Upload 45 files
Browse files- .gitattributes +3 -0
- BIAS.md +6 -0
- EXPLAINABILITY.md +14 -0
- PRIVACY.md +11 -0
- README.md +0 -8
- SAFETY_and_SECURITY.md +8 -0
- __init__.py +0 -0
- accuracy_plot.png +3 -0
- block_config.py +118 -0
- config.json +2970 -0
- configuration_decilm.py +65 -0
- model-00001-of-00016.safetensors +3 -0
- model-00002-of-00016.safetensors +3 -0
- model-00003-of-00016.safetensors +3 -0
- model-00004-of-00016.safetensors +3 -0
- model-00005-of-00016.safetensors +3 -0
- model-00006-of-00016.safetensors +3 -0
- model-00007-of-00016.safetensors +3 -0
- model-00008-of-00016.safetensors +3 -0
- model-00009-of-00016.safetensors +3 -0
- model-00010-of-00016.safetensors +3 -0
- model-00011-of-00016.safetensors +3 -0
- model-00012-of-00016.safetensors +3 -0
- model-00013-of-00016.safetensors +3 -0
- model-00014-of-00016.safetensors +3 -0
- model-00015-of-00016.safetensors +3 -0
- model-00016-of-00016.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_decilm.py +1681 -0
- nemo_common.json +1 -0
- nemo_model_config.yaml +211 -0
- quantization_config.json +0 -0
- special_tokens_map.json +16 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2063 -0
- tokenizer_name.txt +1 -0
- training_flowchart.png +3 -0
- transformers_4_44_2__activations.py +239 -0
- transformers_4_44_2__cache_utils.py +1347 -0
- transformers_4_44_2__configuration_llama.py +203 -0
- transformers_4_44_2__modeling_attn_mask_utils.py +482 -0
- transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py +348 -0
- transformers_4_44_2__modeling_outputs.py +0 -0
- transformers_4_44_2__modeling_rope_utils.py +559 -0
- transformers_4_44_2__pytorch_utils.py +17 -0
- variable_cache.py +139 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            accuracy_plot.png filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            tokenizer.json filter=lfs diff=lfs merge=lfs -text
         | 
| 38 | 
            +
            training_flowchart.png filter=lfs diff=lfs merge=lfs -text
         | 
    	
        BIAS.md
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # **Bias**
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            |Field:|Response:|  
         | 
| 4 | 
            +
            |:---:|:---:|  
         | 
| 5 | 
            +
            |Participation considerations from adversely impacted groups (protected classes) in model design and testing:|None|  
         | 
| 6 | 
            +
            |Measures taken to mitigate against unwanted bias:|None|
         | 
    	
        EXPLAINABILITY.md
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # **Explainability**
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            |Field:|Response:|  
         | 
| 4 | 
            +
            |:---:|:---:|  
         | 
| 5 | 
            +
            |Intended Application(s) & Domain(s):| Text generation, reasoning, summarization, and question answering. |  
         | 
| 6 | 
            +
            |Model Type: |Text-to-text transformer |  
         | 
| 7 | 
            +
            |Intended Users:|This model is intended for developers, researchers, and customers building/utilizing LLMs, while balancing accuracy and efficiency.|  
         | 
| 8 | 
            +
            |Output:|Text String(s)|  
         | 
| 9 | 
            +
            |Describe how the model works:|Generates text by predicting the next word or token based on the context provided in the input sequence using multiple self-attention layers|  
         | 
| 10 | 
            +
            |Technical Limitations:| The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.\<br/\>The model demonstrates weakness to alignment-breaking attacks. Users are advised to deploy language model guardrails alongside this model to prevent potentially harmful outputs.\<br/\>The Model may generate answers that are inaccurate, omit key information, or include irrelevant or redundant text.|  
         | 
| 11 | 
            +
            |Verified to have met prescribed quality standards?|Yes|  
         | 
| 12 | 
            +
            |Performance Metrics:|Accuracy, Throughput, and user-side throughput|  
         | 
| 13 | 
            +
            |Potential Known Risks:|The model was optimized explicitly for instruction following and as such is more susceptible to prompt injection and jailbreaking in various forms as a result of its instruction tuning. This means that the model should be paired with additional rails or system filtering to limit exposure to instructions from malicious sources  -- either directly or indirectly by retrieval (e.g. via visiting a website)  -- as they may yield outputs that can lead to harmful, system-level outcomes up to and including remote code execution in agentic systems when effective security controls including guardrails are not in place.\<br/\>The model was trained on data that contains toxic language and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.|  
         | 
| 14 | 
            +
            |End User License Agreement:| Your use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/). Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3\_1/license/). Built with Llama. |
         | 
    	
        PRIVACY.md
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # **Privacy**
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            |Field:|Response:|  
         | 
| 4 | 
            +
            |:---:|:---:|  
         | 
| 5 | 
            +
            |Generatable or Reverse engineerable personally-identifiable information?|None|  
         | 
| 6 | 
            +
            |Was consent obtained for any personal data used?|None Known|  
         | 
| 7 | 
            +
            |Personal data used to create this model?|None Known|  
         | 
| 8 | 
            +
            |How often is dataset reviewed?|Before Release|  
         | 
| 9 | 
            +
            |Is there provenance for all datasets used in training?|Yes|  
         | 
| 10 | 
            +
            |Does data labeling (annotation, metadata) comply with privacy laws?|Yes|  
         | 
| 11 | 
            +
            |Applicable NVIDIA Privacy Policy|https://www.nvidia.com/en-us/about-nvidia/privacy-policy/|
         | 
    	
        README.md
    CHANGED
    
    | @@ -14,8 +14,6 @@ tags: | |
| 14 | 
             
              - pytorch
         | 
| 15 | 
             
            ---
         | 
| 16 |  | 
| 17 | 
            -
            EXL3 quantization at 3.6BPW. Model size is 109GB. Fits on 128GB VRAM but with very limited context.
         | 
| 18 | 
            -
             | 
| 19 | 
             
            # Llama-3.1-Nemotron-Ultra-253B-v1
         | 
| 20 |  | 
| 21 | 
             
            ## Model Overview 
         | 
| @@ -342,12 +340,6 @@ User Prompt Template: | |
| 342 | 
             
            "Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
         | 
| 343 | 
             
            ```
         | 
| 344 |  | 
| 345 | 
            -
            ### JudgeBench
         | 
| 346 | 
            -
             | 
| 347 | 
            -
            | Reasoning Mode | Knowledge Score | Reasoning Score | Math Score | Coding Score | Overall Score | 
         | 
| 348 | 
            -
            |--------------|------------|------------|------------|------------|------------|
         | 
| 349 | 
            -
            | Reasoning On | 70.13 | 81.63 | 89.29 | 92.86 | 79.14 | 
         | 
| 350 | 
            -
             | 
| 351 | 
             
            ## Ethical Considerations:
         | 
| 352 |  | 
| 353 | 
             
            NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. 
         | 
|  | |
| 14 | 
             
              - pytorch
         | 
| 15 | 
             
            ---
         | 
| 16 |  | 
|  | |
|  | |
| 17 | 
             
            # Llama-3.1-Nemotron-Ultra-253B-v1
         | 
| 18 |  | 
| 19 | 
             
            ## Model Overview 
         | 
|  | |
| 340 | 
             
            "Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
         | 
| 341 | 
             
            ```
         | 
| 342 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 343 | 
             
            ## Ethical Considerations:
         | 
| 344 |  | 
| 345 | 
             
            NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. 
         | 
    	
        SAFETY_and_SECURITY.md
    ADDED
    
    | @@ -0,0 +1,8 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # **Safety & Security**
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            |Field:|Response:|  
         | 
| 4 | 
            +
            |:---:|:---:|  
         | 
| 5 | 
            +
            |Model Application(s):|Chat, Instruction Following, Chatbot Development, Code Generation, Reasoning|  
         | 
| 6 | 
            +
            |Describe life critical application (if present):|None Known (please see referenced Known Risks in the Explainability subcard).|  
         | 
| 7 | 
            +
            |Use Case Restrictions:|Abide by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/). Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3\_1/license/). Built with Llama.|  
         | 
| 8 | 
            +
            |Model and Dataset Restrictions:|The Principle of least privilege (PoLP) is applied limiting access for dataset generation.  Restrictions enforce dataset access during training, and dataset license constraints adhered to. Model checkpoints are made available on Hugging Face and NGC, and may become available on cloud providers' model catalog.|
         | 
    	
        __init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        accuracy_plot.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        block_config.py
    ADDED
    
