Ozziey commited on
Commit
cd0027e
1 Parent(s): f99b5f2

pushing files to the repo from the example!

Browse files
Files changed (1) hide show
  1. README.md +125 -0
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_file: HME_pickle
9
+ widget:
10
+ structuredData:
11
+ anger:
12
+ - 0.13340177
13
+ - 0.26429585
14
+ - 0.75805366
15
+ disgust:
16
+ - 0.07661828
17
+ - 0.14570697
18
+ - 0.21044387
19
+ fear:
20
+ - 0.094705686
21
+ - 0.057977196
22
+ - 0.003689876
23
+ joy:
24
+ - 0.006762238
25
+ - 0.2627153
26
+ - 0.001755206
27
+ neutral:
28
+ - 0.03295978
29
+ - 0.019884355
30
+ - 0.013996695
31
+ sadness:
32
+ - 0.6507381
33
+ - 0.24445744
34
+ - 0.011482558
35
+ surprise:
36
+ - 0.004814104
37
+ - 0.00496282
38
+ - 0.000578273
39
+ ---
40
+
41
+ # Model description
42
+
43
+ [More Information Needed]
44
+
45
+ ## Intended uses & limitations
46
+
47
+ [More Information Needed]
48
+
49
+ ## Training Procedure
50
+
51
+ ### Hyperparameters
52
+
53
+ The model is trained with below hyperparameters.
54
+
55
+ <details>
56
+ <summary> Click to expand </summary>
57
+
58
+ | Hyperparameter | Value |
59
+ |------------------|---------|
60
+ | alpha | 1 |
61
+ | class_prior | |
62
+ | fit_prior | 1 |
63
+ | norm | 0 |
64
+
65
+ </details>
66
+
67
+ ### Model Plot
68
+
69
+ The model plot is below.
70
+
71
+ <style>#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 {color: black;background-color: white;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 pre{padding: 0;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-toggleable {background-color: white;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-item {z-index: 1;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-parallel-item:only-child::after {width: 0;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b53d2f4f-2533-401b-9a2a-da04c1fbfce0" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>ComplementNB()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8d305fec-9b3e-4d4c-960e-2d386ab08acc" type="checkbox" checked><label for="8d305fec-9b3e-4d4c-960e-2d386ab08acc" class="sk-toggleable__label sk-toggleable__label-arrow">ComplementNB</label><div class="sk-toggleable__content"><pre>ComplementNB()</pre></div></div></div></div></div>
72
+
73
+ ## Evaluation Results
74
+
75
+ You can find the details about evaluation process and the evaluation results.
76
+
77
+ | Metric | Value |
78
+ |----------|----------|
79
+ | accuracy | 0.536424 |
80
+ | f1 score | 0.536424 |
81
+
82
+ # How to Get Started with the Model
83
+
84
+ [More Information Needed]
85
+
86
+ # Model Card Authors
87
+
88
+ This model card is written by following authors:
89
+
90
+ [More Information Needed]
91
+
92
+ # Model Card Contact
93
+
94
+ You can contact the model card authors through following channels:
95
+ [More Information Needed]
96
+
97
+ # Citation
98
+
99
+ Below you can find information related to citation.
100
+
101
+ **BibTeX:**
102
+ ```
103
+ [More Information Needed]
104
+ ```
105
+
106
+ # citation_bibtex
107
+
108
+ bibtex
109
+ @inproceedings{...,year={2022}}
110
+
111
+ # model_card_authors
112
+
113
+ skops_user
114
+
115
+ # limitations
116
+
117
+ This model is purely for academic purposes.
118
+
119
+ # model_description
120
+
121
+ This is a Complement NB model trained on a poetry dataset.
122
+
123
+ # eval_method
124
+
125
+ The model is evaluated using test split, on accuracy and F1 score with macro average.