Pyramids / run_logs /timers.json
Overgrown7380's picture
Upload model
e9dab0d verified
{
"name": "root",
"gauges": {
"Pyramids.Policy.Entropy.mean": {
"value": 0.3170534372329712,
"min": 0.3170534372329712,
"max": 1.423827052116394,
"count": 33
},
"Pyramids.Policy.Entropy.sum": {
"value": 9567.404296875,
"min": 9494.548828125,
"max": 43193.21875,
"count": 33
},
"Pyramids.Step.mean": {
"value": 989939.0,
"min": 29886.0,
"max": 989939.0,
"count": 33
},
"Pyramids.Step.sum": {
"value": 989939.0,
"min": 29886.0,
"max": 989939.0,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.mean": {
"value": 0.37809258699417114,
"min": -0.09256956726312637,
"max": 0.37809258699417114,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.sum": {
"value": 98.68216705322266,
"min": -22.30926513671875,
"max": 101.30860900878906,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.mean": {
"value": 0.043712910264730453,
"min": -0.15976057946681976,
"max": 0.4693271815776825,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.sum": {
"value": 11.409070014953613,
"min": -42.65607452392578,
"max": 111.23054504394531,
"count": 33
},
"Pyramids.Losses.PolicyLoss.mean": {
"value": 0.07068945088788034,
"min": 0.0637067159030786,
"max": 0.07266380958613243,
"count": 33
},
"Pyramids.Losses.PolicyLoss.sum": {
"value": 0.9896523124303248,
"min": 0.49792798452150216,
"max": 1.060968734139654,
"count": 33
},
"Pyramids.Losses.ValueLoss.mean": {
"value": 0.012487380566522684,
"min": 0.0006170832158190465,
"max": 0.021231653219036247,
"count": 33
},
"Pyramids.Losses.ValueLoss.sum": {
"value": 0.17482332793131758,
"min": 0.006787915374009511,
"max": 0.29724314506650745,
"count": 33
},
"Pyramids.Policy.LearningRate.mean": {
"value": 7.605290322078576e-06,
"min": 7.605290322078576e-06,
"max": 0.0002952357444452286,
"count": 33
},
"Pyramids.Policy.LearningRate.sum": {
"value": 0.00010647406450910006,
"min": 0.00010647406450910006,
"max": 0.0035087657304115,
"count": 33
},
"Pyramids.Policy.Epsilon.mean": {
"value": 0.10253506428571428,
"min": 0.10253506428571428,
"max": 0.19841191428571428,
"count": 33
},
"Pyramids.Policy.Epsilon.sum": {
"value": 1.4354909,
"min": 1.3888833999999999,
"max": 2.5695885,
"count": 33
},
"Pyramids.Policy.Beta.mean": {
"value": 0.0002632529221428573,
"min": 0.0002632529221428573,
"max": 0.009841350237142856,
"count": 33
},
"Pyramids.Policy.Beta.sum": {
"value": 0.0036855409100000026,
"min": 0.0036855409100000026,
"max": 0.11698189115000002,
"count": 33
},
"Pyramids.Losses.RNDLoss.mean": {
"value": 0.017611611634492874,
"min": 0.017611611634492874,
"max": 0.5761937499046326,
"count": 33
},
"Pyramids.Losses.RNDLoss.sum": {
"value": 0.24656257033348083,
"min": 0.24656257033348083,
"max": 4.033356189727783,
"count": 33
},
"Pyramids.Environment.EpisodeLength.mean": {
"value": 487.9047619047619,
"min": 426.2,
"max": 999.0,
"count": 33
},
"Pyramids.Environment.EpisodeLength.sum": {
"value": 30738.0,
"min": 16685.0,
"max": 32127.0,
"count": 33
},
"Pyramids.Environment.CumulativeReward.mean": {
"value": 1.2299515894584117,
"min": -0.9999548908202879,
"max": 1.3746028263654029,
"count": 33
},
"Pyramids.Environment.CumulativeReward.sum": {
"value": 76.25699854642153,
"min": -30.998601615428925,
"max": 96.2221978455782,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.mean": {
"value": 1.2299515894584117,
"min": -0.9999548908202879,
"max": 1.3746028263654029,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.sum": {
"value": 76.25699854642153,
"min": -30.998601615428925,
"max": 96.2221978455782,
"count": 33
},
"Pyramids.Policy.RndReward.mean": {
"value": 0.085979438468536,
"min": 0.07873132467502728,
"max": 11.024807128836127,
"count": 33
},
"Pyramids.Policy.RndReward.sum": {
"value": 5.330725185049232,
"min": 5.117536103876773,
"max": 187.42172119021416,
"count": 33
},
"Pyramids.IsTraining.mean": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
},
"Pyramids.IsTraining.sum": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
}
},
"metadata": {