    | @@ -0,0 +1,118 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import dataclasses
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            import warnings
         | 
| 4 | 
            +
            from dataclasses import dataclass, MISSING
         | 
| 5 | 
            +
            from functools import partial
         | 
| 6 | 
            +
            from typing import Optional, Any
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            @partial(dataclass, frozen=True, kw_only=True)
         | 
| 10 | 
            +
            class JsonComparable:
         | 
| 11 | 
            +
                def to_json(self) -> str:
         | 
| 12 | 
            +
                    return json.dumps(dataclasses.asdict(self))
         | 
| 13 | 
            +
             | 
| 14 | 
            +
                def __eq__(self, other: "JsonComparable") -> bool:
         | 
| 15 | 
            +
                    return self.to_json() == other.to_json()
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def __hash__(self) -> int:
         | 
| 18 | 
            +
                    return hash(self.to_json())
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                def __lt__(self, other: "JsonComparable") -> bool:
         | 
| 21 | 
            +
                    return self.to_json() < other.to_json()
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            @partial(dataclass, frozen=True, kw_only=True)
         | 
| 25 | 
            +
            class SubblockConfig(JsonComparable):
         | 
| 26 | 
            +
                no_op: bool = False
         | 
| 27 | 
            +
                replace_with_linear: bool = False
         | 
| 28 | 
            +
                sparsify: Optional[list[str]] = None
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def __post_init__(self):
         | 
| 31 | 
            +
                    assert not (self.no_op and self.replace_with_linear)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                def _force_setattr(self, name: str, value: Any) -> None:
         | 
| 34 | 
            +
                    """
         | 
| 35 | 
            +
                    Set an attribute even in frozen dataclasses.
         | 
| 36 | 
            +
                    Use only inside __post_init__!
         | 
| 37 | 
            +
                    """
         | 
| 38 | 
            +
                    object.__setattr__(self, name, value)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            @partial(dataclass, frozen=True, kw_only=True)
         | 
| 42 | 
            +
            class AttentionConfig(SubblockConfig):
         | 
| 43 | 
            +
                n_heads_in_group: Optional[int] = None
         | 
| 44 | 
            +
                window_length: Optional[int] = None
         | 
| 45 | 
            +
                num_sink_tokens: Optional[int] = None
         | 
| 46 | 
            +
                use_prefill_window_in_sink_attention: bool = False
         | 
| 47 | 
            +
                unshifted_sink: bool = False
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def __post_init__(self):
         | 
| 50 | 
            +
                    super().__post_init__()
         | 
| 51 | 
            +
                    assert not (self.no_op and self.replace_with_linear)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    if self.no_op or self.replace_with_linear:
         | 
| 54 | 
            +
                        for irrelevant_att in ["n_heads_in_group", "window_length", "num_sink_tokens"]:
         | 
| 55 | 
            +
                            self._force_setattr(irrelevant_att, None)
         | 
| 56 | 
            +
                    else:
         | 
| 57 | 
            +
                        assert self.n_heads_in_group is not None
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    if self.is_sink:
         | 
| 60 | 
            +
                        assert not (self.unshifted_sink and self.use_prefill_window_in_sink_attention), \
         | 
| 61 | 
            +
                            ("Unshifted sink uses its own kind of explicit masking, not standard window. "
         | 
| 62 | 
            +
                             "Set use_prefill_window_in_sink_attention to False.")
         | 
| 63 | 
            +
                        assert not (self.num_sink_tokens == 0 and not self.unshifted_sink), \
         | 
| 64 | 
            +
                            "Fake sink attention with 0 sink tokens is only supported with unshifted_sink=True"
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                @property
         | 
| 67 | 
            +
                def prefill_sliding_window(self) -> Optional[int]:
         | 
| 68 | 
            +
                    if self.window_length is not None:
         | 
| 69 | 
            +
                        if not self.is_sink or self.use_prefill_window_in_sink_attention:
         | 
| 70 | 
            +
                            return self.window_length
         | 
| 71 | 
            +
                    return None
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                @property
         | 
| 74 | 
            +
                def is_sliding(self) -> bool:
         | 
| 75 | 
            +
                    return self.prefill_sliding_window is not None
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                @property
         | 
| 78 | 
            +
                def is_sink(self) -> bool:
         | 
| 79 | 
            +
                    return (
         | 
| 80 | 
            +
                            (self.window_length is not None)
         | 
| 81 | 
            +
                            and
         | 
| 82 | 
            +
                            (self.num_sink_tokens is not None)
         | 
| 83 | 
            +
                    )
         | 
| 84 | 
            +
             | 
| 85 | 
            +
             | 
| 86 | 
            +
            @partial(dataclass, frozen=True, kw_only=True)
         | 
| 87 | 
            +
            class FFNConfig(SubblockConfig):
         | 
| 88 | 
            +
                ffn_mult: Optional[float] = None
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                def __post_init__(self):
         | 
| 91 | 
            +
                    super().__post_init__()
         | 
| 92 | 
            +
                    if self.no_op or self.replace_with_linear:
         | 
| 93 | 
            +
                        self._force_setattr("ffn_mult", None)
         | 
| 94 | 
            +
                    else:
         | 
| 95 | 
            +
                        assert self.ffn_mult is not None
         | 
| 96 | 
            +
                        self._force_setattr("ffn_mult", round(self.ffn_mult, 6))
         | 
| 97 | 
            +
             | 
| 98 | 
            +
             | 
| 99 | 
            +
            @partial(dataclass, frozen=True, kw_only=True)
         | 
| 100 | 
            +
            class BlockConfig(JsonComparable):
         | 
| 101 | 
            +
                attention: AttentionConfig = MISSING
         | 
| 102 | 
            +
                ffn: FFNConfig = MISSING
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                def __post_init__(self):
         | 
| 105 | 
            +
                    """
         | 
| 106 | 
            +
                    Init subblock dataclasses from dicts
         | 
| 107 | 
            +
                    """
         | 
| 108 | 
            +
                    for subblock_name in dataclasses.fields(self):
         | 
| 109 | 
            +
                        subblock_config = getattr(self, subblock_name.name)
         | 
| 110 | 
            +
                        if isinstance(subblock_config, dict):
         | 
| 111 | 
            +
                            subblock_fields = [field.name for field in dataclasses.fields(subblock_name.type)]
         | 
| 112 | 
            +
                            unsupported_fields = [field_name for field_name in subblock_config.keys()
         | 
| 113 | 
            +
                                                  if field_name not in subblock_fields]
         | 
| 114 | 
            +
                            if len(unsupported_fields) > 0:
         | 
| 115 | 
            +
                                warnings.warn(f"Removed unsupported fields {unsupported_fields} from {subblock_name.type.__name__}")
         | 
| 116 | 
            +
                            subblock_config = {k: v for k, v in subblock_config.items() if k not in unsupported_fields}
         | 
| 117 | 
            +
                            object.__setattr__(self, subblock_name.name,
         | 
| 118 | 
            +
                                               subblock_name.type(**subblock_config))  # __setattr__ to overcome frozen=True
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,2970 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "_name_or_path": "llama_nemotron_ultra",
         | 
| 3 | 
            +
                "architectures": [
         | 
| 4 | 
            +
                    "DeciLMForCausalLM"
         | 
| 5 | 
            +
                ],
         | 
| 6 | 
            +
                "attention_bias": false,
         | 
| 7 | 
            +
                "attention_dropout": 0.0,
         | 
| 8 | 
            +
                "auto_map": {
         | 
| 9 | 
            +
                    "AutoConfig": "configuration_decilm.DeciLMConfig",
         | 
| 10 | 
            +
                    "AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
         | 
| 11 | 
            +
                },
         | 
| 12 | 
            +
                "block_configs": [
         | 
| 13 | 
            +
                    {
         | 
| 14 | 
            +
                        "attention": {
         | 
| 15 | 
            +
                            "n_heads_in_group": 16,
         | 
| 16 | 
            +
                            "no_op": false,
         | 
| 17 | 
            +
                            "num_sink_tokens": null,
         | 
| 18 | 
            +
                            "replace_with_linear": false,
         | 
| 19 | 
            +
                            "sparsify": null,
         | 
| 20 | 
            +
                            "unshifted_sink": false,
         | 
| 21 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 22 | 
            +
                            "window_length": null
         | 
| 23 | 
            +
                        },
         | 
| 24 | 
            +
                        "ffn": {
         | 
| 25 | 
            +
                            "ffn_mult": 0.4875,
         | 
| 26 | 
            +
                            "no_op": false,
         | 
| 27 | 
            +
                            "replace_with_linear": false,
         | 
| 28 | 
            +
                            "sparsify": null
         | 
| 29 | 
            +
                        }
         | 
| 30 | 
            +
                    },
         | 
| 31 | 
            +
                    {
         | 
| 32 | 
            +
                        "attention": {
         | 
| 33 | 
            +
                            "n_heads_in_group": 16,
         | 
| 34 | 
            +
                            "no_op": false,
         | 
| 35 | 
            +
                            "num_sink_tokens": null,
         | 
| 36 | 
            +
                            "replace_with_linear": false,
         | 
| 37 | 
            +
                            "sparsify": null,
         | 
| 38 | 
            +
                            "unshifted_sink": false,
         | 
| 39 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 40 | 
            +
                            "window_length": null
         | 
| 41 | 
            +
                        },
         | 
| 42 | 
            +
                        "ffn": {
         | 
| 43 | 
            +
                            "ffn_mult": 0.975,
         | 
| 44 | 
            +
                            "no_op": false,
         | 
| 45 | 
            +
                            "replace_with_linear": false,
         | 
| 46 | 
            +
                            "sparsify": null
         | 
| 47 | 
            +
                        }
         | 
| 48 | 
            +
                    },
         | 
| 49 | 
            +
                    {
         | 
| 50 | 
            +
                        "attention": {
         | 
| 51 | 
            +
                            "n_heads_in_group": 16,
         | 
| 52 | 
            +
                            "no_op": false,
         | 
| 53 | 
            +
                            "num_sink_tokens": null,
         | 
| 54 | 
            +
                            "replace_with_linear": false,
         | 
| 55 | 
            +
                            "sparsify": null,
         | 
| 56 | 
            +
                            "unshifted_sink": false,
         | 
| 57 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 58 | 
            +
                            "window_length": null
         | 
| 59 | 
            +
                        },
         | 
| 60 | 
            +
                        "ffn": {
         | 
| 61 | 
            +
                            "ffn_mult": 1.4625,
         | 
| 62 | 
            +
                            "no_op": false,
         | 
| 63 | 
            +
                            "replace_with_linear": false,
         | 
| 64 | 
            +
                            "sparsify": null
         | 
| 65 | 
            +
                        }
         | 
| 66 | 
            +
                    },
         | 
| 67 | 
            +
                    {
         | 
| 68 | 
            +
                        "attention": {
         | 
| 69 | 
            +
                            "n_heads_in_group": 16,
         | 
| 70 | 
            +
                            "no_op": false,
         | 
| 71 | 
            +
                            "num_sink_tokens": null,
         | 
| 72 | 
            +
                            "replace_with_linear": false,
         | 
| 73 | 
            +
                            "sparsify": null,
         | 
| 74 | 
            +
                            "unshifted_sink": false,
         | 
| 75 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 76 | 
            +
                            "window_length": null
         | 
| 77 | 
            +
                        },
         | 
| 78 | 
            +
                        "ffn": {
         | 
| 79 | 
            +
                            "ffn_mult": 1.4625,
         | 
| 80 | 
            +
                            "no_op": false,
         | 
| 81 | 
            +
                            "replace_with_linear": false,
         | 
| 82 | 
            +
                            "sparsify": null
         | 
| 83 | 
            +
                        }
         | 
| 84 | 
            +
                    },
         | 
| 85 | 
            +
                    {
         | 
| 86 | 
            +
                        "attention": {
         | 
| 87 | 
            +
                            "n_heads_in_group": 16,
         | 
| 88 | 
            +
                            "no_op": false,
         | 
| 89 | 
            +
                            "num_sink_tokens": null,
         | 
| 90 | 
            +
                            "replace_with_linear": false,
         | 
| 91 | 
            +
                            "sparsify": null,
         | 
| 92 | 
            +
                            "unshifted_sink": false,
         | 
| 93 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 94 | 
            +
                            "window_length": null
         | 
| 95 | 
            +
                        },
         | 
| 96 | 
            +
                        "ffn": {
         | 
| 97 | 
            +
                            "ffn_mult": 1.4625,
         | 
| 98 | 
            +
                            "no_op": false,
         | 
| 99 | 
            +
                            "replace_with_linear": false,
         | 
| 100 | 
            +
                            "sparsify": null
         | 
| 101 | 
            +
                        }
         | 
| 102 | 
            +
                    },
         | 
| 103 | 
            +
                    {
         | 
| 104 | 
            +
                        "attention": {
         | 
| 105 | 
            +
                            "n_heads_in_group": 16,
         | 
| 106 | 
            +
                            "no_op": false,
         | 
| 107 | 
            +
                            "num_sink_tokens": null,
         | 
| 108 | 
            +
                            "replace_with_linear": false,
         | 
| 109 | 
            +
                            "sparsify": null,
         | 
| 110 | 
            +
                            "unshifted_sink": false,
         | 
| 111 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 112 | 
            +
                            "window_length": null
         | 
| 113 | 
            +
                        },
         | 
| 114 | 
            +
                        "ffn": {
         | 
| 115 | 
            +
                            "ffn_mult": 1.4625,
         | 
| 116 | 
            +
                            "no_op": false,
         | 
| 117 | 
            +
                            "replace_with_linear": false,
         | 
| 118 | 
            +
                            "sparsify": null
         | 
| 119 | 
            +
                        }
         | 
| 120 | 
            +
                    },
         | 
| 121 | 
            +
                    {
         | 
| 122 | 
            +
                        "attention": {
         | 
| 123 | 
            +
                            "n_heads_in_group": 16,
         | 
| 124 | 
            +
                            "no_op": false,
         | 
| 125 | 
            +
                            "num_sink_tokens": null,
         | 
| 126 | 
            +
                            "replace_with_linear": false,
         | 
| 127 | 
            +
                            "sparsify": null,
         | 
| 128 | 
            +
                            "unshifted_sink": false,
         | 
| 129 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 130 | 
            +
                            "window_length": null
         | 
| 131 | 
            +
                        },
         | 
| 132 | 
            +
                        "ffn": {
         | 
| 133 | 
            +
                            "ffn_mult": 1.4625,
         | 
| 134 | 
            +
                            "no_op": false,
         | 
| 135 | 
            +
                            "replace_with_linear": false,
         | 
| 136 | 
            +
                            "sparsify": null
         | 
| 137 | 
            +
                        }
         | 
| 138 | 
            +
                    },
         | 
| 139 | 
            +
                    {
         | 
| 140 | 
            +
                        "attention": {
         | 
| 141 | 
            +
                            "n_heads_in_group": 16,
         | 
| 142 | 
            +
                            "no_op": false,
         | 
| 143 | 
            +
                            "num_sink_tokens": null,
         | 
| 144 | 
            +
                            "replace_with_linear": false,
         | 
| 145 | 
            +
                            "sparsify": null,
         | 
| 146 | 
            +
                            "unshifted_sink": false,
         | 
| 147 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 148 | 
            +
                            "window_length": null
         | 
| 149 | 
            +
                        },
         | 
| 150 | 
            +
                        "ffn": {
         | 
| 151 | 
            +
                            "ffn_mult": 1.4625,
         | 
| 152 | 
            +
                            "no_op": false,
         | 
| 153 | 
            +
                            "replace_with_linear": false,
         | 
| 154 | 
            +
                            "sparsify": null
         | 
| 155 | 
            +
                        }
         | 
| 156 | 
            +
                    },
         | 
| 157 | 
            +
                    {
         | 
| 158 | 
            +
                        "attention": {
         | 
| 159 | 
            +
                            "n_heads_in_group": 16,
         | 
| 160 | 
            +
                            "no_op": false,
         | 
| 161 | 
            +
                            "num_sink_tokens": null,
         | 
| 162 | 
            +
                            "replace_with_linear": false,
         | 
| 163 | 
            +
                            "sparsify": null,
         | 
| 164 | 
            +
                            "unshifted_sink": false,
         | 
| 165 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 166 | 
            +
                            "window_length": null
         | 
| 167 | 
            +
                        },
         | 
| 168 | 
            +
                        "ffn": {
         | 
| 169 | 
            +
                            "ffn_mult": 1.95,
         | 
| 170 | 
            +
                            "no_op": false,
         | 
| 171 | 
            +
                            "replace_with_linear": false,
         | 
| 172 | 
            +
                            "sparsify": null
         | 
| 173 | 
            +
                        }
         | 
| 174 | 
            +
                    },
         | 
| 175 | 
            +
                    {
         | 
| 176 | 
            +
                        "attention": {
         | 
| 177 | 
            +
                            "n_heads_in_group": null,
         | 
| 178 | 
            +
                            "no_op": true,
         | 
| 179 | 
            +
                            "num_sink_tokens": null,
         | 
| 180 | 
            +
                            "replace_with_linear": false,
         | 
| 181 | 
            +
                            "sparsify": null,
         | 
| 182 | 
            +
                            "unshifted_sink": false,
         | 
| 183 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 184 | 
            +
                            "window_length": null
         | 
| 185 | 
            +
                        },
         | 
| 186 | 
            +
                        "ffn": {
         | 
| 187 | 
            +
                            "ffn_mult": null,
         | 
| 188 | 
            +
                            "no_op": true,
         | 
| 189 | 
            +
                            "replace_with_linear": false,
         | 
| 190 | 
            +
                            "sparsify": null
         | 
| 191 | 
            +
                        }
         | 
| 192 | 
            +
                    },
         | 
| 193 | 
            +
                    {
         | 
| 194 | 
            +
                        "attention": {
         | 
| 195 | 
            +
                            "n_heads_in_group": null,
         | 
| 196 | 
            +
                            "no_op": true,
         | 
| 197 | 
            +
                            "num_sink_tokens": null,
         | 
| 198 | 
            +
                            "replace_with_linear": false,
         | 
| 199 | 
            +
                            "sparsify": null,
         | 
| 200 | 
            +
                            "unshifted_sink": false,
         | 
| 201 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 202 | 
            +
                            "window_length": null
         | 
| 203 | 
            +
                        },
         | 
| 204 | 
            +
                        "ffn": {
         | 
| 205 | 
            +
                            "ffn_mult": null,
         | 
| 206 | 
            +
                            "no_op": true,
         | 
| 207 | 
            +
                            "replace_with_linear": false,
         | 
| 208 | 
            +
                            "sparsify": null
         | 
| 209 | 
            +
                        }
         | 
| 210 | 
            +
                    },
         | 
| 211 | 
            +
                    {
         | 
| 212 | 
            +
                        "attention": {
         | 
| 213 | 
            +
                            "n_heads_in_group": null,
         | 
| 214 | 
            +
                            "no_op": true,
         | 
| 215 | 
            +
                            "num_sink_tokens": null,
         | 
| 216 | 
            +
                            "replace_with_linear": false,
         | 
| 217 | 
            +
                            "sparsify": null,
         | 
| 218 | 
            +
                            "unshifted_sink": false,
         | 
| 219 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 220 | 
            +
                            "window_length": null
         | 
| 221 | 
            +
                        },
         | 
| 222 | 
            +
                        "ffn": {
         | 
| 223 | 
            +
                            "ffn_mult": null,
         | 
| 224 | 
            +
                            "no_op": true,
         | 
| 225 | 
            +
