vae_2;vae_3;...\n" \ + "+Prompt S/R search_txt;replace_1;replace_2;...\n" \ + "-Prompt S/R search_txt;replace_1;replace_2;...\n" \ + "Checkpoint(1) ckpt_1;ckpt_2;ckpt_3;...\n" \ + "Checkpoint(2) ckpt_1,clip_skip_1;...\n" \ + "Checkpoint(3) ckpt_1;ckpt_2;...;,default_clip_skip\n" \ + "Clip Skip clip_skip_1;clip_skip_2;...\n" \ + "LoRA(1) lora_1;lora_2;lora_3;...\n" \ + "LoRA(2) lora_1;...;,default_model_str,default_clip_str\n" \ + "LoRA(3) lora_1,model_str_1,clip_str_1;..." + + samplers = ";\n".join(comfy.samplers.KSampler.SAMPLERS) + schedulers = ";\n".join(comfy.samplers.KSampler.SCHEDULERS) + vaes = ";\n".join(folder_paths.get_filename_list("vae")) + ckpts = ";\n".join(folder_paths.get_filename_list("checkpoints")) + loras = ";\n".join(folder_paths.get_filename_list("loras")) + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "notes": ("STRING", {"default": + f"_____________SYNTAX_____________\n{cls.syntax}\n\n" + f"____________SAMPLERS____________\n{cls.samplers}\n\n" + f"___________SCHEDULERS___________\n{cls.schedulers}\n\n" + f"_____________VAES_______________\n{cls.vaes}\n\n" + f"___________CHECKPOINTS__________\n{cls.ckpts}\n\n" + f"_____________LORAS______________\n{cls.loras}\n","multiline": True}),},} + + RETURN_TYPES = () + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + +# TSC XY Plot: Manual Entry +class TSC_XYplot_Manual_XY_Entry: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "X_type": (["Nothing", "Seeds++ Batch", "Steps", "CFG Scale", "Sampler", "Scheduler", "Denoise", "VAE", + "Positive Prompt S/R", "Negative Prompt S/R", "Checkpoint", "Clip Skip", "LoRA"],), + "X_value": ("STRING", {"default": "", "multiline": True}), + "Y_type": (["Nothing", "Seeds++ Batch", "Steps", "CFG Scale", "Sampler", "Scheduler", "Denoise", "VAE", + "Positive Prompt S/R", "Negative Prompt S/R", "Checkpoint", "Clip Skip", "LoRA"],), + "Y_value": ("STRING", {"default": "", "multiline": True}),},} + + RETURN_TYPES = ("XY", "XY",) + RETURN_NAMES = ("X", "Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, X_type, X_value, Y_type, Y_value, prompt=None, my_unique_id=None): + + # Store X values as arrays + if X_type not in {"Positive Prompt S/R", "Negative Prompt S/R", "VAE", "Checkpoint", "LoRA"}: + X_value = X_value.replace(" ", "") # Remove spaces + X_value = X_value.replace("\n", "") # Remove newline characters + X_value = X_value.rstrip(";") # Remove trailing semicolon + X_value = X_value.split(";") # Turn to array + + # Store Y values as arrays + if Y_type not in {"Positive Prompt S/R", "Negative Prompt S/R", "VAE", "Checkpoint", "LoRA"}: + Y_value = Y_value.replace(" ", "") # Remove spaces + Y_value = Y_value.replace("\n", "") # Remove newline characters + Y_value = Y_value.rstrip(";") # Remove trailing semicolon + Y_value = Y_value.split(";") # Turn to array + + # Define the valid bounds for each type + bounds = { + "Seeds++ Batch": {"min": 0, "max": 50}, + "Steps": {"min": 1, "max": 10000}, + "CFG Scale": {"min": 0, "max": 100}, + "Sampler": {"options": comfy.samplers.KSampler.SAMPLERS}, + "Scheduler": {"options": comfy.samplers.KSampler.SCHEDULERS}, + "Denoise": {"min": 0, "max": 1}, + "VAE": {"options": folder_paths.get_filename_list("vae")}, + "Checkpoint": {"options": folder_paths.get_filename_list("checkpoints")}, + "Clip Skip": {"min": -24, "max": -1}, + "LoRA": {"options": folder_paths.get_filename_list("loras"), + "model_str": {"min": 0, "max": 10},"clip_str": {"min": 0, "max": 10},}, + } + + # Validates a value based on its corresponding value_type and bounds. + def validate_value(value, value_type, bounds): + # ________________________________________________________________________ + # Seeds++ Batch + if