paddlenlp
PaddlePaddle
English
Chinese
ernie
sijunhe commited on
Commit
f7ba5f3
1 Parent(s): a8d5b5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -1
README.md CHANGED
@@ -1,4 +1,50 @@
1
  ---
 
2
  library_name: paddlenlp
 
 
 
3
  ---
4
- # PaddlePaddle/uie-micro
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  library_name: paddlenlp
4
+ language:
5
+ - en
6
+ - zh
7
  ---
8
+
9
+ [![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP)
10
+
11
+ # PaddlePaddle/uie-micro
12
+
13
+ Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. The unified text-to-structure generation framework, namely UIE, can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.
14
+
15
+ UIE Paper: https://arxiv.org/abs/2203.12277
16
+
17
+ PaddleNLP released UIE model series for Information Extraction of texts and multi-modal documents which use the ERNIE 3.0 models as the pre-trained language models and were finetuned on a large amount of information extraction data.
18
+
19
+ ![UIE-diagram](https://user-images.githubusercontent.com/40840292/167236006-66ed845d-21b8-4647-908b-e1c6e7613eb1.png)
20
+
21
+ ## Available Models
22
+
23
+ | Model Name | Usage Scenarios | Supporting Tasks |
24
+ | :----------------------------------------------------------: | :--------------------------------------------------------- | :--------------------------------------------------- |
25
+ | `uie-base`<br />`uie-medium`<br />`uie-mini`<br />`uie-micro`<br />`uie-nano` | For **plain text** The **extractive** model of the scene supports **Chinese** | Supports entity, relation, event, opinion extraction |
26
+ | `uie-base-en` | An **extractive** model for **plain text** scenarios, supports **English** | Supports entity, relation, event, opinion extraction |
27
+ | `uie-m-base`<br />`uie-m-large` | An **extractive** model for **plain text** scenarios, supporting **Chinese and English** | Supports entity, relation, event, opinion extraction |
28
+ | <b>`uie-x-base`</b> | An **extractive** model for **plain text** and **document** scenarios, supports **Chinese and English** | Supports entity, relation, event, opinion extraction on both plain text and documents/pictures/tables |
29
+
30
+
31
+ ## Performance on Text Dataset
32
+
33
+ We conducted experiments on the in-house test sets of the three different domains of Internet, medical care, and finance:
34
+
35
+ <table>
36
+ <tr><th row_span='2'><th colspan='2'>finance<th colspan='2'>healthcare<th colspan='2'>internet
37
+ <tr><td><th>0-shot<th>5-shot<th>0-shot<th>5-shot<th>0-shot<th>5-shot
38
+ <tr><td>uie-base (12L768H)<td>46.43<td>70.92<td><b>71.83</b><td>85.72<td>78.33<td>81.86
39
+ <tr><td>uie-medium (6L768H)<td>41.11<td>64.53<td>65.40<td>75.72<td>78.32<td>79.68
40
+ <tr><td>uie-mini (6L384H)<td>37.04<td>64.65<td>60.50<td>78.36<td>72.09<td>76.38
41
+ <tr><td>uie-micro (4L384H)<td>37.53<td>62.11<td>57.04<td>75.92<td>66.00<td>70.22
42
+ <tr><td>uie-nano (4L312H)<td>38.94<td>66.83<td>48.29<td>76.74<td>62.86<td>72.35
43
+ <tr><td>uie-m-large (24L1024H)<td><b>49.35</b><td><b>74.55</b><td>70.50<td><b>92.66</b ><td>78.49<td><b>83.02</b>
44
+ <tr><td>uie-m-base (12L768H)<td>38.46<td>74.31<td>63.37<td>87.32<td>76.27<td>80.13
45
+ <tr><td>🧾🎓<b>uie-x-base (12L768H)</b><td>48.84<td>73.87<td>65.60<td>88.81<td><b>79.36</b> <td>81.65
46
+ </table>
47
+
48
+ 0-shot means that no training data is directly used for prediction through paddlenlp.Taskflow, and 5-shot means that each category contains 5 pieces of labeled data for model fine-tuning. Experiments show that UIE can further improve the performance with a small amount of data (few-shot).
49
+
50
+ > Detailed Info: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/information_extraction/README_en.md