                            "replace_with_linear": false,
         | 
| 226 | 
            +
                            "sparsify": null
         | 
| 227 | 
            +
                        }
         | 
| 228 | 
            +
                    },
         | 
| 229 | 
            +
                    {
         | 
| 230 | 
            +
                        "attention": {
         | 
| 231 | 
            +
                            "n_heads_in_group": null,
         | 
| 232 | 
            +
                            "no_op": true,
         | 
| 233 | 
            +
                            "num_sink_tokens": null,
         | 
| 234 | 
            +
                            "replace_with_linear": false,
         | 
| 235 | 
            +
                            "sparsify": null,
         | 
| 236 | 
            +
                            "unshifted_sink": false,
         | 
| 237 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 238 | 
            +
                            "window_length": null
         | 
| 239 | 
            +
                        },
         | 
| 240 | 
            +
                        "ffn": {
         | 
| 241 | 
            +
                            "ffn_mult": null,
         | 
| 242 | 
            +
                            "no_op": true,
         | 
| 243 | 
            +
                            "replace_with_linear": false,
         | 
| 244 | 
            +
                            "sparsify": null
         | 
| 245 | 
            +
                        }
         | 
| 246 | 
            +
                    },
         | 
| 247 | 
            +
                    {
         | 
| 248 | 
            +
                        "attention": {
         | 
| 249 | 
            +
                            "n_heads_in_group": 16,
         | 
| 250 | 
            +
                            "no_op": false,
         | 
| 251 | 
            +
                            "num_sink_tokens": null,
         | 
| 252 | 
            +
                            "replace_with_linear": false,
         | 
| 253 | 
            +
                            "sparsify": null,
         | 
| 254 | 
            +
                            "unshifted_sink": false,
         | 
| 255 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 256 | 
            +
                            "window_length": null
         | 
| 257 | 
            +
                        },
         | 
| 258 | 
            +
                        "ffn": {
         | 
| 259 | 
            +
                            "ffn_mult": 1.95,
         | 
| 260 | 
            +
                            "no_op": false,
         | 
| 261 | 
            +
                            "replace_with_linear": false,
         | 
| 262 | 
            +
                            "sparsify": null
         | 
| 263 | 
            +
                        }
         | 
| 264 | 
            +
                    },
         | 
| 265 | 
            +
                    {
         | 
| 266 | 
            +
                        "attention": {
         | 
| 267 | 
            +
                            "n_heads_in_group": 16,
         | 
| 268 | 
            +
                            "no_op": false,
         | 
| 269 | 
            +
                            "num_sink_tokens": null,
         | 
| 270 | 
            +
                            "replace_with_linear": false,
         | 
| 271 | 
            +
                            "sparsify": null,
         | 
| 272 | 
            +
                            "unshifted_sink": false,
         | 
| 273 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 274 | 
            +
                            "window_length": null
         | 
| 275 | 
            +
                        },
         | 
| 276 | 
            +
                        "ffn": {
         | 
| 277 | 
            +
                            "ffn_mult": 1.95,
         | 
| 278 | 
            +
                            "no_op": false,
         | 
| 279 | 
            +
                            "replace_with_linear": false,
         | 
| 280 | 
            +
                            "sparsify": null
         | 
| 281 | 
            +
                        }
         | 
| 282 | 
            +
                    },
         | 
| 283 | 
            +
                    {
         | 
| 284 | 
            +
                        "attention": {
         | 
| 285 | 
            +
                            "n_heads_in_group": 16,
         | 
| 286 | 
            +
                            "no_op": false,
         | 
| 287 | 
            +
                            "num_sink_tokens": null,
         | 
| 288 | 
            +
                            "replace_with_linear": false,
         | 
| 289 | 
            +
                            "sparsify": null,
         | 
| 290 | 
            +
                            "unshifted_sink": false,
         | 
| 291 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 292 | 
            +
                            "window_length": null
         | 
| 293 | 
            +
                        },
         | 
| 294 | 
            +
                        "ffn": {
         | 
| 295 | 
            +
                            "ffn_mult": 1.95,
         | 
| 296 | 
            +
                            "no_op": false,
         | 
| 297 | 
            +
                            "replace_with_linear": false,
         | 
| 298 | 
            +
                            "sparsify": null
         | 
| 299 | 
            +
                        }
         | 
| 300 | 
            +
                    },
         | 
| 301 | 
            +
                    {
         | 
| 302 | 
            +
                        "attention": {
         | 
| 303 | 
            +
                            "n_heads_in_group": 16,
         | 
| 304 | 
            +
                            "no_op": false,
         | 
| 305 | 
            +
                            "num_sink_tokens": null,
         | 
| 306 | 
            +
                            "replace_with_linear": false,
         | 
| 307 | 
            +
                            "sparsify": null,
         | 
| 308 | 
            +
                            "unshifted_sink": false,
         | 
| 309 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 310 | 
            +
                            "window_length": null
         | 
| 311 | 
            +
                        },
         | 
| 312 | 
            +
                        "ffn": {
         | 
| 313 | 
            +
                            "ffn_mult": 4.875,
         | 
| 314 | 
            +
                            "no_op": false,
         | 
| 315 | 
            +
                            "replace_with_linear": false,
         | 
| 316 | 
            +
                            "sparsify": null
         | 
| 317 | 
            +
                        }
         | 
| 318 | 
            +
                    },
         | 
| 319 | 
            +
                    {
         | 
| 320 | 
            +
                        "attention": {
         | 
| 321 | 
            +
                            "n_heads_in_group": 16,
         | 
| 322 | 
            +
                            "no_op": false,
         | 
| 323 | 
            +
                            "num_sink_tokens": null,
         | 
| 324 | 
            +
                            "replace_with_linear": false,
         | 
| 325 | 
            +
                            "sparsify": null,
         | 
| 326 | 
            +
                            "unshifted_sink": false,
         | 
| 327 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 328 | 
            +
                            "window_length": null
         | 
| 329 | 
            +
                        },
         | 
| 330 | 
            +
                        "ffn": {
         | 
| 331 | 
            +
                            "ffn_mult": 4.875,
         | 
| 332 | 
            +
                            "no_op": false,
         | 
| 333 | 
            +
                            "replace_with_linear": false,
         | 
| 334 | 
            +
                            "sparsify": null
         | 
| 335 | 
            +
                        }
         | 
| 336 | 
            +
                    },
         | 
| 337 | 
            +
                    {
         | 
| 338 | 
            +
                        "attention": {
         | 
| 339 | 
            +
                            "n_heads_in_group": null,
         | 
| 340 | 
            +
                            "no_op": true,
         | 
| 341 | 
            +
                            "num_sink_tokens": null,
         | 
| 342 | 
            +
                            "replace_with_linear": false,
         | 
| 343 | 
            +
                            "sparsify": null,
         | 
| 344 | 
            +
                            "unshifted_sink": false,
         | 
| 345 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 346 | 
            +
                            "window_length": null
         | 
| 347 | 
            +
                        },
         | 
| 348 | 
            +
                        "ffn": {
         | 
| 349 | 
            +
                            "ffn_mult": null,
         | 
| 350 | 
            +
                            "no_op": true,
         | 
| 351 | 
            +
                            "replace_with_linear": false,
         | 
| 352 | 
            +
                            "sparsify": null
         | 
| 353 | 
            +
                        }
         | 
| 354 | 
            +
                    },
         | 
| 355 | 
            +
                    {
         | 
| 356 | 
            +
                        "attention": {
         | 
| 357 | 
            +
                            "n_heads_in_group": null,
         | 
| 358 | 
            +
                            "no_op": true,
         | 
| 359 | 
            +
                            "num_sink_tokens": null,
         | 
| 360 | 
            +
                            "replace_with_linear": false,
         | 
| 361 | 
            +
                            "sparsify": null,
         | 
| 362 | 
            +
                            "unshifted_sink": false,
         | 
| 363 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 364 | 
            +
                            "window_length": null
         | 
| 365 | 
            +
                        },
         | 
| 366 | 
            +
                        "ffn": {
         | 
| 367 | 
            +
                            "ffn_mult": null,
         | 
| 368 | 
            +
                            "no_op": true,
         | 
| 369 | 
            +
                            "replace_with_linear": false,
         | 
| 370 | 
            +
                            "sparsify": null
         | 
| 371 | 
            +
                        }
         | 
| 372 | 
            +
                    },
         | 
| 373 | 
            +
                    {
         | 
| 374 | 
            +
                        "attention": {
         | 
| 375 | 
            +
                            "n_heads_in_group": null,
         | 
| 376 | 
            +
                            "no_op": true,
         | 
| 377 | 
            +
                            "num_sink_tokens": null,
         | 
| 378 | 
            +
                            "replace_with_linear": false,
         | 
| 379 | 
            +
                            "sparsify": null,
         | 
| 380 | 
            +
                            "unshifted_sink": false,
         | 
| 381 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 382 | 
            +
                            "window_length": null
         | 
| 383 | 
            +
                        },
         | 
| 384 | 
            +
                        "ffn": {
         | 
| 385 | 
            +
                            "ffn_mult": null,
         | 
| 386 | 
            +
                            "no_op": true,
         | 
| 387 | 
            +
                            "replace_with_linear": false,
         | 
| 388 | 
            +
                            "sparsify": null
         | 
| 389 | 
            +
                        }
         | 
| 390 | 
            +
                    },
         | 
| 391 | 
            +
                    {
         | 
| 392 | 
            +
                        "attention": {
         | 
| 393 | 
            +
                            "n_heads_in_group": null,
         | 
| 394 | 
            +
                            "no_op": true,
         | 
| 395 | 
            +
                            "num_sink_tokens": null,
         | 
| 396 | 
            +
                            "replace_with_linear": false,
         | 
| 397 | 
            +
                            "sparsify": null,
         | 
| 398 | 
            +
                            "unshifted_sink": false,
         | 
| 399 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 400 | 
            +
                            "window_length": null
         | 
| 401 | 
            +
                        },
         | 
| 402 | 
            +
                        "ffn": {
         | 
| 403 | 
            +
                            "ffn_mult": null,
         | 
| 404 | 
            +
                            "no_op": true,
         | 
| 405 | 
            +
                            "replace_with_linear": false,
         | 
| 406 | 
            +
                            "sparsify": null
         | 
| 407 | 
            +
                        }
         | 
| 408 | 
            +
                    },
         | 
| 409 | 
            +
                    {
         | 
| 410 | 
            +
                        "attention": {
         | 
| 411 | 
            +
                            "n_heads_in_group": null,
         | 
| 412 | 
            +
                            "no_op": true,
         | 
| 413 | 
            +
                            "num_sink_tokens": null,
         | 
| 414 | 
            +
                            "replace_with_linear": false,
         | 
| 415 | 
            +
                            "sparsify": null,
         | 
| 416 | 
            +
                            "unshifted_sink": false,
         | 
| 417 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 418 | 
            +
                            "window_length": null
         | 
| 419 | 
            +
                        },
         | 
| 420 | 
            +
                        "ffn": {
         | 
| 421 | 
            +
                            "ffn_mult": null,
         | 
| 422 | 
            +
                            "no_op": true,
         | 
| 423 | 
            +
                            "replace_with_linear": false,
         | 
| 424 | 
            +
                            "sparsify": null
         | 
| 425 | 
            +
                        }
         | 
| 426 | 
            +
                    },
         | 
| 427 | 
            +
                    {
         | 
| 428 | 
            +
                        "attention": {
         | 
| 429 | 
            +
                            "n_heads_in_group": null,
         | 
| 430 | 
            +
                            "no_op": true,
         | 
| 431 | 
            +
                            "num_sink_tokens": null,
         | 
| 432 | 
            +
                            "replace_with_linear": false,
         | 
| 433 | 
            +
                            "sparsify": null,
         | 
| 434 | 
            +
                            "unshifted_sink": false,
         | 
| 435 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 436 | 
            +
                            "window_length": null
         | 
| 437 | 
            +
                        },
         | 
| 438 | 
            +
                        "ffn": {
         | 
| 439 | 
            +
                            "ffn_mult": null,
         | 
| 440 | 
            +
                            "no_op": true,
         | 
| 441 | 
            +
                            "replace_with_linear": false,
         | 
| 442 | 
            +
                            "sparsify": null
         | 
| 443 | 
            +
                        }
         | 
| 444 | 
            +
                    },
         | 
| 445 | 
            +
                    {
         | 
| 446 | 
            +
                        "attention": {
         | 
| 447 | 
            +
                            "n_heads_in_group": 16,
         | 
| 448 | 
            +
                            "no_op": false,
         | 
| 449 | 
            +
                            "num_sink_tokens": null,
         | 
| 450 | 
            +
                            "replace_with_linear": false,
         | 
| 451 | 
            +
                            "sparsify": null,
         | 
| 452 | 
            +
                            "unshifted_sink": false,
         | 
| 453 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 454 | 
            +
                            "window_length": null
         | 
| 455 | 
            +
                        },
         | 
| 456 | 
            +
                        "ffn": {
         | 
| 457 | 
            +
                            "ffn_mult": 4.875,
         | 
| 458 | 
            +
                            "no_op": false,
         | 
| 459 | 
            +
                            "replace_with_linear": false,
         | 
| 460 | 
            +
                            "sparsify": null
         | 
| 461 | 
            +
                        }
         | 
| 462 | 
            +
                    },
         | 
| 463 | 
            +
                    {
         | 
| 464 | 
            +
                        "attention": {
         | 
| 465 | 
            +
                            "n_heads_in_group": 16,
         | 
| 466 | 
            +
                            "no_op": false,
         | 
| 467 | 
            +
                            "num_sink_tokens": null,
         | 
| 468 | 
            +
                            "replace_with_linear": false,
         | 
| 469 | 
            +
                            "sparsify": null,
         | 
| 470 | 
            +
                            "unshifted_sink": false,
         | 
| 471 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 472 | 
            +
                            "window_length": null
         | 
| 473 | 
            +
                        },
         | 
| 474 | 
            +
                        "ffn": {
         | 
| 475 | 
            +
                            "ffn_mult": 4.875,
         | 
| 476 | 
            +
                            "no_op": false,
         | 
| 477 | 
            +
                            "replace_with_linear": false,
         | 
| 478 | 
            +
                            "sparsify": null
         | 
| 479 | 
            +
                        }
         | 
| 480 | 
            +
                    },
         | 
| 481 | 
            +
                    {
         | 
| 482 | 
            +
                        "attention": {
         | 
| 483 | 
            +
                            "n_heads_in_group": 16,
         | 
| 484 | 
            +
                            "no_op": false,
         | 
| 485 | 
            +
                            "num_sink_tokens": null,
         | 
| 486 | 
            +
                            "replace_with_linear": false,
         | 
| 487 | 
            +
                            "sparsify": null,
         | 
| 488 | 
            +
                            "unshifted_sink": false,
         | 
| 489 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 490 | 
            +
                            "window_length": null
         | 
| 491 | 
            +
                        },
         | 
| 492 | 
            +
                        "ffn": {
         | 
| 493 | 
            +
                            "ffn_mult": 4.875,
         | 
| 494 | 
            +
                            "no_op": false,
         | 
| 495 | 
            +
                            "replace_with_linear": false,
         | 
| 496 | 
            +
                            "sparsify": null
         | 
| 497 | 
            +
                        }
         | 
| 498 | 
            +
                    },
         | 
| 499 | 
            +
                    {
         | 
| 500 | 
            +
                        "attention": {
         | 
| 501 | 
            +
                            "n_heads_in_group": null,
         | 
| 502 | 
            +
                            "no_op": true,
         | 
| 503 | 
            +
                            "num_sink_tokens": null,
         | 
| 504 | 
            +
                            "replace_with_linear": false,
         | 
| 505 | 
            +
                            "sparsify": null,
         | 
| 506 | 
            +
                            "unshifted_sink": false,
         | 
| 507 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 508 | 
            +
                            "window_length": null
         | 
| 509 | 
            +
                        },
         | 
| 510 | 
            +
                        "ffn": {
         | 
| 511 | 
            +
                            "ffn_mult": null,
         | 
| 512 | 
            +
                            "no_op": true,
         | 
| 513 | 
            +
                            "replace_with_linear": false,
         | 
| 514 | 
            +
                            "sparsify": null
         | 
| 515 | 
            +
                        }
         | 
| 516 | 
            +
                    },
         | 
| 517 | 
            +
                    {
         | 
| 518 | 
            +
                        "attention": {
         | 
| 519 | 
            +
                            "n_heads_in_group": null,
         | 
| 520 | 
            +
                            "no_op": true,
         | 
| 521 | 
            +
                            "num_sink_tokens": null,
         | 
| 522 | 
            +
                            "replace_with_linear": false,
         | 
| 523 | 
            +
                            "sparsify": null,
         | 
| 524 | 
            +
                            "unshifted_sink": false,
         | 
| 525 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 526 | 
            +
                            "window_length": null
         | 
| 527 | 
            +
                        },
         | 
| 528 | 
            +
                        "ffn": {
         | 
| 529 | 
            +
                            "ffn_mult": null,
         | 
| 530 | 
            +
                            "no_op": true,
         | 
| 531 | 
            +
                            "replace_with_linear": false,
         | 
| 532 | 
            +
                            "sparsify": null
         | 
| 533 | 
            +
                        }
         | 
| 534 | 
            +
                    },
         | 
| 535 | 
            +
                    {
         | 
| 536 | 
            +
                        "attention": {
         | 
| 537 | 
            +
                            "n_heads_in_group": null,
         | 
| 538 | 
            +
                            "no_op": true,
         | 
| 539 | 
            +
                            "num_sink_tokens": null,
         | 
| 540 | 
            +
                            "replace_with_linear": false,
         | 
| 541 | 
            +
                            "sparsify": null,
         | 
| 542 | 
            +
                            "unshifted_sink": false,
         | 
| 543 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 544 | 
            +
                            "window_length": null
         | 
| 545 | 
            +
                        },
         | 
| 546 | 
            +
                        "ffn": {
         | 
| 547 | 
            +
                            "ffn_mult": null,
         | 
| 548 | 
            +
                            "no_op": true,
         | 
| 549 | 
            +
                            "replace_with_linear": false,
         | 
| 550 | 
            +
                            "sparsify": null
         | 
| 551 | 
            +
                        }
         | 
| 552 | 
            +
                    },
         | 
| 553 | 
            +
                    {
         | 
| 554 | 
            +
                        "attention": {
         | 
| 555 | 
            +
                            "n_heads_in_group": null,
         | 
| 556 | 
            +
                            "no_op": true,
         | 
| 557 | 
            +
                            "num_sink_tokens": null,
         | 
| 558 | 
            +
                            "replace_with_linear": false,
         | 
| 559 | 
            +
                            "sparsify": null,
         | 
| 560 | 
            +
                            "unshifted_sink": false,
         | 
| 561 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 562 | 
            +
                            "window_length": null
         | 
| 563 | 
            +
                        },
         | 
| 564 | 
            +
                        "ffn": {
         | 
| 565 | 
            +
                            "ffn_mult": null,
         | 
| 566 | 
            +
                            "no_op": true,
         | 
| 567 | 
            +
                            "replace_with_linear": false,