value_type == "Seeds++ Batch": + try: + x = int(float(value)) + if x < bounds["Seeds++ Batch"]["min"]: + x = bounds["Seeds++ Batch"]["min"] + elif x > bounds["Seeds++ Batch"]["max"]: + x = bounds["Seeds++ Batch"]["max"] + except ValueError: + print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid batch count.") + return None + if float(value) != x: + print(f"\033[31mmXY Plot Error:\033[0m '{value}' is not a valid batch count.") + return None + return x + # ________________________________________________________________________ + # Steps + elif value_type == "Steps": + try: + x = int(value) + if x < bounds["Steps"]["min"]: + x = bounds["Steps"]["min"] + elif x > bounds["Steps"]["max"]: + x = bounds["Steps"]["max"] + return x + except ValueError: + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Step count.") + return None + # ________________________________________________________________________ + # CFG Scale + elif value_type == "CFG Scale": + try: + x = float(value) + if x < bounds["CFG Scale"]["min"]: + x = bounds["CFG Scale"]["min"] + elif x > bounds["CFG Scale"]["max"]: + x = bounds["CFG Scale"]["max"] + return x + except ValueError: + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a number between {bounds['CFG Scale']['min']}" + f" and {bounds['CFG Scale']['max']} for CFG Scale.") + return None + # ________________________________________________________________________ + # Sampler + elif value_type == "Sampler": + if isinstance(value, str) and ',' in value: + value = tuple(map(str.strip, value.split(','))) + if isinstance(value, tuple): + if len(value) >= 2: + value = value[:2] # Slice the value tuple to keep only the first two elements + sampler, scheduler = value + scheduler = scheduler.lower() # Convert the scheduler name to lowercase + if sampler not in bounds["Sampler"]["options"]: + valid_samplers = '\n'.join(bounds["Sampler"]["options"]) + print( + f"\033[31mXY Plot Error:\033[0m '{sampler}' is not a valid sampler. Valid samplers are:\n{valid_samplers}") + sampler = None + if scheduler not in bounds["Scheduler"]["options"]: + valid_schedulers = '\n'.join(bounds["Scheduler"]["options"]) + print( + f"\033[31mXY Plot Error:\033[0m '{scheduler}' is not a valid scheduler. Valid schedulers are:\n{valid_schedulers}") + scheduler = None + if sampler is None or scheduler is None: + return None + else: + return sampler, scheduler + else: + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid sampler.'") + return None + else: + if value not in bounds["Sampler"]["options"]: + valid_samplers = '\n'.join(bounds["Sampler"]["options"]) + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid sampler. Valid samplers are:\n{valid_samplers}") + return None + else: + return value, None + # ________________________________________________________________________ + # Scheduler + elif value_type == "Scheduler": + if value not in bounds["Scheduler"]["options"]: + valid_schedulers = '\n'.join(bounds["Scheduler"]["options"]) + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Scheduler. Valid Schedulers are:\n{valid_schedulers}") + return None + else: + return value + # ________________________________________________________________________ + # Denoise + elif value_type == "Denoise": + try: + x = float(value) + if x < bounds["Denoise"]["min"]: + x = bounds["Denoise"]["min"] + elif x > bounds["Denoise"]["max"]: + x = bounds["Denoise"]["max"] + return x + except ValueError: + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a number between {bounds['Denoise']['min']} " + f"and {bounds['Denoise']['max']} for Denoise.") + return None + # ________________________________________________________________________ + # VAE + elif value_type == "VAE": + if value not in bounds["VAE"]["options"]: + valid_vaes = '\n'.join(bounds["VAE"]["options"]) + print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid VAE. Valid VAEs are:\n{valid_vaes}") + return None + else: + return value + # ________________________________________________________________________ + # Checkpoint + elif value_type == "Checkpoint": + if isinstance(value, str) and ',' in value: + value = tuple(map(str.strip, value.split(','))) + if isinstance(value, tuple): + if len(value) >= 2: + value = value[:2] # Slice the value tuple to keep only the first two elements + checkpoint, clip_skip = value + try: + clip_skip = int(clip_skip) # Convert the clip_skip to integer + except ValueError: + print(f"\033[31mXY Plot Error:\033[0m '{clip_skip}' is not a valid clip_skip. " + f"Valid clip skip values are integers between {bounds['Clip Skip']['min']} and {bounds['Clip Skip']['max']}.") + return None + if checkpoint not in bounds["Checkpoint"]["options"]: + valid_checkpoints = '\n'.join(bounds["Checkpoint"]["options"]) + print( + f"\033[31mXY Plot Error:\033[0m '{checkpoint}' is not a valid checkpoint. Valid checkpoints are:\n{valid_checkpoints}") + checkpoint = None + if clip_skip < bounds["Clip Skip"]["min"] or clip_skip > bounds["Clip Skip"]["max"]: + print(f"\033[31mXY Plot Error:\033[0m '{clip_skip}' is not a valid clip skip. " + f"Valid clip skip values are integers between {bounds['Clip Skip']['min']} and {bounds['Clip Skip']['max']}.") + clip_skip = None + if checkpoint is None or clip_skip is None: + return None + else: + return checkpoint, clip_skip + else: + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid checkpoint.'") + return None + else: + if value not in bounds["Checkpoint"]["options"]: + valid_checkpoints = '\n'.join(bounds["Checkpoint"]["options"]) + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid checkpoint. Valid checkpoints are:\n{valid_checkpoints}") + return None + else: + return value, None + # ________________________________________________________________________ + # Clip Skip + elif value_type == "Clip Skip": + try: + x = int(value) + if x < bounds["Clip Skip"]["min"]: + x = bounds["Clip Skip"]["min"] + elif x > bounds["Clip Skip"]["max"]: + x = bounds["Clip Skip"]["max"] + return x + except ValueError: + print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Clip Skip.") + return None + # ________________________________________________________________________ + # LoRA + elif value_type == "LoRA": + if isinstance(value, str) and ',' in value: + value = tuple(map(str.strip, value.split(','))) + + if isinstance(value, tuple): + lora_name, model_str, clip_str = (value + (1.0, 1.0))[:3] # Defaults model_str and clip_str to 1 if not provided + + if lora_name not in bounds["LoRA"]["options"]: + valid_loras = '\n'.join(bounds["LoRA"]["options"]) + print(f"\033[31mXY Plot Error:\033[0m '{lora_name}' is not a valid LoRA. Valid LoRAs are:\n{valid_loras}") + lora_name = None + + try: + model_str = float(model_str) + clip_str = float(clip_str) + except ValueError: + print(f"\033[31mXY Plot Error:\033[0m The LoRA model strength and clip strength values should be numbers" + f" between {bounds['LoRA']['model_str']['min']} and {bounds['LoRA']['model_str']['max']}.") + return None + + if model_str < bounds["LoRA"]["model_str"]["min"] or model_str > bounds["LoRA"]["model_str"]["max"]: + print(f"\033[31mXY Plot Error:\033[0m '{model_str}' is not a valid LoRA model strength value. " + f"Valid lora model strength values are between {bounds['LoRA']['model_str']['min']} and {bounds['LoRA']['model_str']['max']}.") + model_str = None + + if clip_str < bounds["LoRA"]["clip_str"]["min"] or