File size: 2,413 Bytes
566e280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: Pak-Speech-Processing/urdu-emotion-whisper
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: Pak-Speech-Processing/urdu-emotions
      type: audiofolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9166666666666666
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Pak-Speech-Processing/urdu-emotion-whisper

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Pak-Speech-Processing/urdu-emotions dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5604
- Accuracy: 0.9167

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0018        | 1.0   | 120  | 2.0096          | 0.6667   |
| 0.5139        | 2.0   | 240  | 0.8303          | 0.8667   |
| 0.6903        | 3.0   | 360  | 0.8813          | 0.8833   |
| 0.0006        | 4.0   | 480  | 0.3012          | 0.95     |
| 1.5207        | 5.0   | 600  | 0.6310          | 0.8833   |
| 0.0005        | 6.0   | 720  | 0.5993          | 0.9      |
| 0.0004        | 7.0   | 840  | 0.3247          | 0.9167   |
| 0.0001        | 8.0   | 960  | 0.5303          | 0.9167   |
| 0.0001        | 9.0   | 1080 | 0.5530          | 0.9167   |
| 0.0001        | 10.0  | 1200 | 0.5604          | 0.9167   |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2