         | 
| 568 | 
            +
                            "sparsify": null
         | 
| 569 | 
            +
                        }
         | 
| 570 | 
            +
                    },
         | 
| 571 | 
            +
                    {
         | 
| 572 | 
            +
                        "attention": {
         | 
| 573 | 
            +
                            "n_heads_in_group": null,
         | 
| 574 | 
            +
                            "no_op": true,
         | 
| 575 | 
            +
                            "num_sink_tokens": null,
         | 
| 576 | 
            +
                            "replace_with_linear": false,
         | 
| 577 | 
            +
                            "sparsify": null,
         | 
| 578 | 
            +
                            "unshifted_sink": false,
         | 
| 579 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 580 | 
            +
                            "window_length": null
         | 
| 581 | 
            +
                        },
         | 
| 582 | 
            +
                        "ffn": {
         | 
| 583 | 
            +
                            "ffn_mult": null,
         | 
| 584 | 
            +
                            "no_op": true,
         | 
| 585 | 
            +
                            "replace_with_linear": false,
         | 
| 586 | 
            +
                            "sparsify": null
         | 
| 587 | 
            +
                        }
         | 
| 588 | 
            +
                    },
         | 
| 589 | 
            +
                    {
         | 
| 590 | 
            +
                        "attention": {
         | 
| 591 | 
            +
                            "n_heads_in_group": 16,
         | 
| 592 | 
            +
                            "no_op": false,
         | 
| 593 | 
            +
                            "num_sink_tokens": null,
         | 
| 594 | 
            +
                            "replace_with_linear": false,
         | 
| 595 | 
            +
                            "sparsify": null,
         | 
| 596 | 
            +
                            "unshifted_sink": false,
         | 
| 597 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 598 | 
            +
                            "window_length": null
         | 
| 599 | 
            +
                        },
         | 
| 600 | 
            +
                        "ffn": {
         | 
| 601 | 
            +
                            "ffn_mult": 4.875,
         | 
| 602 | 
            +
                            "no_op": false,
         | 
| 603 | 
            +
                            "replace_with_linear": false,
         | 
| 604 | 
            +
                            "sparsify": null
         | 
| 605 | 
            +
                        }
         | 
| 606 | 
            +
                    },
         | 
| 607 | 
            +
                    {
         | 
| 608 | 
            +
                        "attention": {
         | 
| 609 | 
            +
                            "n_heads_in_group": 16,
         | 
| 610 | 
            +
                            "no_op": false,
         | 
| 611 | 
            +
                            "num_sink_tokens": null,
         | 
| 612 | 
            +
                            "replace_with_linear": false,
         | 
| 613 | 
            +
                            "sparsify": null,
         | 
| 614 | 
            +
                            "unshifted_sink": false,
         | 
| 615 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 616 | 
            +
                            "window_length": null
         | 
| 617 | 
            +
                        },
         | 
| 618 | 
            +
                        "ffn": {
         | 
| 619 | 
            +
                            "ffn_mult": 4.875,
         | 
| 620 | 
            +
                            "no_op": false,
         | 
| 621 | 
            +
                            "replace_with_linear": false,
         | 
| 622 | 
            +
                            "sparsify": null
         | 
| 623 | 
            +
                        }
         | 
| 624 | 
            +
                    },
         | 
| 625 | 
            +
                    {
         | 
| 626 | 
            +
                        "attention": {
         | 
| 627 | 
            +
                            "n_heads_in_group": 16,
         | 
| 628 | 
            +
                            "no_op": false,
         | 
| 629 | 
            +
                            "num_sink_tokens": null,
         | 
| 630 | 
            +
                            "replace_with_linear": false,
         | 
| 631 | 
            +
                            "sparsify": null,
         | 
| 632 | 
            +
                            "unshifted_sink": false,
         | 
| 633 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 634 | 
            +
                            "window_length": null
         | 
| 635 | 
            +
                        },
         | 
| 636 | 
            +
                        "ffn": {
         | 
| 637 | 
            +
                            "ffn_mult": 4.875,
         | 
| 638 | 
            +
                            "no_op": false,
         | 
| 639 | 
            +
                            "replace_with_linear": false,
         | 
| 640 | 
            +
                            "sparsify": null
         | 
| 641 | 
            +
                        }
         | 
| 642 | 
            +
                    },
         | 
| 643 | 
            +
                    {
         | 
| 644 | 
            +
                        "attention": {
         | 
| 645 | 
            +
                            "n_heads_in_group": 16,
         | 
| 646 | 
            +
                            "no_op": false,
         | 
| 647 | 
            +
                            "num_sink_tokens": null,
         | 
| 648 | 
            +
                            "replace_with_linear": false,
         | 
| 649 | 
            +
                            "sparsify": null,
         | 
| 650 | 
            +
                            "unshifted_sink": false,
         | 
| 651 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 652 | 
            +
                            "window_length": null
         | 
| 653 | 
            +
                        },
         | 
| 654 | 
            +
                        "ffn": {
         | 
| 655 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 656 | 
            +
                            "no_op": false,
         | 
| 657 | 
            +
                            "replace_with_linear": false,
         | 
| 658 | 
            +
                            "sparsify": null
         | 
| 659 | 
            +
                        }
         | 
| 660 | 
            +
                    },
         | 
| 661 | 
            +
                    {
         | 
| 662 | 
            +
                        "attention": {
         | 
| 663 | 
            +
                            "n_heads_in_group": null,
         | 
| 664 | 
            +
                            "no_op": true,
         | 
| 665 | 
            +
                            "num_sink_tokens": null,
         | 
| 666 | 
            +
                            "replace_with_linear": false,
         | 
| 667 | 
            +
                            "sparsify": null,
         | 
| 668 | 
            +
                            "unshifted_sink": false,
         | 
| 669 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 670 | 
            +
                            "window_length": null
         | 
| 671 | 
            +
                        },
         | 
| 672 | 
            +
                        "ffn": {
         | 
| 673 | 
            +
                            "ffn_mult": null,
         | 
| 674 | 
            +
                            "no_op": true,
         | 
| 675 | 
            +
                            "replace_with_linear": false,
         | 
| 676 | 
            +
                            "sparsify": null
         | 
| 677 | 
            +
                        }
         | 
| 678 | 
            +
                    },
         | 
| 679 | 
            +
                    {
         | 
| 680 | 
            +
                        "attention": {
         | 
| 681 | 
            +
                            "n_heads_in_group": null,
         | 
| 682 | 
            +
                            "no_op": true,
         | 
| 683 | 
            +
                            "num_sink_tokens": null,
         | 
| 684 | 
            +
                            "replace_with_linear": false,
         | 
| 685 | 
            +
                            "sparsify": null,
         | 
| 686 | 
            +
                            "unshifted_sink": false,
         | 
| 687 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 688 | 
            +
                            "window_length": null
         | 
| 689 | 
            +
                        },
         | 
| 690 | 
            +
                        "ffn": {
         | 
| 691 | 
            +
                            "ffn_mult": null,
         | 
| 692 | 
            +
                            "no_op": true,
         | 
| 693 | 
            +
                            "replace_with_linear": false,
         | 
| 694 | 
            +
                            "sparsify": null
         | 
| 695 | 
            +
                        }
         | 
| 696 | 
            +
                    },
         | 
| 697 | 
            +
                    {
         | 
| 698 | 
            +
                        "attention": {
         | 
| 699 | 
            +
                            "n_heads_in_group": null,
         | 
| 700 | 
            +
                            "no_op": true,
         | 
| 701 | 
            +
                            "num_sink_tokens": null,
         | 
| 702 | 
            +
                            "replace_with_linear": false,
         | 
| 703 | 
            +
                            "sparsify": null,
         | 
| 704 | 
            +
                            "unshifted_sink": false,
         | 
| 705 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 706 | 
            +
                            "window_length": null
         | 
| 707 | 
            +
                        },
         | 
| 708 | 
            +
                        "ffn": {
         | 
| 709 | 
            +
                            "ffn_mult": null,
         | 
| 710 | 
            +
                            "no_op": true,
         | 
| 711 | 
            +
                            "replace_with_linear": false,
         | 
| 712 | 
            +
                            "sparsify": null
         | 
| 713 | 
            +
                        }
         | 
| 714 | 
            +
                    },
         | 
| 715 | 
            +
                    {
         | 
| 716 | 
            +
                        "attention": {
         | 
| 717 | 
            +
                            "n_heads_in_group": 16,
         | 
| 718 | 
            +
                            "no_op": false,
         | 
| 719 | 
            +
                            "num_sink_tokens": null,
         | 
| 720 | 
            +
                            "replace_with_linear": false,
         | 
| 721 | 
            +
                            "sparsify": null,
         | 
| 722 | 
            +
                            "unshifted_sink": false,
         | 
| 723 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 724 | 
            +
                            "window_length": null
         | 
| 725 | 
            +
                        },
         | 
| 726 | 
            +
                        "ffn": {
         | 
| 727 | 
            +
                            "ffn_mult": 1.95,
         | 
| 728 | 
            +
                            "no_op": false,
         | 
| 729 | 
            +
                            "replace_with_linear": false,
         | 
| 730 | 
            +
                            "sparsify": null
         | 
| 731 | 
            +
                        }
         | 
| 732 | 
            +
                    },
         | 
| 733 | 
            +
                    {
         | 
| 734 | 
            +
                        "attention": {
         | 
| 735 | 
            +
                            "n_heads_in_group": 16,
         | 
| 736 | 
            +
                            "no_op": false,
         | 
| 737 | 
            +
                            "num_sink_tokens": null,
         | 
| 738 | 
            +
                            "replace_with_linear": false,
         | 
| 739 | 
            +
                            "sparsify": null,
         | 
| 740 | 
            +
                            "unshifted_sink": false,
         | 
| 741 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 742 | 
            +
                            "window_length": null
         | 
| 743 | 
            +
                        },
         | 
| 744 | 
            +
                        "ffn": {
         | 
| 745 | 
            +
                            "ffn_mult": 1.95,
         | 
| 746 | 
            +
                            "no_op": false,
         | 
| 747 | 
            +
                            "replace_with_linear": false,
         | 
| 748 | 
            +
                            "sparsify": null
         | 
| 749 | 
            +
                        }
         | 
| 750 | 
            +
                    },
         | 
| 751 | 
            +
                    {
         | 
| 752 | 
            +
                        "attention": {
         | 
| 753 | 
            +
                            "n_heads_in_group": 16,
         | 
| 754 | 
            +
                            "no_op": false,
         | 
| 755 | 
            +
                            "num_sink_tokens": null,
         | 
| 756 | 
            +
                            "replace_with_linear": false,
         | 
| 757 | 
            +
                            "sparsify": null,
         | 
| 758 | 
            +
                            "unshifted_sink": false,
         | 
| 759 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 760 | 
            +
                            "window_length": null
         | 
| 761 | 
            +
                        },
         | 
| 762 | 
            +
                        "ffn": {
         | 
| 763 | 
            +
                            "ffn_mult": 1.95,
         | 
| 764 | 
            +
                            "no_op": false,
         | 
| 765 | 
            +
                            "replace_with_linear": false,
         | 
| 766 | 
            +
                            "sparsify": null
         | 
| 767 | 
            +
                        }
         | 
| 768 | 
            +
                    },
         | 
| 769 | 
            +
                    {
         | 
| 770 | 
            +
                        "attention": {
         | 
| 771 | 
            +
                            "n_heads_in_group": null,
         | 
| 772 | 
            +
                            "no_op": true,
         | 
| 773 | 
            +
                            "num_sink_tokens": null,
         | 
| 774 | 
            +
                            "replace_with_linear": false,
         | 
| 775 | 
            +
                            "sparsify": null,
         | 
| 776 | 
            +
                            "unshifted_sink": false,
         | 
| 777 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 778 | 
            +
                            "window_length": null
         | 
| 779 | 
            +
                        },
         | 
| 780 | 
            +
                        "ffn": {
         | 
| 781 | 
            +
                            "ffn_mult": 1.95,
         | 
| 782 | 
            +
                            "no_op": false,
         | 
| 783 | 
            +
                            "replace_with_linear": false,
         | 
| 784 | 
            +
                            "sparsify": null
         | 
| 785 | 
            +
                        }
         | 
| 786 | 
            +
                    },
         | 
| 787 | 
            +
                    {
         | 
| 788 | 
            +
                        "attention": {
         | 
| 789 | 
            +
                            "n_heads_in_group": 16,
         | 
| 790 | 
            +
                            "no_op": false,
         | 
| 791 | 
            +
                            "num_sink_tokens": null,
         | 
| 792 | 
            +
                            "replace_with_linear": false,
         | 
| 793 | 
            +
                            "sparsify": null,
         | 
| 794 | 
            +
                            "unshifted_sink": false,
         | 
| 795 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 796 | 
            +
                            "window_length": null
         | 
| 797 | 
            +
                        },
         | 
| 798 | 
            +
                        "ffn": {
         | 
| 799 | 
            +
                            "ffn_mult": 4.875,
         | 
| 800 | 
            +
                            "no_op": false,
         | 
| 801 | 
            +
                            "replace_with_linear": false,
         | 
| 802 | 
            +
                            "sparsify": null
         | 
| 803 | 
            +
                        }
         | 
| 804 | 
            +
                    },
         | 
| 805 | 
            +
                    {
         | 
| 806 | 
            +
                        "attention": {
         | 
| 807 | 
            +
                            "n_heads_in_group": null,
         | 
| 808 | 
            +
                            "no_op": true,
         | 
| 809 | 
            +
                            "num_sink_tokens": null,
         | 
| 810 | 
            +
                            "replace_with_linear": false,
         | 
| 811 | 
            +
                            "sparsify": null,
         | 
| 812 | 
            +
                            "unshifted_sink": false,
         | 
| 813 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 814 | 
            +
                            "window_length": null
         | 
| 815 | 
            +
                        },
         | 
| 816 | 
            +
                        "ffn": {
         | 
| 817 | 
            +
                            "ffn_mult": 4.875,
         | 
| 818 | 
            +
                            "no_op": false,
         | 
| 819 | 
            +
                            "replace_with_linear": false,
         | 
| 820 | 
            +
                            "sparsify": null
         | 
| 821 | 
            +
                        }
         | 
| 822 | 
            +
                    },
         | 
| 823 | 
            +
                    {
         | 
| 824 | 
            +
                        "attention": {
         | 
| 825 | 
            +
                            "n_heads_in_group": null,
         | 
| 826 | 
            +
                            "no_op": true,
         | 
| 827 | 
            +
                            "num_sink_tokens": null,
         | 
| 828 | 
            +
                            "replace_with_linear": false,
         | 
| 829 | 
            +
                            "sparsify": null,
         | 
| 830 | 
            +
                            "unshifted_sink": false,
         | 
| 831 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 832 | 
            +
                            "window_length": null
         | 
| 833 | 
            +
                        },
         | 
| 834 | 
            +
                        "ffn": {
         | 
| 835 | 
            +
                            "ffn_mult": null,
         | 
| 836 | 
            +
                            "no_op": true,
         | 
| 837 | 
            +
                            "replace_with_linear": false,
         | 
| 838 | 
            +
                            "sparsify": null
         | 
| 839 | 
            +
                        }
         | 
| 840 | 
            +
                    },
         | 
| 841 | 
            +
                    {
         | 
| 842 | 
            +
                        "attention": {
         | 
| 843 | 
            +
                            "n_heads_in_group": null,
         | 
| 844 | 
            +
                            "no_op": true,
         | 
| 845 | 
            +
                            "num_sink_tokens": null,
         | 
| 846 | 
            +
                            "replace_with_linear": false,
         | 
| 847 | 
            +
                            "sparsify": null,
         | 
| 848 | 
            +
                            "unshifted_sink": false,
         | 
| 849 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 850 | 
            +
                            "window_length": null
         | 
| 851 | 
            +
                        },
         | 
| 852 | 
            +
                        "ffn": {
         | 
| 853 | 
            +
                            "ffn_mult": null,
         | 
| 854 | 
            +
                            "no_op": true,
         | 
| 855 | 
            +
                            "replace_with_linear": false,
         | 
| 856 | 
            +
                            "sparsify": null
         | 
| 857 | 
            +
                        }
         | 
| 858 | 
            +
                    },
         | 
| 859 | 
            +
                    {
         | 
| 860 | 
            +
                        "attention": {
         | 
| 861 | 
            +
                            "n_heads_in_group": null,
         | 
| 862 | 
            +
                            "no_op": true,
         | 
| 863 | 
            +
                            "num_sink_tokens": null,
         | 
| 864 | 
            +
                            "replace_with_linear": false,
         | 
| 865 | 
            +
                            "sparsify": null,
         | 
| 866 | 
            +
                            "unshifted_sink": false,
         | 
| 867 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 868 | 
            +
                            "window_length": null
         | 
| 869 | 
            +
                        },
         | 
| 870 | 
            +
                        "ffn": {
         | 
| 871 | 
            +
                            "ffn_mult": null,
         | 
| 872 | 
            +
                            "no_op": true,
         | 
| 873 | 
            +
                            "replace_with_linear": false,
         | 
| 874 | 
            +
                            "sparsify": null
         | 
| 875 | 
            +
                        }
         | 
| 876 | 
            +
                    },
         | 
| 877 | 
            +
                    {
         | 
| 878 | 
            +
                        "attention": {
         | 
| 879 | 
            +
                            "n_heads_in_group": null,
         | 
| 880 | 
            +
                            "no_op": true,
         | 
| 881 | 
            +
                            "num_sink_tokens": null,
         | 
| 882 | 
            +
                            "replace_with_linear": false,
         | 
| 883 | 
            +
                            "sparsify": null,
         | 
| 884 | 
            +
                            "unshifted_sink": false,
         | 
| 885 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 886 | 
            +
                            "window_length": null
         | 
| 887 | 
            +
                        },
         | 
| 888 | 
            +
                        "ffn": {
         | 
| 889 | 
            +
                            "ffn_mult": null,
         | 
| 890 | 
            +
                            "no_op": true,
         | 
| 891 | 
            +
                            "replace_with_linear": false,
         | 
| 892 | 
            +
                            "sparsify": null
         | 
| 893 | 
            +
                        }
         | 
| 894 | 
            +
                    },
         | 
| 895 | 
            +
                    {
         | 
| 896 | 
            +
                        "attention": {
         | 
| 897 | 
            +
                            "n_heads_in_group": null,
         | 
| 898 | 
            +
                            "no_op": true,
         | 
| 899 | 
            +
                            "num_sink_tokens": null,
         | 
| 900 | 
            +
                            "replace_with_linear": false,
         | 
| 901 | 
            +
                            "sparsify": null,
         | 
| 902 | 
            +
                            "unshifted_sink": false,
         | 
| 903 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 904 | 
            +
                            "window_length": null
         | 
| 905 | 
            +
                        },
         | 
| 906 | 
            +
                        "ffn": {
         | 
| 907 | 
            +
                            "ffn_mult": null,
         | 
| 908 | 
            +
                            "no_op": true,
         | 
| 909 | 
            +
                            "replace_with_linear": false,
         | 
| 910 | 
            +
                            "sparsify": null