clip_str > bounds["LoRA"]["clip_str"]["max"]: + print(f"\033[31mXY Plot Error:\033[0m '{clip_str}' is not a valid LoRA clip strength value. " + f"Valid lora clip strength values are between {bounds['LoRA']['clip_str']['min']} and {bounds['LoRA']['clip_str']['max']}.") + clip_str = None + + if lora_name is None or model_str is None or clip_str is None: + return None + else: + return lora_name, model_str, clip_str + else: + if value not in bounds["LoRA"]["options"]: + valid_loras = '\n'.join(bounds["LoRA"]["options"]) + print( + f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid LoRA. Valid LoRAs are:\n{valid_loras}") + return None + else: + return value, 1.0, 1.0 + + # ________________________________________________________________________ + else: + return None + + # Validate X_value array length is 1 if doing a "Seeds++ Batch" + if len(X_value) != 1 and X_type == "Seeds++ Batch": + print(f"\033[31mXY Plot Error:\033[0m '{';'.join(X_value)}' is not a valid batch count.") + return (None,None,) + + # Validate Y_value array length is 1 if doing a "Seeds++ Batch" + if len(Y_value) != 1 and Y_type == "Seeds++ Batch": + print(f"\033[31mXY Plot Error:\033[0m '{';'.join(Y_value)}' is not a valid batch count.") + return (None,None,) + + # Apply allowed shortcut syntax to certain input types + if X_type in ["Sampler", "Checkpoint", "LoRA"]: + if X_value[-1].startswith(','): + # Remove the leading comma from the last entry and store it as suffixes + suffixes = X_value.pop().lstrip(',').split(',') + # Split all preceding entries into subentries + X_value = [entry.split(',') for entry in X_value] + # Make all entries the same length as suffixes by appending missing elements + for entry in X_value: + entry += suffixes[len(entry) - 1:] + # Join subentries back into strings + X_value = [','.join(entry) for entry in X_value] + + # Apply allowed shortcut syntax to certain input types + if Y_type in ["Sampler", "Checkpoint", "LoRA"]: + if Y_value[-1].startswith(','): + # Remove the leading comma from the last entry and store it as suffixes + suffixes = Y_value.pop().lstrip(',').split(',') + # Split all preceding entries into subentries + Y_value = [entry.split(',') for entry in Y_value] + # Make all entries the same length as suffixes by appending missing elements + for entry in Y_value: + entry += suffixes[len(entry) - 1:] + # Join subentries back into strings + Y_value = [','.join(entry) for entry in Y_value] + + # Prompt S/R X Cleanup + if X_type in {"Positive Prompt S/R", "Negative Prompt S/R"}: + if X_value[0] == '': + print(f"\033[31mXY Plot Error:\033[0m Prompt S/R value can not be empty.") + return (None, None,) + else: + X_value = [(X_value[0], None) if i == 0 else (X_value[0], x) for i, x in enumerate(X_value)] + + # Prompt S/R X Cleanup + if Y_type in {"Positive Prompt S/R", "Negative Prompt S/R"}: + if Y_value[0] == '': + print(f"\033[31mXY Plot Error:\033[0m Prompt S/R value can not be empty.") + return (None, None,) + else: + Y_value = [(Y_value[0], None) if i == 0 else (Y_value[0], y) for i, y in enumerate(Y_value)] + + # Loop over each entry in X_value and check if it's valid + if X_type not in {"Nothing", "Positive Prompt S/R", "Negative Prompt S/R"}: + for i in range(len(X_value)): + X_value[i] = validate_value(X_value[i], X_type, bounds) + if X_value[i] == None: + return (None,None,) + + # Loop over each entry in Y_value and check if it's valid + if Y_type not in {"Nothing", "Positive Prompt S/R", "Negative Prompt S/R"}: + for i in range(len(Y_value)): + Y_value[i] = validate_value(Y_value[i], Y_type, bounds) + if Y_value[i] == None: + return (None,None,) + + # Nest LoRA value in another array to reflect