--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: 3_epoch_noFirVox results: [] --- # 3_epoch_noFirVox This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the /home/investigacion/disco4TB/workspace_pablo/firvox_whisper_research/finetunnig/dataset/dataset_parquet/dataset_1000x6_noFirVox_correctedpaths.parquet dataset. It achieves the following results on the evaluation set: - Loss: 0.4373 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 0 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9061 | 1.0 | 80 | 0.7686 | 0.7856 | | 0.4682 | 2.0 | 160 | 0.5186 | 0.8389 | | 0.286 | 3.0 | 240 | 0.4373 | 0.87 | ### Framework versions - Transformers 4.44.1 - Pytorch 1.11.0 - Datasets 2.19.1 - Tokenizers 0.19.1