         | 
| 911 | 
            +
                        }
         | 
| 912 | 
            +
                    },
         | 
| 913 | 
            +
                    {
         | 
| 914 | 
            +
                        "attention": {
         | 
| 915 | 
            +
                            "n_heads_in_group": 16,
         | 
| 916 | 
            +
                            "no_op": false,
         | 
| 917 | 
            +
                            "num_sink_tokens": null,
         | 
| 918 | 
            +
                            "replace_with_linear": false,
         | 
| 919 | 
            +
                            "sparsify": null,
         | 
| 920 | 
            +
                            "unshifted_sink": false,
         | 
| 921 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 922 | 
            +
                            "window_length": null
         | 
| 923 | 
            +
                        },
         | 
| 924 | 
            +
                        "ffn": {
         | 
| 925 | 
            +
                            "ffn_mult": 4.875,
         | 
| 926 | 
            +
                            "no_op": false,
         | 
| 927 | 
            +
                            "replace_with_linear": false,
         | 
| 928 | 
            +
                            "sparsify": null
         | 
| 929 | 
            +
                        }
         | 
| 930 | 
            +
                    },
         | 
| 931 | 
            +
                    {
         | 
| 932 | 
            +
                        "attention": {
         | 
| 933 | 
            +
                            "n_heads_in_group": 16,
         | 
| 934 | 
            +
                            "no_op": false,
         | 
| 935 | 
            +
                            "num_sink_tokens": null,
         | 
| 936 | 
            +
                            "replace_with_linear": false,
         | 
| 937 | 
            +
                            "sparsify": null,
         | 
| 938 | 
            +
                            "unshifted_sink": false,
         | 
| 939 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 940 | 
            +
                            "window_length": null
         | 
| 941 | 
            +
                        },
         | 
| 942 | 
            +
                        "ffn": {
         | 
| 943 | 
            +
                            "ffn_mult": 4.875,
         | 
| 944 | 
            +
                            "no_op": false,
         | 
| 945 | 
            +
                            "replace_with_linear": false,
         | 
| 946 | 
            +
                            "sparsify": null
         | 
| 947 | 
            +
                        }
         | 
| 948 | 
            +
                    },
         | 
| 949 | 
            +
                    {
         | 
| 950 | 
            +
                        "attention": {
         | 
| 951 | 
            +
                            "n_heads_in_group": 16,
         | 
| 952 | 
            +
                            "no_op": false,
         | 
| 953 | 
            +
                            "num_sink_tokens": null,
         | 
| 954 | 
            +
                            "replace_with_linear": false,
         | 
| 955 | 
            +
                            "sparsify": null,
         | 
| 956 | 
            +
                            "unshifted_sink": false,
         | 
| 957 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 958 | 
            +
                            "window_length": null
         | 
| 959 | 
            +
                        },
         | 
| 960 | 
            +
                        "ffn": {
         | 
| 961 | 
            +
                            "ffn_mult": 4.875,
         | 
| 962 | 
            +
                            "no_op": false,
         | 
| 963 | 
            +
                            "replace_with_linear": false,
         | 
| 964 | 
            +
                            "sparsify": null
         | 
| 965 | 
            +
                        }
         | 
| 966 | 
            +
                    },
         | 
| 967 | 
            +
                    {
         | 
| 968 | 
            +
                        "attention": {
         | 
| 969 | 
            +
                            "n_heads_in_group": 16,
         | 
| 970 | 
            +
                            "no_op": false,
         | 
| 971 | 
            +
                            "num_sink_tokens": null,
         | 
| 972 | 
            +
                            "replace_with_linear": false,
         | 
| 973 | 
            +
                            "sparsify": null,
         | 
| 974 | 
            +
                            "unshifted_sink": false,
         | 
| 975 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 976 | 
            +
                            "window_length": null
         | 
| 977 | 
            +
                        },
         | 
| 978 | 
            +
                        "ffn": {
         | 
| 979 | 
            +
                            "ffn_mult": 4.875,
         | 
| 980 | 
            +
                            "no_op": false,
         | 
| 981 | 
            +
                            "replace_with_linear": false,
         | 
| 982 | 
            +
                            "sparsify": null
         | 
| 983 | 
            +
                        }
         | 
| 984 | 
            +
                    },
         | 
| 985 | 
            +
                    {
         | 
| 986 | 
            +
                        "attention": {
         | 
| 987 | 
            +
                            "n_heads_in_group": null,
         | 
| 988 | 
            +
                            "no_op": true,
         | 
| 989 | 
            +
                            "num_sink_tokens": null,
         | 
| 990 | 
            +
                            "replace_with_linear": false,
         | 
| 991 | 
            +
                            "sparsify": null,
         | 
| 992 | 
            +
                            "unshifted_sink": false,
         | 
| 993 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 994 | 
            +
                            "window_length": null
         | 
| 995 | 
            +
                        },
         | 
| 996 | 
            +
                        "ffn": {
         | 
| 997 | 
            +
                            "ffn_mult": null,
         | 
| 998 | 
            +
                            "no_op": true,
         | 
| 999 | 
            +
                            "replace_with_linear": false,
         | 
| 1000 | 
            +
                            "sparsify": null
         | 
| 1001 | 
            +
                        }
         | 
| 1002 | 
            +
                    },
         | 
| 1003 | 
            +
                    {
         | 
| 1004 | 
            +
                        "attention": {
         | 
| 1005 | 
            +
                            "n_heads_in_group": null,
         | 
| 1006 | 
            +
                            "no_op": true,
         | 
| 1007 | 
            +
                            "num_sink_tokens": null,
         | 
| 1008 | 
            +
                            "replace_with_linear": false,
         | 
| 1009 | 
            +
                            "sparsify": null,
         | 
| 1010 | 
            +
                            "unshifted_sink": false,
         | 
| 1011 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1012 | 
            +
                            "window_length": null
         | 
| 1013 | 
            +
                        },
         | 
| 1014 | 
            +
                        "ffn": {
         | 
| 1015 | 
            +
                            "ffn_mult": null,
         | 
| 1016 | 
            +
                            "no_op": true,
         | 
| 1017 | 
            +
                            "replace_with_linear": false,
         | 
| 1018 | 
            +
                            "sparsify": null
         | 
| 1019 | 
            +
                        }
         | 
| 1020 | 
            +
                    },
         | 
| 1021 | 
            +
                    {
         | 
| 1022 | 
            +
                        "attention": {
         | 
| 1023 | 
            +
                            "n_heads_in_group": null,
         | 
| 1024 | 
            +
                            "no_op": true,
         | 
| 1025 | 
            +
                            "num_sink_tokens": null,
         | 
| 1026 | 
            +
                            "replace_with_linear": false,
         | 
| 1027 | 
            +
                            "sparsify": null,
         | 
| 1028 | 
            +
                            "unshifted_sink": false,
         | 
| 1029 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1030 | 
            +
                            "window_length": null
         | 
| 1031 | 
            +
                        },
         | 
| 1032 | 
            +
                        "ffn": {
         | 
| 1033 | 
            +
                            "ffn_mult": null,
         | 
| 1034 | 
            +
                            "no_op": true,
         | 
| 1035 | 
            +
                            "replace_with_linear": false,
         | 
| 1036 | 
            +
                            "sparsify": null
         | 
| 1037 | 
            +
                        }
         | 
| 1038 | 
            +
                    },
         | 
| 1039 | 
            +
                    {
         | 
| 1040 | 
            +
                        "attention": {
         | 
| 1041 | 
            +
                            "n_heads_in_group": null,
         | 
| 1042 | 
            +
                            "no_op": true,
         | 
| 1043 | 
            +
                            "num_sink_tokens": null,
         | 
| 1044 | 
            +
                            "replace_with_linear": false,
         | 
| 1045 | 
            +
                            "sparsify": null,
         | 
| 1046 | 
            +
                            "unshifted_sink": false,
         | 
| 1047 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1048 | 
            +
                            "window_length": null
         | 
| 1049 | 
            +
                        },
         | 
| 1050 | 
            +
                        "ffn": {
         | 
| 1051 | 
            +
                            "ffn_mult": null,
         | 
| 1052 | 
            +
                            "no_op": true,
         | 
| 1053 | 
            +
                            "replace_with_linear": false,
         | 
| 1054 | 
            +
                            "sparsify": null
         | 
| 1055 | 
            +
                        }
         | 
| 1056 | 
            +
                    },
         | 
| 1057 | 
            +
                    {
         | 
| 1058 | 
            +
                        "attention": {
         | 
| 1059 | 
            +
                            "n_heads_in_group": null,
         | 
| 1060 | 
            +
                            "no_op": true,
         | 
| 1061 | 
            +
                            "num_sink_tokens": null,
         | 
| 1062 | 
            +
                            "replace_with_linear": false,
         | 
| 1063 | 
            +
                            "sparsify": null,
         | 
| 1064 | 
            +
                            "unshifted_sink": false,
         | 
| 1065 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1066 | 
            +
                            "window_length": null
         | 
| 1067 | 
            +
                        },
         | 
| 1068 | 
            +
                        "ffn": {
         | 
| 1069 | 
            +
                            "ffn_mult": null,
         | 
| 1070 | 
            +
                            "no_op": true,
         | 
| 1071 | 
            +
                            "replace_with_linear": false,
         | 
| 1072 | 
            +
                            "sparsify": null
         | 
| 1073 | 
            +
                        }
         | 
| 1074 | 
            +
                    },
         | 
| 1075 | 
            +
                    {
         | 
| 1076 | 
            +
                        "attention": {
         | 
| 1077 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1078 | 
            +
                            "no_op": false,
         | 
| 1079 | 
            +
                            "num_sink_tokens": null,
         | 
| 1080 | 
            +
                            "replace_with_linear": false,
         | 
| 1081 | 
            +
                            "sparsify": null,
         | 
| 1082 | 
            +
                            "unshifted_sink": false,
         | 
| 1083 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1084 | 
            +
                            "window_length": null
         | 
| 1085 | 
            +
                        },
         | 
| 1086 | 
            +
                        "ffn": {
         | 
| 1087 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1088 | 
            +
                            "no_op": false,
         | 
| 1089 | 
            +
                            "replace_with_linear": false,
         | 
| 1090 | 
            +
                            "sparsify": null
         | 
| 1091 | 
            +
                        }
         | 
| 1092 | 
            +
                    },
         | 
| 1093 | 
            +
                    {
         | 
| 1094 | 
            +
                        "attention": {
         | 
| 1095 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1096 | 
            +
                            "no_op": false,
         | 
| 1097 | 
            +
                            "num_sink_tokens": null,
         | 
| 1098 | 
            +
                            "replace_with_linear": false,
         | 
| 1099 | 
            +
                            "sparsify": null,
         | 
| 1100 | 
            +
                            "unshifted_sink": false,
         | 
| 1101 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1102 | 
            +
                            "window_length": null
         | 
| 1103 | 
            +
                        },
         | 
| 1104 | 
            +
                        "ffn": {
         | 
| 1105 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1106 | 
            +
                            "no_op": false,
         | 
| 1107 | 
            +
                            "replace_with_linear": false,
         | 
| 1108 | 
            +
                            "sparsify": null
         | 
| 1109 | 
            +
                        }
         | 
| 1110 | 
            +
                    },
         | 
| 1111 | 
            +
                    {
         | 
| 1112 | 
            +
                        "attention": {
         | 
| 1113 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1114 | 
            +
                            "no_op": false,
         | 
| 1115 | 
            +
                            "num_sink_tokens": null,
         | 
| 1116 | 
            +
                            "replace_with_linear": false,
         | 
| 1117 | 
            +
                            "sparsify": null,
         | 
| 1118 | 
            +
                            "unshifted_sink": false,
         | 
| 1119 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1120 | 
            +
                            "window_length": null
         | 
| 1121 | 
            +
                        },
         | 
| 1122 | 
            +
                        "ffn": {
         | 
| 1123 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1124 | 
            +
                            "no_op": false,
         | 
| 1125 | 
            +
                            "replace_with_linear": false,
         | 
| 1126 | 
            +
                            "sparsify": null
         | 
| 1127 | 
            +
                        }
         | 
| 1128 | 
            +
                    },
         | 
| 1129 | 
            +
                    {
         | 
| 1130 | 
            +
                        "attention": {
         | 
| 1131 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1132 | 
            +
                            "no_op": false,
         | 
| 1133 | 
            +
                            "num_sink_tokens": null,
         | 
| 1134 | 
            +
                            "replace_with_linear": false,
         | 
| 1135 | 
            +
                            "sparsify": null,
         | 
| 1136 | 
            +
                            "unshifted_sink": false,
         | 
| 1137 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1138 | 
            +
                            "window_length": null
         | 
| 1139 | 
            +
                        },
         | 
| 1140 | 
            +
                        "ffn": {
         | 
| 1141 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1142 | 
            +
                            "no_op": false,
         | 
| 1143 | 
            +
                            "replace_with_linear": false,
         | 
| 1144 | 
            +
                            "sparsify": null
         | 
| 1145 | 
            +
                        }
         | 
| 1146 | 
            +
                    },
         | 
| 1147 | 
            +
                    {
         | 
| 1148 | 
            +
                        "attention": {
         | 
| 1149 | 
            +
                            "n_heads_in_group": null,
         | 
| 1150 | 
            +
                            "no_op": true,
         | 
| 1151 | 
            +
                            "num_sink_tokens": null,
         | 
| 1152 | 
            +
                            "replace_with_linear": false,
         | 
| 1153 | 
            +
                            "sparsify": null,
         | 
| 1154 | 
            +
                            "unshifted_sink": false,
         | 
| 1155 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1156 | 
            +
                            "window_length": null
         | 
| 1157 | 
            +
                        },
         | 
| 1158 | 
            +
                        "ffn": {
         | 
| 1159 | 
            +
                            "ffn_mult": null,
         | 
| 1160 | 
            +
                            "no_op": true,
         | 
| 1161 | 
            +
                            "replace_with_linear": false,
         | 
| 1162 | 
            +
                            "sparsify": null
         | 
| 1163 | 
            +
                        }
         | 
| 1164 | 
            +
                    },
         | 
| 1165 | 
            +
                    {
         | 
| 1166 | 
            +
                        "attention": {
         | 
| 1167 | 
            +
                            "n_heads_in_group": null,
         | 
| 1168 | 
            +
                            "no_op": true,
         | 
| 1169 | 
            +
                            "num_sink_tokens": null,
         | 
| 1170 | 
            +
                            "replace_with_linear": false,
         | 
| 1171 | 
            +
                            "sparsify": null,
         | 
| 1172 | 
            +
                            "unshifted_sink": false,
         | 
| 1173 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1174 | 
            +
                            "window_length": null
         | 
| 1175 | 
            +
                        },
         | 
| 1176 | 
            +
                        "ffn": {
         | 
| 1177 | 
            +
                            "ffn_mult": null,
         | 
| 1178 | 
            +
                            "no_op": true,
         | 
| 1179 | 
            +
                            "replace_with_linear": false,
         | 
| 1180 | 
            +
                            "sparsify": null
         | 
| 1181 | 
            +
                        }
         | 
| 1182 | 
            +
                    },
         | 
| 1183 | 
            +
                    {
         | 
| 1184 | 
            +
                        "attention": {
         | 
| 1185 | 
            +
                            "n_heads_in_group": null,
         | 
| 1186 | 
            +
                            "no_op": true,
         | 
| 1187 | 
            +
                            "num_sink_tokens": null,
         | 
| 1188 | 
            +
                            "replace_with_linear": false,
         | 
| 1189 | 
            +
                            "sparsify": null,
         | 
| 1190 | 
            +
                            "unshifted_sink": false,
         | 
| 1191 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1192 | 
            +
                            "window_length": null
         | 
| 1193 | 
            +
                        },
         | 
| 1194 | 
            +
                        "ffn": {
         | 
| 1195 | 
            +
                            "ffn_mult": null,
         | 
| 1196 | 
            +
                            "no_op": true,
         | 
| 1197 | 
            +
                            "replace_with_linear": false,
         | 
| 1198 | 
            +
                            "sparsify": null
         | 
| 1199 | 
            +
                        }
         | 
| 1200 | 
            +
                    },
         | 
| 1201 | 
            +
                    {
         | 
| 1202 | 
            +
                        "attention": {
         | 
| 1203 | 
            +
                            "n_heads_in_group": null,
         | 
| 1204 | 
            +
                            "no_op": true,
         | 
| 1205 | 
            +
                            "num_sink_tokens": null,
         | 
| 1206 | 
            +
                            "replace_with_linear": false,
         | 
| 1207 | 
            +
                            "sparsify": null,
         | 
| 1208 | 
            +
                            "unshifted_sink": false,
         | 
| 1209 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1210 | 
            +
                            "window_length": null
         | 
| 1211 | 
            +
                        },
         | 
| 1212 | 
            +
                        "ffn": {
         | 
| 1213 | 
            +
                            "ffn_mult": null,
         | 
| 1214 | 
            +
                            "no_op": true,
         | 
| 1215 | 
            +
                            "replace_with_linear": false,
         | 
| 1216 | 
            +
                            "sparsify": null
         | 
| 1217 | 
            +
                        }
         | 
| 1218 | 
            +
                    },
         | 
| 1219 | 
            +
                    {
         | 
| 1220 | 
            +
                        "attention": {
         | 
| 1221 | 
            +
                            "n_heads_in_group": null,
         | 
| 1222 | 
            +
                            "no_op": true,
         | 
| 1223 | 
            +
                            "num_sink_tokens": null,
         | 
| 1224 | 
            +
                            "replace_with_linear": false,
         | 
| 1225 | 
            +
                            "sparsify": null,
         | 
| 1226 | 
            +
                            "unshifted_sink": false,
         | 
| 1227 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1228 | 
            +
                            "window_length": null
         | 
| 1229 | 
            +
                        },
         | 
| 1230 | 
            +
                        "ffn": {
         | 
| 1231 | 
            +
                            "ffn_mult": null,
         | 
| 1232 | 
            +
                            "no_op": true,
         | 
| 1233 | 
            +
                            "replace_with_linear": false,
         | 
| 1234 | 
            +
                            "sparsify": null
         | 
| 1235 | 
            +
                        }
         | 
| 1236 | 
            +
                    },
         | 
| 1237 | 
            +
                    {
         | 
| 1238 | 
            +
                        "attention": {
         | 
| 1239 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1240 | 
            +
                            "no_op": false,
         | 
| 1241 | 
            +
                            "num_sink_tokens": null,
         | 
| 1242 | 
            +
                            "replace_with_linear": false,
         | 
| 1243 | 
            +
                            "sparsify": null,
         | 
| 1244 | 
            +
                            "unshifted_sink": false,
         | 
| 1245 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1246 | 
            +
                            "window_length": null
         | 
| 1247 | 
            +
                        },
         | 
| 1248 | 
            +
                        "ffn": {
         | 
| 1249 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1250 | 
            +
                            "no_op": false,
         | 
| 1251 | 
            +
                            "replace_with_linear": false,
         | 
| 1252 | 
            +
                            "sparsify": null
         | 
| 1253 | 
            +
                        }
         | 
