--- base_model: bert-base-uncased library_name: transformers license: apache-2.0 metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: NER_training_base_uncased_with_randomization results: [] --- # NER_training_base_uncased_with_randomization This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0472 - Precision: 0.9550 - Recall: 0.9576 - F1: 0.9563 - Accuracy: 0.9849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0508 | 1.0 | 9836 | 0.0472 | 0.9550 | 0.9576 | 0.9563 | 0.9849 | | 0.035 | 2.0 | 19672 | 0.0473 | 0.9590 | 0.9644 | 0.9617 | 0.9870 | | 0.021 | 3.0 | 29508 | 0.0537 | 0.9592 | 0.9636 | 0.9614 | 0.9870 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0