"timer_format_version": "0.1.0",
"start_time_seconds": "1707161220",
"python_version": "3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]",
"command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics",
"mlagents_version": "1.1.0.dev0",
"mlagents_envs_version": "1.1.0.dev0",
"communication_protocol_version": "1.5.0",
"pytorch_version": "2.2.0+cu121",
"numpy_version": "1.23.5",
"end_time_seconds": "1707163321"
},
"total": 2100.6536982589996,
"count": 1,
"self": 0.488728669000011,
"children": {
"run_training.setup": {
"total": 0.04702223499998581,
"count": 1,
"self": 0.04702223499998581
},
"TrainerController.start_learning": {
"total": 2100.1179473549996,
"count": 1,
"self": 1.2642461869431827,
"children": {
"TrainerController._reset_env": {
"total": 2.31971016100033,
"count": 1,
"self": 2.31971016100033
},
"TrainerController.advance": {
"total": 2096.4452197230557,
"count": 63506,
"self": 1.4146450511279909,
"children": {
"env_step": {
"total": 1478.5633234219704,
"count": 63506,
"self": 1350.9761534170402,
"children": {
"SubprocessEnvManager._take_step": {
"total": 126.78121090198465,
"count": 63506,
"self": 4.601796020991969,
"children": {
"TorchPolicy.evaluate": {
"total": 122.17941488099268,
"count": 62562,
"self": 122.17941488099268
}
}
},
"workers": {
"total": 0.8059591029455078,
"count": 63506,
"self": 0.0,
"children": {
"worker_root": {
"total": 2095.1081836669914,
"count": 63506,
"is_parallel": true,
"self": 855.5071973320023,
"children": {
"run_training.setup": {
"total": 0.0,
"count": 0,
"is_parallel": true,
"self": 0.0,
"children": {
"steps_from_proto": {
"total": 0.002019509000092512,
"count": 1,
"is_parallel": true,
"self": 0.0006746029998794256,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.0013449060002130864,
"count": 8,
"is_parallel": true,
"self": 0.0013449060002130864
}
}
},
"UnityEnvironment.step": {
"total": 0.047629562000111036,
"count": 1,
"is_parallel": true,
"self": 0.0005885919999855105,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 0.0004960149999533314,
"count": 1,
"is_parallel": true,
"self": 0.0004960149999533314
},
"communicator.exchange": {
"total": 0.044924025000000256,
"count": 1,
"is_parallel": true,
"self": 0.044924025000000256
},
"steps_from_proto": {
"total": 0.0016209300001719384,
"count": 1,
"is_parallel": true,
"self": 0.0003406120004001423,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.0012803179997717962,
"count": 8,
"is_parallel": true,
"self": 0.0012803179997717962
}
}
}
}
}
}
},
"UnityEnvironment.step": {
"total": 1239.600986334989,
"count": 63505,
"is_parallel": true,
"self": 34.315034502942126,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 23.619734599997628,
"count": 63505,
"is_parallel": true,
"self": 23.619734599997628
},
"communicator.exchange": {
"total": 1085.3892154540044,
"count": 63505,
"is_parallel": true,
"self": 1085.3892154540044
},
"steps_from_proto": {
"total": 96.2770017780449,
"count": 63505,
"is_parallel": true,
"self": 18.945499159917745,
"children": {
"_process_rank_one_or_two_observation": {
"total": 77.33150261812716,
"count": 508040,
"is_parallel": true,
"self": 77.33150261812716
}
}
}
}
}
}
}
}
}
}
},
"trainer_advance": {
"total": 616.4672512499574,
"count": 63506,
"self": 2.6097869309292037,
"children": {
"process_trajectory": {
"total": 121.17094428303608,
"count": 63506,
"self": 120.96907913403629,
"children": {
"RLTrainer._checkpoint": {
"total": 0.20186514899978647,
"count": 2,
"self": 0.20186514899978647
}
}
},
"_update_policy": {
"total": 492.6865200359921,
"count": 451,
"self": 286.8186106690173,
"children": {
"TorchPPOOptimizer.update": {
"total": 205.8679093669748,
"count": 22797,
"self": 205.8679093669748
}
}
}
}
}
}
},
"trainer_threads": {
"total": 9.540008250041865e-07,
"count": 1,
"self": 9.540008250041865e-07
},
"TrainerController._save_models": {
"total": 0.08877032999953371,
"count": 1,
"self": 0.001366280000183906,
"children": {
"RLTrainer._checkpoint": {
"total": 0.08740404999934981,
"count": 1,
"self": 0.08740404999934981
}
}
}
}
}
}
}