| 1254 | 
            +
                    },
         | 
| 1255 | 
            +
                    {
         | 
| 1256 | 
            +
                        "attention": {
         | 
| 1257 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1258 | 
            +
                            "no_op": false,
         | 
| 1259 | 
            +
                            "num_sink_tokens": null,
         | 
| 1260 | 
            +
                            "replace_with_linear": false,
         | 
| 1261 | 
            +
                            "sparsify": null,
         | 
| 1262 | 
            +
                            "unshifted_sink": false,
         | 
| 1263 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1264 | 
            +
                            "window_length": null
         | 
| 1265 | 
            +
                        },
         | 
| 1266 | 
            +
                        "ffn": {
         | 
| 1267 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1268 | 
            +
                            "no_op": false,
         | 
| 1269 | 
            +
                            "replace_with_linear": false,
         | 
| 1270 | 
            +
                            "sparsify": null
         | 
| 1271 | 
            +
                        }
         | 
| 1272 | 
            +
                    },
         | 
| 1273 | 
            +
                    {
         | 
| 1274 | 
            +
                        "attention": {
         | 
| 1275 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1276 | 
            +
                            "no_op": false,
         | 
| 1277 | 
            +
                            "num_sink_tokens": null,
         | 
| 1278 | 
            +
                            "replace_with_linear": false,
         | 
| 1279 | 
            +
                            "sparsify": null,
         | 
| 1280 | 
            +
                            "unshifted_sink": false,
         | 
| 1281 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1282 | 
            +
                            "window_length": null
         | 
| 1283 | 
            +
                        },
         | 
| 1284 | 
            +
                        "ffn": {
         | 
| 1285 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1286 | 
            +
                            "no_op": false,
         | 
| 1287 | 
            +
                            "replace_with_linear": false,
         | 
| 1288 | 
            +
                            "sparsify": null
         | 
| 1289 | 
            +
                        }
         | 
| 1290 | 
            +
                    },
         | 
| 1291 | 
            +
                    {
         | 
| 1292 | 
            +
                        "attention": {
         | 
| 1293 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1294 | 
            +
                            "no_op": false,
         | 
| 1295 | 
            +
                            "num_sink_tokens": null,
         | 
| 1296 | 
            +
                            "replace_with_linear": false,
         | 
| 1297 | 
            +
                            "sparsify": null,
         | 
| 1298 | 
            +
                            "unshifted_sink": false,
         | 
| 1299 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1300 | 
            +
                            "window_length": null
         | 
| 1301 | 
            +
                        },
         | 
| 1302 | 
            +
                        "ffn": {
         | 
| 1303 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1304 | 
            +
                            "no_op": false,
         | 
| 1305 | 
            +
                            "replace_with_linear": false,
         | 
| 1306 | 
            +
                            "sparsify": null
         | 
| 1307 | 
            +
                        }
         | 
| 1308 | 
            +
                    },
         | 
| 1309 | 
            +
                    {
         | 
| 1310 | 
            +
                        "attention": {
         | 
| 1311 | 
            +
                            "n_heads_in_group": null,
         | 
| 1312 | 
            +
                            "no_op": true,
         | 
| 1313 | 
            +
                            "num_sink_tokens": null,
         | 
| 1314 | 
            +
                            "replace_with_linear": false,
         | 
| 1315 | 
            +
                            "sparsify": null,
         | 
| 1316 | 
            +
                            "unshifted_sink": false,
         | 
| 1317 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1318 | 
            +
                            "window_length": null
         | 
| 1319 | 
            +
                        },
         | 
| 1320 | 
            +
                        "ffn": {
         | 
| 1321 | 
            +
                            "ffn_mult": null,
         | 
| 1322 | 
            +
                            "no_op": true,
         | 
| 1323 | 
            +
                            "replace_with_linear": false,
         | 
| 1324 | 
            +
                            "sparsify": null
         | 
| 1325 | 
            +
                        }
         | 
| 1326 | 
            +
                    },
         | 
| 1327 | 
            +
                    {
         | 
| 1328 | 
            +
                        "attention": {
         | 
| 1329 | 
            +
                            "n_heads_in_group": null,
         | 
| 1330 | 
            +
                            "no_op": true,
         | 
| 1331 | 
            +
                            "num_sink_tokens": null,
         | 
| 1332 | 
            +
                            "replace_with_linear": false,
         | 
| 1333 | 
            +
                            "sparsify": null,
         | 
| 1334 | 
            +
                            "unshifted_sink": false,
         | 
| 1335 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1336 | 
            +
                            "window_length": null
         | 
| 1337 | 
            +
                        },
         | 
| 1338 | 
            +
                        "ffn": {
         | 
| 1339 | 
            +
                            "ffn_mult": null,
         | 
| 1340 | 
            +
                            "no_op": true,
         | 
| 1341 | 
            +
                            "replace_with_linear": false,
         | 
| 1342 | 
            +
                            "sparsify": null
         | 
| 1343 | 
            +
                        }
         | 
| 1344 | 
            +
                    },
         | 
| 1345 | 
            +
                    {
         | 
| 1346 | 
            +
                        "attention": {
         | 
| 1347 | 
            +
                            "n_heads_in_group": null,
         | 
| 1348 | 
            +
                            "no_op": true,
         | 
| 1349 | 
            +
                            "num_sink_tokens": null,
         | 
| 1350 | 
            +
                            "replace_with_linear": false,
         | 
| 1351 | 
            +
                            "sparsify": null,
         | 
| 1352 | 
            +
                            "unshifted_sink": false,
         | 
| 1353 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1354 | 
            +
                            "window_length": null
         | 
| 1355 | 
            +
                        },
         | 
| 1356 | 
            +
                        "ffn": {
         | 
| 1357 | 
            +
                            "ffn_mult": null,
         | 
| 1358 | 
            +
                            "no_op": true,
         | 
| 1359 | 
            +
                            "replace_with_linear": false,
         | 
| 1360 | 
            +
                            "sparsify": null
         | 
| 1361 | 
            +
                        }
         | 
| 1362 | 
            +
                    },
         | 
| 1363 | 
            +
                    {
         | 
| 1364 | 
            +
                        "attention": {
         | 
| 1365 | 
            +
                            "n_heads_in_group": null,
         | 
| 1366 | 
            +
                            "no_op": true,
         | 
| 1367 | 
            +
                            "num_sink_tokens": null,
         | 
| 1368 | 
            +
                            "replace_with_linear": false,
         | 
| 1369 | 
            +
                            "sparsify": null,
         | 
| 1370 | 
            +
                            "unshifted_sink": false,
         | 
| 1371 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1372 | 
            +
                            "window_length": null
         | 
| 1373 | 
            +
                        },
         | 
| 1374 | 
            +
                        "ffn": {
         | 
| 1375 | 
            +
                            "ffn_mult": null,
         | 
| 1376 | 
            +
                            "no_op": true,
         | 
| 1377 | 
            +
                            "replace_with_linear": false,
         | 
| 1378 | 
            +
                            "sparsify": null
         | 
| 1379 | 
            +
                        }
         | 
| 1380 | 
            +
                    },
         | 
| 1381 | 
            +
                    {
         | 
| 1382 | 
            +
                        "attention": {
         | 
| 1383 | 
            +
                            "n_heads_in_group": null,
         | 
| 1384 | 
            +
                            "no_op": true,
         | 
| 1385 | 
            +
                            "num_sink_tokens": null,
         | 
| 1386 | 
            +
                            "replace_with_linear": false,
         | 
| 1387 | 
            +
                            "sparsify": null,
         | 
| 1388 | 
            +
                            "unshifted_sink": false,
         | 
| 1389 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1390 | 
            +
                            "window_length": null
         | 
| 1391 | 
            +
                        },
         | 
| 1392 | 
            +
                        "ffn": {
         | 
| 1393 | 
            +
                            "ffn_mult": null,
         | 
| 1394 | 
            +
                            "no_op": true,
         | 
| 1395 | 
            +
                            "replace_with_linear": false,
         | 
| 1396 | 
            +
                            "sparsify": null
         | 
| 1397 | 
            +
                        }
         | 
| 1398 | 
            +
                    },
         | 
| 1399 | 
            +
                    {
         | 
| 1400 | 
            +
                        "attention": {
         | 
| 1401 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1402 | 
            +
                            "no_op": false,
         | 
| 1403 | 
            +
                            "num_sink_tokens": null,
         | 
| 1404 | 
            +
                            "replace_with_linear": false,
         | 
| 1405 | 
            +
                            "sparsify": null,
         | 
| 1406 | 
            +
                            "unshifted_sink": false,
         | 
| 1407 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1408 | 
            +
                            "window_length": null
         | 
| 1409 | 
            +
                        },
         | 
| 1410 | 
            +
                        "ffn": {
         | 
| 1411 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1412 | 
            +
                            "no_op": false,
         | 
| 1413 | 
            +
                            "replace_with_linear": false,
         | 
| 1414 | 
            +
                            "sparsify": null
         | 
| 1415 | 
            +
                        }
         | 
| 1416 | 
            +
                    },
         | 
| 1417 | 
            +
                    {
         | 
| 1418 | 
            +
                        "attention": {
         | 
| 1419 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1420 | 
            +
                            "no_op": false,
         | 
| 1421 | 
            +
                            "num_sink_tokens": null,
         | 
| 1422 | 
            +
                            "replace_with_linear": false,
         | 
| 1423 | 
            +
                            "sparsify": null,
         | 
| 1424 | 
            +
                            "unshifted_sink": false,
         | 
| 1425 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1426 | 
            +
                            "window_length": null
         | 
| 1427 | 
            +
                        },
         | 
| 1428 | 
            +
                        "ffn": {
         | 
| 1429 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1430 | 
            +
                            "no_op": false,
         | 
| 1431 | 
            +
                            "replace_with_linear": false,
         | 
| 1432 | 
            +
                            "sparsify": null
         | 
| 1433 | 
            +
                        }
         | 
| 1434 | 
            +
                    },
         | 
| 1435 | 
            +
                    {
         | 
| 1436 | 
            +
                        "attention": {
         | 
| 1437 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1438 | 
            +
                            "no_op": false,
         | 
| 1439 | 
            +
                            "num_sink_tokens": null,
         | 
| 1440 | 
            +
                            "replace_with_linear": false,
         | 
| 1441 | 
            +
                            "sparsify": null,
         | 
| 1442 | 
            +
                            "unshifted_sink": false,
         | 
| 1443 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1444 | 
            +
                            "window_length": null
         | 
| 1445 | 
            +
                        },
         | 
| 1446 | 
            +
                        "ffn": {
         | 
| 1447 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1448 | 
            +
                            "no_op": false,
         | 
| 1449 | 
            +
                            "replace_with_linear": false,
         | 
| 1450 | 
            +
                            "sparsify": null
         | 
| 1451 | 
            +
                        }
         | 
| 1452 | 
            +
                    },
         | 
| 1453 | 
            +
                    {
         | 
| 1454 | 
            +
                        "attention": {
         | 
| 1455 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1456 | 
            +
                            "no_op": false,
         | 
| 1457 | 
            +
                            "num_sink_tokens": null,
         | 
| 1458 | 
            +
                            "replace_with_linear": false,
         | 
| 1459 | 
            +
                            "sparsify": null,
         | 
| 1460 | 
            +
                            "unshifted_sink": false,
         | 
| 1461 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1462 | 
            +
                            "window_length": null
         | 
| 1463 | 
            +
                        },
         | 
| 1464 | 
            +
                        "ffn": {
         | 
| 1465 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1466 | 
            +
                            "no_op": false,
         | 
| 1467 | 
            +
                            "replace_with_linear": false,
         | 
| 1468 | 
            +
                            "sparsify": null
         | 
| 1469 | 
            +
                        }
         | 
| 1470 | 
            +
                    },
         | 
| 1471 | 
            +
                    {
         | 
| 1472 | 
            +
                        "attention": {
         | 
| 1473 | 
            +
                            "n_heads_in_group": null,
         | 
| 1474 | 
            +
                            "no_op": true,
         | 
| 1475 | 
            +
                            "num_sink_tokens": null,
         | 
| 1476 | 
            +
                            "replace_with_linear": false,
         | 
| 1477 | 
            +
                            "sparsify": null,
         | 
| 1478 | 
            +
                            "unshifted_sink": false,
         | 
| 1479 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1480 | 
            +
                            "window_length": null
         | 
| 1481 | 
            +
                        },
         | 
| 1482 | 
            +
                        "ffn": {
         | 
| 1483 | 
            +
                            "ffn_mult": null,
         | 
| 1484 | 
            +
                            "no_op": true,
         | 
| 1485 | 
            +
                            "replace_with_linear": false,
         | 
| 1486 | 
            +
                            "sparsify": null
         | 
| 1487 | 
            +
                        }
         | 
| 1488 | 
            +
                    },
         | 
| 1489 | 
            +
                    {
         | 
| 1490 | 
            +
                        "attention": {
         | 
| 1491 | 
            +
                            "n_heads_in_group": null,
         | 
| 1492 | 
            +
                            "no_op": true,
         | 
| 1493 | 
            +
                            "num_sink_tokens": null,
         | 
| 1494 | 
            +
                            "replace_with_linear": false,
         | 
| 1495 | 
            +
                            "sparsify": null,
         | 
| 1496 | 
            +
                            "unshifted_sink": false,
         | 
| 1497 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1498 | 
            +
                            "window_length": null
         | 
| 1499 | 
            +
                        },
         | 
| 1500 | 
            +
                        "ffn": {
         | 
| 1501 | 
            +
                            "ffn_mult": null,
         | 
| 1502 | 
            +
                            "no_op": true,
         | 
| 1503 | 
            +
                            "replace_with_linear": false,
         | 
| 1504 | 
            +
                            "sparsify": null
         | 
| 1505 | 
            +
                        }
         | 
| 1506 | 
            +
                    },
         | 
| 1507 | 
            +
                    {
         | 
| 1508 | 
            +
                        "attention": {
         | 
| 1509 | 
            +
                            "n_heads_in_group": null,
         | 
| 1510 | 
            +
                            "no_op": true,
         | 
| 1511 | 
            +
                            "num_sink_tokens": null,
         | 
| 1512 | 
            +
                            "replace_with_linear": false,
         | 
| 1513 | 
            +
                            "sparsify": null,
         | 
| 1514 | 
            +
                            "unshifted_sink": false,
         | 
| 1515 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1516 | 
            +
                            "window_length": null
         | 
| 1517 | 
            +
                        },
         | 
| 1518 | 
            +
                        "ffn": {
         | 
| 1519 | 
            +
                            "ffn_mult": null,
         | 
| 1520 | 
            +
                            "no_op": true,
         | 
| 1521 | 
            +
                            "replace_with_linear": false,
         | 
| 1522 | 
            +
                            "sparsify": null
         | 
| 1523 | 
            +
                        }
         | 
| 1524 | 
            +
                    },
         | 
| 1525 | 
            +
                    {
         | 
| 1526 | 
            +
                        "attention": {
         | 
| 1527 | 
            +
                            "n_heads_in_group": null,
         | 
| 1528 | 
            +
                            "no_op": true,
         | 
| 1529 | 
            +
                            "num_sink_tokens": null,
         | 
| 1530 | 
            +
                            "replace_with_linear": false,
         | 
| 1531 | 
            +
                            "sparsify": null,
         | 
| 1532 | 
            +
                            "unshifted_sink": false,
         | 
| 1533 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1534 | 
            +
                            "window_length": null
         | 
| 1535 | 
            +
                        },
         | 
| 1536 | 
            +
                        "ffn": {
         | 
| 1537 | 
            +
                            "ffn_mult": null,
         | 
| 1538 | 
            +
                            "no_op": true,
         | 
| 1539 | 
            +
                            "replace_with_linear": false,
         | 
| 1540 | 
            +
                            "sparsify": null
         | 
| 1541 | 
            +
                        }
         | 
| 1542 | 
            +
                    },
         | 
| 1543 | 
            +
                    {
         | 
| 1544 | 
            +
                        "attention": {
         | 
| 1545 | 
            +
                            "n_heads_in_group": null,
         | 
| 1546 | 
            +
                            "no_op": true,
         | 
| 1547 | 
            +
                            "num_sink_tokens": null,
         | 
| 1548 | 
            +
                            "replace_with_linear": false,
         | 
| 1549 | 
            +
                            "sparsify": null,
         | 
| 1550 | 
            +
                            "unshifted_sink": false,
         | 
| 1551 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1552 | 
            +
                            "window_length": null
         | 
| 1553 | 
            +
                        },
         | 
| 1554 | 
            +
                        "ffn": {
         | 
| 1555 | 
            +
                            "ffn_mult": null,
         | 
| 1556 | 
            +
                            "no_op": true,
         | 
| 1557 | 
            +
                            "replace_with_linear": false,
         | 
| 1558 | 
            +
                            "sparsify": null
         | 
| 1559 | 
            +
                        }
         | 
| 1560 | 
            +
                    },
         | 
| 1561 | 
            +
                    {
         | 
| 1562 | 
            +
                        "attention": {
         | 
| 1563 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1564 | 
            +
                            "no_op": false,
         | 
| 1565 | 
            +
                            "num_sink_tokens": null,
         | 
| 1566 | 
            +
                            "replace_with_linear": false,
         | 
| 1567 | 
            +
                            "sparsify": null,
         | 
| 1568 | 
            +
                            "unshifted_sink": false,
         | 
| 1569 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1570 | 
            +
                            "window_length": null
         | 
| 1571 | 
            +
                        },
         | 
| 1572 | 
            +
                        "ffn": {
         | 
| 1573 | 
            +
                            "ffn_mult": 4.875,
         | 
| 1574 | 
            +
                            "no_op": false,
         | 
| 1575 | 
            +
                            "replace_with_linear": false,
         | 
| 1576 | 
            +
                            "sparsify": null
         | 
| 1577 | 
            +
                        }
         | 
| 1578 | 
            +
                    },
         | 
| 1579 | 
            +
                    {
         | 
| 1580 | 
            +
                        "attention": {
         | 
| 1581 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1582 | 
            +
                            "no_op": false,
         | 
| 1583 | 
            +
                            "num_sink_tokens": null,
         | 
| 1584 | 
            +
                            "replace_with_linear": false,
         | 
| 1585 | 
            +
                            "sparsify": null,
         | 
| 1586 | 
            +
                            "unshifted_sink": false,
         | 
| 1587 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1588 | 
            +
                            "window_length": null
         | 
| 1589 | 
            +
                        },
         | 
| 1590 | 
            +
                        "ffn": {
         | 
| 1591 | 
            +
                            "ffn_mult": 3.4125,
         | 
| 1592 | 
            +
                            "no_op": false,
         | 
| 1593 | 
            +
                            "replace_with_linear": false,
         | 
| 1594 | 
            +
                            "sparsify": null
         | 
| 1595 | 
            +
                        }
         | 
| 1596 | 
            +
                    },
         | 
| 1597 | 
            +
                    {
         | 
| 1598 | 
            +
                        "attention": {
