--- library_name: transformers pipeline_tag: text-generation --- ### Direct Use ```python import transformers as tfm model = tfm.AutoModelForCausalLM.from_pretrained("Owaner/fineweb-falcon") tokenizer = tfm.PreTrainedTokenizerFast.from_pretrained("Owaner/falcon_tokenizer") example = "When habitually indulge in " tokenized_input = tokenizer(example, return_tensors="pt", return_token_type_ids=False) output = model.generate( inputs=tokenized_input["input_ids"], attention_mask=tokenized_input["attention_mask"], do_sample = True, max_length=100, temperature=0.7, top_k=50, top_p=0.95, num_return_sequences=5 ) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) for i, o in enumerate(output_text): print(f"Output {i+1}: {o}") ``` - **Hardware Type:** Single Nvidia A80 memory 80 - **Hours used:** 2 hours - **Cloud Provider:** DataCrunch - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed]