--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - librispeech_asr metrics: - wer model-index: - name: Whisper-Small En-10h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: librispeech type: librispeech_asr config: default split: None args: 'config: en, split: test-clean' metrics: - name: Wer type: wer value: 3.9809209319390937 --- # Whisper-Small En-10h This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the librispeech dataset. It achieves the following results on the evaluation set: - Loss: 0.1307 - Wer: 3.9809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.525 | 0.5556 | 100 | 0.7431 | 3.4571 | | 0.382 | 1.1111 | 200 | 0.5645 | 3.4836 | | 0.1704 | 1.6667 | 300 | 0.2111 | 4.0237 | | 0.0953 | 2.2222 | 400 | 0.1527 | 4.1114 | | 0.0904 | 2.7778 | 500 | 0.1404 | 4.0400 | | 0.0784 | 3.3333 | 600 | 0.1355 | 4.0482 | | 0.0793 | 3.8889 | 700 | 0.1331 | 3.9768 | | 0.0776 | 4.4444 | 800 | 0.1318 | 3.9646 | | 0.0629 | 5.0 | 900 | 0.1310 | 3.9830 | | 0.0746 | 5.5556 | 1000 | 0.1307 | 3.9809 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1