         | 
| 1599 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1600 | 
            +
                            "no_op": false,
         | 
| 1601 | 
            +
                            "num_sink_tokens": null,
         | 
| 1602 | 
            +
                            "replace_with_linear": false,
         | 
| 1603 | 
            +
                            "sparsify": null,
         | 
| 1604 | 
            +
                            "unshifted_sink": false,
         | 
| 1605 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1606 | 
            +
                            "window_length": null
         | 
| 1607 | 
            +
                        },
         | 
| 1608 | 
            +
                        "ffn": {
         | 
| 1609 | 
            +
                            "ffn_mult": 3.4125,
         | 
| 1610 | 
            +
                            "no_op": false,
         | 
| 1611 | 
            +
                            "replace_with_linear": false,
         | 
| 1612 | 
            +
                            "sparsify": null
         | 
| 1613 | 
            +
                        }
         | 
| 1614 | 
            +
                    },
         | 
| 1615 | 
            +
                    {
         | 
| 1616 | 
            +
                        "attention": {
         | 
| 1617 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1618 | 
            +
                            "no_op": false,
         | 
| 1619 | 
            +
                            "num_sink_tokens": null,
         | 
| 1620 | 
            +
                            "replace_with_linear": false,
         | 
| 1621 | 
            +
                            "sparsify": null,
         | 
| 1622 | 
            +
                            "unshifted_sink": false,
         | 
| 1623 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1624 | 
            +
                            "window_length": null
         | 
| 1625 | 
            +
                        },
         | 
| 1626 | 
            +
                        "ffn": {
         | 
| 1627 | 
            +
                            "ffn_mult": 3.4125,
         | 
| 1628 | 
            +
                            "no_op": false,
         | 
| 1629 | 
            +
                            "replace_with_linear": false,
         | 
| 1630 | 
            +
                            "sparsify": null
         | 
| 1631 | 
            +
                        }
         | 
| 1632 | 
            +
                    },
         | 
| 1633 | 
            +
                    {
         | 
| 1634 | 
            +
                        "attention": {
         | 
| 1635 | 
            +
                            "n_heads_in_group": null,
         | 
| 1636 | 
            +
                            "no_op": true,
         | 
| 1637 | 
            +
                            "num_sink_tokens": null,
         | 
| 1638 | 
            +
                            "replace_with_linear": false,
         | 
| 1639 | 
            +
                            "sparsify": null,
         | 
| 1640 | 
            +
                            "unshifted_sink": false,
         | 
| 1641 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1642 | 
            +
                            "window_length": null
         | 
| 1643 | 
            +
                        },
         | 
| 1644 | 
            +
                        "ffn": {
         | 
| 1645 | 
            +
                            "ffn_mult": null,
         | 
| 1646 | 
            +
                            "no_op": true,
         | 
| 1647 | 
            +
                            "replace_with_linear": false,
         | 
| 1648 | 
            +
                            "sparsify": null
         | 
| 1649 | 
            +
                        }
         | 
| 1650 | 
            +
                    },
         | 
| 1651 | 
            +
                    {
         | 
| 1652 | 
            +
                        "attention": {
         | 
| 1653 | 
            +
                            "n_heads_in_group": null,
         | 
| 1654 | 
            +
                            "no_op": true,
         | 
| 1655 | 
            +
                            "num_sink_tokens": null,
         | 
| 1656 | 
            +
                            "replace_with_linear": false,
         | 
| 1657 | 
            +
                            "sparsify": null,
         | 
| 1658 | 
            +
                            "unshifted_sink": false,
         | 
| 1659 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1660 | 
            +
                            "window_length": null
         | 
| 1661 | 
            +
                        },
         | 
| 1662 | 
            +
                        "ffn": {
         | 
| 1663 | 
            +
                            "ffn_mult": null,
         | 
| 1664 | 
            +
                            "no_op": true,
         | 
| 1665 | 
            +
                            "replace_with_linear": false,
         | 
| 1666 | 
            +
                            "sparsify": null
         | 
| 1667 | 
            +
                        }
         | 
| 1668 | 
            +
                    },
         | 
| 1669 | 
            +
                    {
         | 
| 1670 | 
            +
                        "attention": {
         | 
| 1671 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1672 | 
            +
                            "no_op": false,
         | 
| 1673 | 
            +
                            "num_sink_tokens": null,
         | 
| 1674 | 
            +
                            "replace_with_linear": false,
         | 
| 1675 | 
            +
                            "sparsify": null,
         | 
| 1676 | 
            +
                            "unshifted_sink": false,
         | 
| 1677 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1678 | 
            +
                            "window_length": null
         | 
| 1679 | 
            +
                        },
         | 
| 1680 | 
            +
                        "ffn": {
         | 
| 1681 | 
            +
                            "ffn_mult": 2.925,
         | 
| 1682 | 
            +
                            "no_op": false,
         | 
| 1683 | 
            +
                            "replace_with_linear": false,
         | 
| 1684 | 
            +
                            "sparsify": null
         | 
| 1685 | 
            +
                        }
         | 
| 1686 | 
            +
                    },
         | 
| 1687 | 
            +
                    {
         | 
| 1688 | 
            +
                        "attention": {
         | 
| 1689 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1690 | 
            +
                            "no_op": false,
         | 
| 1691 | 
            +
                            "num_sink_tokens": null,
         | 
| 1692 | 
            +
                            "replace_with_linear": false,
         | 
| 1693 | 
            +
                            "sparsify": null,
         | 
| 1694 | 
            +
                            "unshifted_sink": false,
         | 
| 1695 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1696 | 
            +
                            "window_length": null
         | 
| 1697 | 
            +
                        },
         | 
| 1698 | 
            +
                        "ffn": {
         | 
| 1699 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1700 | 
            +
                            "no_op": false,
         | 
| 1701 | 
            +
                            "replace_with_linear": false,
         | 
| 1702 | 
            +
                            "sparsify": null
         | 
| 1703 | 
            +
                        }
         | 
| 1704 | 
            +
                    },
         | 
| 1705 | 
            +
                    {
         | 
| 1706 | 
            +
                        "attention": {
         | 
| 1707 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1708 | 
            +
                            "no_op": false,
         | 
| 1709 | 
            +
                            "num_sink_tokens": null,
         | 
| 1710 | 
            +
                            "replace_with_linear": false,
         | 
| 1711 | 
            +
                            "sparsify": null,
         | 
| 1712 | 
            +
                            "unshifted_sink": false,
         | 
| 1713 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1714 | 
            +
                            "window_length": null
         | 
| 1715 | 
            +
                        },
         | 
| 1716 | 
            +
                        "ffn": {
         | 
| 1717 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1718 | 
            +
                            "no_op": false,
         | 
| 1719 | 
            +
                            "replace_with_linear": false,
         | 
| 1720 | 
            +
                            "sparsify": null
         | 
| 1721 | 
            +
                        }
         | 
| 1722 | 
            +
                    },
         | 
| 1723 | 
            +
                    {
         | 
| 1724 | 
            +
                        "attention": {
         | 
| 1725 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1726 | 
            +
                            "no_op": false,
         | 
| 1727 | 
            +
                            "num_sink_tokens": null,
         | 
| 1728 | 
            +
                            "replace_with_linear": false,
         | 
| 1729 | 
            +
                            "sparsify": null,
         | 
| 1730 | 
            +
                            "unshifted_sink": false,
         | 
| 1731 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1732 | 
            +
                            "window_length": null
         | 
| 1733 | 
            +
                        },
         | 
| 1734 | 
            +
                        "ffn": {
         | 
| 1735 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1736 | 
            +
                            "no_op": false,
         | 
| 1737 | 
            +
                            "replace_with_linear": false,
         | 
| 1738 | 
            +
                            "sparsify": null
         | 
| 1739 | 
            +
                        }
         | 
| 1740 | 
            +
                    },
         | 
| 1741 | 
            +
                    {
         | 
| 1742 | 
            +
                        "attention": {
         | 
| 1743 | 
            +
                            "n_heads_in_group": null,
         | 
| 1744 | 
            +
                            "no_op": true,
         | 
| 1745 | 
            +
                            "num_sink_tokens": null,
         | 
| 1746 | 
            +
                            "replace_with_linear": false,
         | 
| 1747 | 
            +
                            "sparsify": null,
         | 
| 1748 | 
            +
                            "unshifted_sink": false,
         | 
| 1749 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1750 | 
            +
                            "window_length": null
         | 
| 1751 | 
            +
                        },
         | 
| 1752 | 
            +
                        "ffn": {
         | 
| 1753 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1754 | 
            +
                            "no_op": false,
         | 
| 1755 | 
            +
                            "replace_with_linear": false,
         | 
| 1756 | 
            +
                            "sparsify": null
         | 
| 1757 | 
            +
                        }
         | 
| 1758 | 
            +
                    },
         | 
| 1759 | 
            +
                    {
         | 
| 1760 | 
            +
                        "attention": {
         | 
| 1761 | 
            +
                            "n_heads_in_group": null,
         | 
| 1762 | 
            +
                            "no_op": true,
         | 
| 1763 | 
            +
                            "num_sink_tokens": null,
         | 
| 1764 | 
            +
                            "replace_with_linear": false,
         | 
| 1765 | 
            +
                            "sparsify": null,
         | 
| 1766 | 
            +
                            "unshifted_sink": false,
         | 
| 1767 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1768 | 
            +
                            "window_length": null
         | 
| 1769 | 
            +
                        },
         | 
| 1770 | 
            +
                        "ffn": {
         | 
| 1771 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1772 | 
            +
                            "no_op": false,
         | 
| 1773 | 
            +
                            "replace_with_linear": false,
         | 
| 1774 | 
            +
                            "sparsify": null
         | 
| 1775 | 
            +
                        }
         | 
| 1776 | 
            +
                    },
         | 
| 1777 | 
            +
                    {
         | 
| 1778 | 
            +
                        "attention": {
         | 
| 1779 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1780 | 
            +
                            "no_op": false,
         | 
| 1781 | 
            +
                            "num_sink_tokens": null,
         | 
| 1782 | 
            +
                            "replace_with_linear": false,
         | 
| 1783 | 
            +
                            "sparsify": null,
         | 
| 1784 | 
            +
                            "unshifted_sink": false,
         | 
| 1785 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1786 | 
            +
                            "window_length": null
         | 
| 1787 | 
            +
                        },
         | 
| 1788 | 
            +
                        "ffn": {
         | 
| 1789 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1790 | 
            +
                            "no_op": false,
         | 
| 1791 | 
            +
                            "replace_with_linear": false,
         | 
| 1792 | 
            +
                            "sparsify": null
         | 
| 1793 | 
            +
                        }
         | 
| 1794 | 
            +
                    },
         | 
| 1795 | 
            +
                    {
         | 
| 1796 | 
            +
                        "attention": {
         | 
| 1797 | 
            +
                            "n_heads_in_group": null,
         | 
| 1798 | 
            +
                            "no_op": true,
         | 
| 1799 | 
            +
                            "num_sink_tokens": null,
         | 
| 1800 | 
            +
                            "replace_with_linear": false,
         | 
| 1801 | 
            +
                            "sparsify": null,
         | 
| 1802 | 
            +
                            "unshifted_sink": false,
         | 
| 1803 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1804 | 
            +
                            "window_length": null
         | 
| 1805 | 
            +
                        },
         | 
| 1806 | 
            +
                        "ffn": {
         | 
| 1807 | 
            +
                            "ffn_mult": null,
         | 
| 1808 | 
            +
                            "no_op": true,
         | 
| 1809 | 
            +
                            "replace_with_linear": false,
         | 
| 1810 | 
            +
                            "sparsify": null
         | 
| 1811 | 
            +
                        }
         | 
| 1812 | 
            +
                    },
         | 
| 1813 | 
            +
                    {
         | 
| 1814 | 
            +
                        "attention": {
         | 
| 1815 | 
            +
                            "n_heads_in_group": null,
         | 
| 1816 | 
            +
                            "no_op": true,
         | 
| 1817 | 
            +
                            "num_sink_tokens": null,
         | 
| 1818 | 
            +
                            "replace_with_linear": false,
         | 
| 1819 | 
            +
                            "sparsify": null,
         | 
| 1820 | 
            +
                            "unshifted_sink": false,
         | 
| 1821 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1822 | 
            +
                            "window_length": null
         | 
| 1823 | 
            +
                        },
         | 
| 1824 | 
            +
                        "ffn": {
         | 
| 1825 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1826 | 
            +
                            "no_op": false,
         | 
| 1827 | 
            +
                            "replace_with_linear": false,
         | 
| 1828 | 
            +
                            "sparsify": null
         | 
| 1829 | 
            +
                        }
         | 
| 1830 | 
            +
                    },
         | 
| 1831 | 
            +
                    {
         | 
| 1832 | 
            +
                        "attention": {
         | 
| 1833 | 
            +
                            "n_heads_in_group": null,
         | 
| 1834 | 
            +
                            "no_op": true,
         | 
| 1835 | 
            +
                            "num_sink_tokens": null,
         | 
| 1836 | 
            +
                            "replace_with_linear": false,
         | 
| 1837 | 
            +
                            "sparsify": null,
         | 
| 1838 | 
            +
                            "unshifted_sink": false,
         | 
| 1839 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1840 | 
            +
                            "window_length": null
         | 
| 1841 | 
            +
                        },
         | 
| 1842 | 
            +
                        "ffn": {
         | 
| 1843 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1844 | 
            +
                            "no_op": false,
         | 
| 1845 | 
            +
                            "replace_with_linear": false,
         | 
| 1846 | 
            +
                            "sparsify": null
         | 
| 1847 | 
            +
                        }
         | 
| 1848 | 
            +
                    },
         | 
| 1849 | 
            +
                    {
         | 
| 1850 | 
            +
                        "attention": {
         | 
| 1851 | 
            +
                            "n_heads_in_group": null,
         | 
| 1852 | 
            +
                            "no_op": true,
         | 
| 1853 | 
            +
                            "num_sink_tokens": null,
         | 
| 1854 | 
            +
                            "replace_with_linear": false,
         | 
| 1855 | 
            +
                            "sparsify": null,
         | 
| 1856 | 
            +
                            "unshifted_sink": false,
         | 
| 1857 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1858 | 
            +
                            "window_length": null
         | 
| 1859 | 
            +
                        },
         | 
| 1860 | 
            +
                        "ffn": {
         | 
| 1861 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1862 | 
            +
                            "no_op": false,
         | 
| 1863 | 
            +
                            "replace_with_linear": false,
         | 
| 1864 | 
            +
                            "sparsify": null
         | 
| 1865 | 
            +
                        }
         | 
| 1866 | 
            +
                    },
         | 
| 1867 | 
            +
                    {
         | 
| 1868 | 
            +
                        "attention": {
         | 
| 1869 | 
            +
                            "n_heads_in_group": null,
         | 
| 1870 | 
            +
                            "no_op": true,
         | 
| 1871 | 
            +
                            "num_sink_tokens": null,
         | 
| 1872 | 
            +
                            "replace_with_linear": false,
         | 
| 1873 | 
            +
                            "sparsify": null,
         | 
| 1874 | 
            +
                            "unshifted_sink": false,
         | 
| 1875 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1876 | 
            +
                            "window_length": null
         | 
| 1877 | 
            +
                        },
         | 
| 1878 | 
            +
                        "ffn": {
         | 
| 1879 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1880 | 
            +
                            "no_op": false,
         | 
| 1881 | 
            +
                            "replace_with_linear": false,
         | 
| 1882 | 
            +
                            "sparsify": null
         | 
| 1883 | 
            +
                        }
         | 
| 1884 | 
            +
                    },
         | 
| 1885 | 
            +
                    {
         | 
| 1886 | 
            +
                        "attention": {
         | 
| 1887 | 
            +
                            "n_heads_in_group": null,
         | 
| 1888 | 
            +
                            "no_op": true,
         | 
| 1889 | 
            +
                            "num_sink_tokens": null,
         | 
| 1890 | 
            +
                            "replace_with_linear": false,
         | 
| 1891 | 
            +
                            "sparsify": null,
         | 
| 1892 | 
            +
                            "unshifted_sink": false,
         | 
| 1893 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1894 | 
            +
                            "window_length": null
         | 
| 1895 | 
            +
                        },
         | 
| 1896 | 
            +
                        "ffn": {
         | 
| 1897 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1898 | 
            +
                            "no_op": false,
         | 
| 1899 | 
            +
                            "replace_with_linear": false,
         | 
| 1900 | 
            +
                            "sparsify": null
         | 
| 1901 | 
            +
                        }
         | 
| 1902 | 
            +
                    },
         | 
| 1903 | 
            +
                    {
         | 
| 1904 | 
            +
                        "attention": {
         | 
| 1905 | 
            +
                            "n_heads_in_group": null,
         | 
| 1906 | 
            +
                            "no_op": true,
         | 
| 1907 | 
            +
                            "num_sink_tokens": null,
         | 
| 1908 | 
            +
                            "replace_with_linear": false,
         | 
| 1909 | 
            +
                            "sparsify": null,
         | 
| 1910 | 
            +
                            "unshifted_sink": false,
         | 
| 1911 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1912 | 
            +
                            "window_length": null
         | 
| 1913 | 
            +
                        },
         | 
| 1914 | 
            +
                        "ffn": {
         | 
| 1915 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1916 | 
            +
                            "no_op": false,
         | 
| 1917 | 
            +
                            "replace_with_linear": false,
         | 
| 1918 | 
            +
                            "sparsify": null
         | 
| 1919 | 
            +
                        }
         | 
| 1920 | 
            +
                    },
         | 
| 1921 | 
            +
                    {
         | 
| 1922 | 
            +
                        "attention": {
         | 
| 1923 | 
            +
                            "n_heads_in_group": null,
         | 
| 1924 | 
            +
                            "no_op": true,
         | 
| 1925 | 
            +
                            "num_sink_tokens": null,
         | 
| 1926 | 
            +
                            "replace_with_linear": false,
         | 
| 1927 | 
            +
                            "sparsify": null,
         | 
| 1928 | 
            +
                            "unshifted_sink": false,
         | 
| 1929 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1930 | 
            +
                            "window_length": null
         | 
| 1931 | 
            +
                        },
         | 
| 1932 | 
            +
                        "ffn": {
         | 
| 1933 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1934 | 
            +
                            "no_op": false,
         | 
| 1935 | 
            +
                            "replace_with_linear": false,
         | 
| 1936 | 
            +
                            "sparsify": null
         | 
| 1937 | 
            +
                        }
         | 
| 1938 | 
            +
                    },
         | 
| 1939 | 
            +
                    {
         | 
| 1940 | 
            +
                        "attention": {
         | 
| 1941 | 
            +
                            "n_heads_in_group": 16,
         | 
| 1942 | 
            +
                            "no_op": false,
         | 
| 1943 | 
            +
                            "num_sink_tokens": null,