LoRA stack changes + if X_type == "LoRA": + X_value = [X_value] + if Y_type == "LoRA": + Y_value = [Y_value] + + # Clean X/Y_values + if X_type == "Nothing": + X_value = [""] + if Y_type == "Nothing": + Y_value = [""] + + return ((X_type, X_value), (Y_type, Y_value),) + +# TSC XY Plot: Seeds Values +class TSC_XYplot_JoinInputs: + + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "XY_1": ("XY",), + "XY_2": ("XY",),}, + } + + RETURN_TYPES = ("XY",) + RETURN_NAMES = ("X or Y",) + FUNCTION = "xy_value" + CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs" + + def xy_value(self, XY_1, XY_2): + xy_type_1, xy_value_1 = XY_1 + xy_type_2, xy_value_2 = XY_2 + + if xy_type_1 != xy_type_2: + print(f"\033[31mJoin XY Inputs Error:\033[0m Input types must match") + return (None,) + elif xy_type_1 == "Seeds++ Batch": + xy_type = xy_type_1 + xy_value = [xy_value_1[0] + xy_value_2[0]] + elif xy_type_1 == "Positive Prompt S/R" or xy_type_1 == "Negative Prompt S/R": + xy_type = xy_type_1 + xy_value = xy_value_1 + [(xy_value_1[0][0], t[1]) for t in xy_value_2[1:]] + else: + xy_type = xy_type_1 + xy_value = xy_value_1 + xy_value_2 + return ((xy_type, xy_value),) + +######################################################################################################################## +# TSC Image Overlay +class TSC_ImageOverlay: + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "base_image": ("IMAGE",), + "overlay_image": ("IMAGE",), + "overlay_resize": (["None", "Fit", "Resize by rescale_factor", "Resize to width & heigth"],), + "resize_method": (["nearest-exact", "bilinear", "area"],), + "rescale_factor": ("FLOAT", {"default": 1, "min": 0.01, "max": 16.0, "step": 0.1}), + "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 64}), + "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 64}), + "x_offset": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 10}), + "y_offset": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 10}), + "rotation": ("INT", {"default": 0, "min": -180, "max": 180, "step": 5}), + "opacity": ("FLOAT", {"default": 0, "min": 0, "max": 100, "step": 5}), + }, + "optional": {"optional_mask": ("MASK",),} + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "apply_overlay_image" + CATEGORY = "Efficiency Nodes/Image" + + def apply_overlay_image(self, base_image, overlay_image, overlay_resize, resize_method, rescale_factor, + width, height, x_offset, y_offset, rotation, opacity, optional_mask=None): + + # Pack tuples and assign variables + size = width, height + location = x_offset, y_offset + mask = optional_mask + + # Check for different sizing options + if overlay_resize != "None": + #Extract overlay_image size and store in Tuple "overlay_image_size" (WxH) + overlay_image_size = overlay_image.size() + overlay_image_size = (overlay_image_size[2], overlay_image_size[1]) + if overlay_resize == "Fit": + overlay_image_size = (base_image.size[0],base_image.size[1]) + elif overlay_resize == "Resize by rescale_factor": + overlay_image_size = tuple(int(dimension * rescale_factor) for dimension in overlay_image_size) + elif overlay_resize == "Resize to width & heigth": + overlay_image_size = (size[0], size[1]) + + samples = overlay_image.movedim(-1, 1) + overlay_image = comfy.utils.common_upscale(samples, overlay_image_size[0], overlay_image_size[1], resize_method, False) + overlay_image = overlay_image.movedim(1, -1) + + overlay_image = tensor2pil(overlay_image) + + # Add Alpha channel to overlay + overlay_image = overlay_image.convert('RGBA') + overlay_image.putalpha(Image.new("L", overlay_image.size, 255)) + + # If mask connected, check if the overlay_image image has an alpha channel + if mask is not None: + # Convert mask to pil and resize + mask = tensor2pil(mask) + mask = mask.resize(overlay_image.size) + # Apply mask as overlay's alpha + overlay_image.putalpha(ImageOps.invert(mask)) + + # Rotate the overlay image + overlay_image = overlay_image.rotate(rotation, expand=True) + + # Apply opacity on overlay image + r, g, b, a = overlay_image.split() + a = a.point(lambda x: max(0, int(x * (1 - opacity / 100)))) + overlay_image.putalpha(a) + + # Split the base_image tensor along the first dimension to get a list of tensors + base_image_list = torch.unbind(base_image, dim=0) + + # Convert each tensor to a PIL image, apply the overlay, and then convert it back to a tensor + processed_base_image_list = [] + for tensor in base_image_list: + # Convert tensor to PIL Image + image = tensor2pil(tensor) + + # Paste the overlay image onto the base image + if mask is None: + image.paste(overlay_image, location) + else: + image.paste(overlay_image, location, overlay_image) + + # Convert PIL Image back to tensor + processed_tensor = pil2tensor(image) + + # Append to list + processed_base_image_list.append(processed_tensor) + + # Combine the processed images back into a single tensor + base_image = torch.stack([tensor.squeeze() for tensor in processed_base_image_list]) + + # Return the edited base image + return (base_image,) + +######################################################################################################################## +# Install simple_eval if missing from packages +def install_simpleeval(): + if 'simpleeval' not in packages(): + print("\033[32mEfficiency Nodes:\033[0m") + subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'simpleeval']) + +def packages(versions=False): + return [(r.decode().split('==')[0] if not versions else r.decode()) for r in subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']).split()] + +install_simpleeval() +from simpleeval import simple_eval + +# TSC Evaluate Integers (https://github.com/danthedeckie/simpleeval) +class TSC_EvaluateInts: + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "python_expression": ("STRING", {"default": "((a + b) - c) / 2", "multiline": False}), + "print_to_console": (["False", "True"],),}, + "optional": { + "a": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}), + "b": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}), + "c": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}),}, + } + RETURN_TYPES = ("INT", "FLOAT", "STRING",) + OUTPUT_NODE = True + FUNCTION = "evaluate" + CATEGORY = "Efficiency Nodes/Simple Eval" + + def evaluate(self, python_expression, print_to_console, a=0, b=0, c=0): + # simple_eval doesn't require the result to be converted to a string + result = simple_eval(python_expression, names={'a': a, 'b': b, 'c': c}) + int_result = int(result) + float_result = float(result) + string_result = str(result) + if print_to_console == "True": + print("\n\033[31mEvaluate Integers:\033[0m") + print(f"\033[90m{{a = {a} , b = {b} , c = {c}}} \033[0m") + print(f"{python_expression} = \033[92m INT: " + str(int_result) + " , FLOAT: " + str( + float_result) + ", STRING: " + string_result + "\033[0m") + return (int_result, float_result, string_result,) + +# TSC Evaluate Floats (https://github.com/danthedeckie/simpleeval) +class TSC_EvaluateFloats: + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "python_expression": ("STRING", {"default": "((a + b) - c) / 2", "multiline": False}), + "print_to_console": (["False", "True"],),}, + "optional": { + "a": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}), + "b": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}), + "c": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}),}, + } + RETURN_TYPES = ("INT", "FLOAT", "STRING",) + OUTPUT_NODE = True + FUNCTION = "evaluate" + CATEGORY = "Efficiency Nodes/Simple Eval" + + def evaluate(self, python_expression, print_to_console, a=0, b=0, c=0): + # simple_eval doesn't require the result to be converted to a string + result = simple_eval(python_expression, names={'a': a, 'b': b, 'c': c}) + int_result = int(result) + float_result = float(result) + string_result = str(result) + if print_to_console == "True": + print("\n\033[31mEvaluate Floats:\033[0m") + print(f"\033[90m{{a = {a} , b = {b} , c = {c}}} \033[0m") + print(f"{python_expression} = \033[92m INT: " + str(int_result) + " , FLOAT: " + str( + float_result) + ", STRING: " + string_result + "\033[0m") + return (int_result, float_result, string_result,) + +# TSC Evaluate Strings (https://github.com/danthedeckie/simpleeval) +class TSC_EvaluateStrs: + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "python_expression": ("STRING", {"default": "a + b + c", "multiline": False}), + "print_to_console": (["False", "True"],)}, + "optional": { + "a": ("STRING", {"default": "Hello", "multiline": False}), + "b": ("STRING", {"default": " World", "multiline": False}), + "c": ("STRING", {"default": "!", "multiline": False}),} + } + RETURN_TYPES = ("STRING",) + OUTPUT_NODE = True + FUNCTION = "evaluate" + CATEGORY = "Efficiency Nodes/Simple Eval" + + def evaluate(self, python_expression, print_to_console, a="", b="", c=""): + variables = {'a': a, 'b': b, 'c': c} # Define the variables for the expression + functions = {"len": len} # Define the functions for the expression + result = simple_eval(python_expression, names=variables, functions=functions) + if print_to_console == "True": + print("\n\033[31mEvaluate Strings:\033[0m") + print(f"\033[90ma = {a} \nb = {b} \nc = {c}\033[0m") + print(f"{python_expression} = \033[92m" + str(result) + "\033[0m") + return (str(result),) # Convert result to a string before returning + +# TSC Simple Eval Examples (https://github.com/danthedeckie/simpleeval) +class TSC_EvalExamples: + filepath = os.path.join(my_dir, 'workflows', 'SimpleEval_Node_Examples.txt') + with open(filepath, 'r') as file: + examples = file.read() + @classmethod + def INPUT_TYPES(cls): + return {"required": { "models_text": ("STRING", {"default": cls.examples ,"multiline": True}),},} + RETURN_TYPES = () + CATEGORY = "Efficiency Nodes/Simple Eval" + +# NODE MAPPING +NODE_CLASS_MAPPINGS = { + "KSampler (Efficient)": TSC_KSampler, + "Efficient Loader": TSC_EfficientLoader, + "LoRA Stacker": TSC_LoRA_Stacker, + "LoRA Stacker Adv.": TSC_LoRA_Stacker_Adv, + "XY Plot": TSC_XYplot, + "XY Input: Seeds++ Batch": TSC_XYplot_SeedsBatch, + "XY Input: Steps": TSC_XYplot_Steps, + "XY Input: CFG Scale": TSC_XYplot_CFG, + "XY Input: Sampler": TSC_XYplot_Sampler, + "XY Input: Scheduler": TSC_XYplot_Scheduler, + "XY Input: Denoise": TSC_XYplot_Denoise, + "XY Input: VAE": TSC_XYplot_VAE, + "XY Input: Positive Prompt S/R": TSC_XYplot_PromptSR_Positive, + "XY Input: Negative Prompt S/R": TSC_XYplot_PromptSR_Negative, + "XY Input: Checkpoint": TSC_XYplot_Checkpoint, + "XY Input: Clip Skip": TSC_XYplot_ClipSkip, + "XY Input: LoRA": TSC_XYplot_LoRA, + "XY Input: LoRA Adv.": TSC_XYplot_LoRA_Adv, + "XY Input: LoRA Stacks": TSC_XYplot_LoRA_Stacks, + "XY Input: Manual XY Entry": TSC_XYplot_Manual_XY_Entry, + "Manual XY Entry Info": TSC_XYplot_Manual_XY_Entry_Info, + "Join XY Inputs of Same Type": TSC_XYplot_JoinInputs, + "Image Overlay": TSC_ImageOverlay, + "Evaluate Integers": TSC_EvaluateInts, + "Evaluate Floats": TSC_EvaluateFloats, + "Evaluate Strings": TSC_EvaluateStrs, + "Simple Eval Examples": TSC_EvalExamples +} \ No newline at end of file