         | 
| 1944 | 
            +
                            "replace_with_linear": false,
         | 
| 1945 | 
            +
                            "sparsify": null,
         | 
| 1946 | 
            +
                            "unshifted_sink": false,
         | 
| 1947 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1948 | 
            +
                            "window_length": null
         | 
| 1949 | 
            +
                        },
         | 
| 1950 | 
            +
                        "ffn": {
         | 
| 1951 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 1952 | 
            +
                            "no_op": false,
         | 
| 1953 | 
            +
                            "replace_with_linear": false,
         | 
| 1954 | 
            +
                            "sparsify": null
         | 
| 1955 | 
            +
                        }
         | 
| 1956 | 
            +
                    },
         | 
| 1957 | 
            +
                    {
         | 
| 1958 | 
            +
                        "attention": {
         | 
| 1959 | 
            +
                            "n_heads_in_group": null,
         | 
| 1960 | 
            +
                            "no_op": true,
         | 
| 1961 | 
            +
                            "num_sink_tokens": null,
         | 
| 1962 | 
            +
                            "replace_with_linear": false,
         | 
| 1963 | 
            +
                            "sparsify": null,
         | 
| 1964 | 
            +
                            "unshifted_sink": false,
         | 
| 1965 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1966 | 
            +
                            "window_length": null
         | 
| 1967 | 
            +
                        },
         | 
| 1968 | 
            +
                        "ffn": {
         | 
| 1969 | 
            +
                            "ffn_mult": null,
         | 
| 1970 | 
            +
                            "no_op": true,
         | 
| 1971 | 
            +
                            "replace_with_linear": false,
         | 
| 1972 | 
            +
                            "sparsify": null
         | 
| 1973 | 
            +
                        }
         | 
| 1974 | 
            +
                    },
         | 
| 1975 | 
            +
                    {
         | 
| 1976 | 
            +
                        "attention": {
         | 
| 1977 | 
            +
                            "n_heads_in_group": null,
         | 
| 1978 | 
            +
                            "no_op": true,
         | 
| 1979 | 
            +
                            "num_sink_tokens": null,
         | 
| 1980 | 
            +
                            "replace_with_linear": false,
         | 
| 1981 | 
            +
                            "sparsify": null,
         | 
| 1982 | 
            +
                            "unshifted_sink": false,
         | 
| 1983 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 1984 | 
            +
                            "window_length": null
         | 
| 1985 | 
            +
                        },
         | 
| 1986 | 
            +
                        "ffn": {
         | 
| 1987 | 
            +
                            "ffn_mult": null,
         | 
| 1988 | 
            +
                            "no_op": true,
         | 
| 1989 | 
            +
                            "replace_with_linear": false,
         | 
| 1990 | 
            +
                            "sparsify": null
         | 
| 1991 | 
            +
                        }
         | 
| 1992 | 
            +
                    },
         | 
| 1993 | 
            +
                    {
         | 
| 1994 | 
            +
                        "attention": {
         | 
| 1995 | 
            +
                            "n_heads_in_group": null,
         | 
| 1996 | 
            +
                            "no_op": true,
         | 
| 1997 | 
            +
                            "num_sink_tokens": null,
         | 
| 1998 | 
            +
                            "replace_with_linear": false,
         | 
| 1999 | 
            +
                            "sparsify": null,
         | 
| 2000 | 
            +
                            "unshifted_sink": false,
         | 
| 2001 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2002 | 
            +
                            "window_length": null
         | 
| 2003 | 
            +
                        },
         | 
| 2004 | 
            +
                        "ffn": {
         | 
| 2005 | 
            +
                            "ffn_mult": null,
         | 
| 2006 | 
            +
                            "no_op": true,
         | 
| 2007 | 
            +
                            "replace_with_linear": false,
         | 
| 2008 | 
            +
                            "sparsify": null
         | 
| 2009 | 
            +
                        }
         | 
| 2010 | 
            +
                    },
         | 
| 2011 | 
            +
                    {
         | 
| 2012 | 
            +
                        "attention": {
         | 
| 2013 | 
            +
                            "n_heads_in_group": null,
         | 
| 2014 | 
            +
                            "no_op": true,
         | 
| 2015 | 
            +
                            "num_sink_tokens": null,
         | 
| 2016 | 
            +
                            "replace_with_linear": false,
         | 
| 2017 | 
            +
                            "sparsify": null,
         | 
| 2018 | 
            +
                            "unshifted_sink": false,
         | 
| 2019 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2020 | 
            +
                            "window_length": null
         | 
| 2021 | 
            +
                        },
         | 
| 2022 | 
            +
                        "ffn": {
         | 
| 2023 | 
            +
                            "ffn_mult": null,
         | 
| 2024 | 
            +
                            "no_op": true,
         | 
| 2025 | 
            +
                            "replace_with_linear": false,
         | 
| 2026 | 
            +
                            "sparsify": null
         | 
| 2027 | 
            +
                        }
         | 
| 2028 | 
            +
                    },
         | 
| 2029 | 
            +
                    {
         | 
| 2030 | 
            +
                        "attention": {
         | 
| 2031 | 
            +
                            "n_heads_in_group": null,
         | 
| 2032 | 
            +
                            "no_op": true,
         | 
| 2033 | 
            +
                            "num_sink_tokens": null,
         | 
| 2034 | 
            +
                            "replace_with_linear": false,
         | 
| 2035 | 
            +
                            "sparsify": null,
         | 
| 2036 | 
            +
                            "unshifted_sink": false,
         | 
| 2037 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2038 | 
            +
                            "window_length": null
         | 
| 2039 | 
            +
                        },
         | 
| 2040 | 
            +
                        "ffn": {
         | 
| 2041 | 
            +
                            "ffn_mult": null,
         | 
| 2042 | 
            +
                            "no_op": true,
         | 
| 2043 | 
            +
                            "replace_with_linear": false,
         | 
| 2044 | 
            +
                            "sparsify": null
         | 
| 2045 | 
            +
                        }
         | 
| 2046 | 
            +
                    },
         | 
| 2047 | 
            +
                    {
         | 
| 2048 | 
            +
                        "attention": {
         | 
| 2049 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2050 | 
            +
                            "no_op": false,
         | 
| 2051 | 
            +
                            "num_sink_tokens": null,
         | 
| 2052 | 
            +
                            "replace_with_linear": false,
         | 
| 2053 | 
            +
                            "sparsify": null,
         | 
| 2054 | 
            +
                            "unshifted_sink": false,
         | 
| 2055 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2056 | 
            +
                            "window_length": null
         | 
| 2057 | 
            +
                        },
         | 
| 2058 | 
            +
                        "ffn": {
         | 
| 2059 | 
            +
                            "ffn_mult": 2.925,
         | 
| 2060 | 
            +
                            "no_op": false,
         | 
| 2061 | 
            +
                            "replace_with_linear": false,
         | 
| 2062 | 
            +
                            "sparsify": null
         | 
| 2063 | 
            +
                        }
         | 
| 2064 | 
            +
                    },
         | 
| 2065 | 
            +
                    {
         | 
| 2066 | 
            +
                        "attention": {
         | 
| 2067 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2068 | 
            +
                            "no_op": false,
         | 
| 2069 | 
            +
                            "num_sink_tokens": null,
         | 
| 2070 | 
            +
                            "replace_with_linear": false,
         | 
| 2071 | 
            +
                            "sparsify": null,
         | 
| 2072 | 
            +
                            "unshifted_sink": false,
         | 
| 2073 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2074 | 
            +
                            "window_length": null
         | 
| 2075 | 
            +
                        },
         | 
| 2076 | 
            +
                        "ffn": {
         | 
| 2077 | 
            +
                            "ffn_mult": 4.875,
         | 
| 2078 | 
            +
                            "no_op": false,
         | 
| 2079 | 
            +
                            "replace_with_linear": false,
         | 
| 2080 | 
            +
                            "sparsify": null
         | 
| 2081 | 
            +
                        }
         | 
| 2082 | 
            +
                    },
         | 
| 2083 | 
            +
                    {
         | 
| 2084 | 
            +
                        "attention": {
         | 
| 2085 | 
            +
                            "n_heads_in_group": null,
         | 
| 2086 | 
            +
                            "no_op": true,
         | 
| 2087 | 
            +
                            "num_sink_tokens": null,
         | 
| 2088 | 
            +
                            "replace_with_linear": false,
         | 
| 2089 | 
            +
                            "sparsify": null,
         | 
| 2090 | 
            +
                            "unshifted_sink": false,
         | 
| 2091 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2092 | 
            +
                            "window_length": null
         | 
| 2093 | 
            +
                        },
         | 
| 2094 | 
            +
                        "ffn": {
         | 
| 2095 | 
            +
                            "ffn_mult": 4.875,
         | 
| 2096 | 
            +
                            "no_op": false,
         | 
| 2097 | 
            +
                            "replace_with_linear": false,
         | 
| 2098 | 
            +
                            "sparsify": null
         | 
| 2099 | 
            +
                        }
         | 
| 2100 | 
            +
                    },
         | 
| 2101 | 
            +
                    {
         | 
| 2102 | 
            +
                        "attention": {
         | 
| 2103 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2104 | 
            +
                            "no_op": false,
         | 
| 2105 | 
            +
                            "num_sink_tokens": null,
         | 
| 2106 | 
            +
                            "replace_with_linear": false,
         | 
| 2107 | 
            +
                            "sparsify": null,
         | 
| 2108 | 
            +
                            "unshifted_sink": false,
         | 
| 2109 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2110 | 
            +
                            "window_length": null
         | 
| 2111 | 
            +
                        },
         | 
| 2112 | 
            +
                        "ffn": {
         | 
| 2113 | 
            +
                            "ffn_mult": 4.875,
         | 
| 2114 | 
            +
                            "no_op": false,
         | 
| 2115 | 
            +
                            "replace_with_linear": false,
         | 
| 2116 | 
            +
                            "sparsify": null
         | 
| 2117 | 
            +
                        }
         | 
| 2118 | 
            +
                    },
         | 
| 2119 | 
            +
                    {
         | 
| 2120 | 
            +
                        "attention": {
         | 
| 2121 | 
            +
                            "n_heads_in_group": null,
         | 
| 2122 | 
            +
                            "no_op": true,
         | 
| 2123 | 
            +
                            "num_sink_tokens": null,
         | 
| 2124 | 
            +
                            "replace_with_linear": false,
         | 
| 2125 | 
            +
                            "sparsify": null,
         | 
| 2126 | 
            +
                            "unshifted_sink": false,
         | 
| 2127 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2128 | 
            +
                            "window_length": null
         | 
| 2129 | 
            +
                        },
         | 
| 2130 | 
            +
                        "ffn": {
         | 
| 2131 | 
            +
                            "ffn_mult": null,
         | 
| 2132 | 
            +
                            "no_op": true,
         | 
| 2133 | 
            +
                            "replace_with_linear": false,
         | 
| 2134 | 
            +
                            "sparsify": null
         | 
| 2135 | 
            +
                        }
         | 
| 2136 | 
            +
                    },
         | 
| 2137 | 
            +
                    {
         | 
| 2138 | 
            +
                        "attention": {
         | 
| 2139 | 
            +
                            "n_heads_in_group": null,
         | 
| 2140 | 
            +
                            "no_op": true,
         | 
| 2141 | 
            +
                            "num_sink_tokens": null,
         | 
| 2142 | 
            +
                            "replace_with_linear": false,
         | 
| 2143 | 
            +
                            "sparsify": null,
         | 
| 2144 | 
            +
                            "unshifted_sink": false,
         | 
| 2145 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2146 | 
            +
                            "window_length": null
         | 
| 2147 | 
            +
                        },
         | 
| 2148 | 
            +
                        "ffn": {
         | 
| 2149 | 
            +
                            "ffn_mult": null,
         | 
| 2150 | 
            +
                            "no_op": true,
         | 
| 2151 | 
            +
                            "replace_with_linear": false,
         | 
| 2152 | 
            +
                            "sparsify": null
         | 
| 2153 | 
            +
                        }
         | 
| 2154 | 
            +
                    },
         | 
| 2155 | 
            +
                    {
         | 
| 2156 | 
            +
                        "attention": {
         | 
| 2157 | 
            +
                            "n_heads_in_group": null,
         | 
| 2158 | 
            +
                            "no_op": true,
         | 
| 2159 | 
            +
                            "num_sink_tokens": null,
         | 
| 2160 | 
            +
                            "replace_with_linear": false,
         | 
| 2161 | 
            +
                            "sparsify": null,
         | 
| 2162 | 
            +
                            "unshifted_sink": false,
         | 
| 2163 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2164 | 
            +
                            "window_length": null
         | 
| 2165 | 
            +
                        },
         | 
| 2166 | 
            +
                        "ffn": {
         | 
| 2167 | 
            +
                            "ffn_mult": null,
         | 
| 2168 | 
            +
                            "no_op": true,
         | 
| 2169 | 
            +
                            "replace_with_linear": false,
         | 
| 2170 | 
            +
                            "sparsify": null
         | 
| 2171 | 
            +
                        }
         | 
| 2172 | 
            +
                    },
         | 
| 2173 | 
            +
                    {
         | 
| 2174 | 
            +
                        "attention": {
         | 
| 2175 | 
            +
                            "n_heads_in_group": null,
         | 
| 2176 | 
            +
                            "no_op": true,
         | 
| 2177 | 
            +
                            "num_sink_tokens": null,
         | 
| 2178 | 
            +
                            "replace_with_linear": false,
         | 
| 2179 | 
            +
                            "sparsify": null,
         | 
| 2180 | 
            +
                            "unshifted_sink": false,
         | 
| 2181 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2182 | 
            +
                            "window_length": null
         | 
| 2183 | 
            +
                        },
         | 
| 2184 | 
            +
                        "ffn": {
         | 
| 2185 | 
            +
                            "ffn_mult": null,
         | 
| 2186 | 
            +
                            "no_op": true,
         | 
| 2187 | 
            +
                            "replace_with_linear": false,
         | 
| 2188 | 
            +
                            "sparsify": null
         | 
| 2189 | 
            +
                        }
         | 
| 2190 | 
            +
                    },
         | 
| 2191 | 
            +
                    {
         | 
| 2192 | 
            +
                        "attention": {
         | 
| 2193 | 
            +
                            "n_heads_in_group": null,
         | 
| 2194 | 
            +
                            "no_op": true,
         | 
| 2195 | 
            +
                            "num_sink_tokens": null,
         | 
| 2196 | 
            +
                            "replace_with_linear": false,
         | 
| 2197 | 
            +
                            "sparsify": null,
         | 
| 2198 | 
            +
                            "unshifted_sink": false,
         | 
| 2199 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2200 | 
            +
                            "window_length": null
         | 
| 2201 | 
            +
                        },
         | 
| 2202 | 
            +
                        "ffn": {
         | 
| 2203 | 
            +
                            "ffn_mult": null,
         | 
| 2204 | 
            +
                            "no_op": true,
         | 
| 2205 | 
            +
                            "replace_with_linear": false,
         | 
| 2206 | 
            +
                            "sparsify": null
         | 
| 2207 | 
            +
                        }
         | 
| 2208 | 
            +
                    },
         | 
| 2209 | 
            +
                    {
         | 
| 2210 | 
            +
                        "attention": {
         | 
| 2211 | 
            +
                            "n_heads_in_group": null,
         | 
| 2212 | 
            +
                            "no_op": true,
         | 
| 2213 | 
            +
                            "num_sink_tokens": null,
         | 
| 2214 | 
            +
                            "replace_with_linear": false,
         | 
| 2215 | 
            +
                            "sparsify": null,
         | 
| 2216 | 
            +
                            "unshifted_sink": false,
         | 
| 2217 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2218 | 
            +
                            "window_length": null
         | 
| 2219 | 
            +
                        },
         | 
| 2220 | 
            +
                        "ffn": {
         | 
| 2221 | 
            +
                            "ffn_mult": null,
         | 
| 2222 | 
            +
                            "no_op": true,
         | 
| 2223 | 
            +
                            "replace_with_linear": false,
         | 
| 2224 | 
            +
                            "sparsify": null
         | 
| 2225 | 
            +
                        }
         | 
| 2226 | 
            +
                    },
         | 
| 2227 | 
            +
                    {
         | 
| 2228 | 
            +
                        "attention": {
         | 
| 2229 | 
            +
                            "n_heads_in_group": null,
         | 
| 2230 | 
            +
                            "no_op": true,
         | 
| 2231 | 
            +
                            "num_sink_tokens": null,
         | 
| 2232 | 
            +
                            "replace_with_linear": false,
         | 
| 2233 | 
            +
                            "sparsify": null,
         | 
| 2234 | 
            +
                            "unshifted_sink": false,
         | 
| 2235 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2236 | 
            +
                            "window_length": null
         | 
| 2237 | 
            +
                        },
         | 
| 2238 | 
            +
                        "ffn": {
         | 
| 2239 | 
            +
                            "ffn_mult": null,
         | 
| 2240 | 
            +
                            "no_op": true,
         | 
| 2241 | 
            +
                            "replace_with_linear": false,
         | 
| 2242 | 
            +
                            "sparsify": null
         | 
| 2243 | 
            +
                        }
         | 
| 2244 | 
            +
                    },
         | 
| 2245 | 
            +
                    {
         | 
| 2246 | 
            +
                        "attention": {
         | 
| 2247 | 
            +
                            "n_heads_in_group": null,
         | 
| 2248 | 
            +
                            "no_op": true,
         | 
| 2249 | 
            +
                            "num_sink_tokens": null,
         | 
| 2250 | 
            +
                            "replace_with_linear": false,
         | 
| 2251 | 
            +
                            "sparsify": null,
         | 
| 2252 | 
            +
                            "unshifted_sink": false,
         | 
| 2253 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2254 | 
            +
                            "window_length": null
         | 
| 2255 | 
            +
                        },
         | 
| 2256 | 
            +
                        "ffn": {
         | 
| 2257 | 
            +
                            "ffn_mult": null,
         | 
| 2258 | 
            +
                            "no_op": true,
         | 
| 2259 | 
            +
                            "replace_with_linear": false,
         | 
| 2260 | 
            +
                            "sparsify": null
         | 
| 2261 | 
            +
                        }
         | 
| 2262 | 
            +
                    },
         | 
| 2263 | 
            +
                    {
         | 
| 2264 | 
            +
                        "attention": {
         | 
| 2265 | 
            +
                            "n_heads_in_group": null,
         | 
| 2266 | 
            +
                            "no_op": true,
         | 
| 2267 | 
            +
                            "num_sink_tokens": null,
         | 
| 2268 | 
            +
                            "replace_with_linear": false,
         | 
| 2269 | 
            +
                            "sparsify": null,
         | 
| 2270 | 
            +
                            "unshifted_sink": false,
         | 
| 2271 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2272 | 
            +
                            "window_length": null
         | 
| 2273 | 
            +
                        },
         | 
| 2274 | 
            +
                        "ffn": {
         | 
| 2275 | 
            +
                            "ffn_mult": 36.5625,
         | 
| 2276 | 
            +
                            "no_op": false,
         | 
| 2277 | 
            +
                            "replace_with_linear": false,
         | 
| 2278 | 
            +
                            "sparsify": null
         | 
| 2279 | 
            +
                        }
         | 
| 2280 | 
            +
                    },
         | 
| 2281 | 
            +
                    {
         | 
| 2282 | 
            +
                        "attention": {
         | 
| 2283 | 
            +
                            "n_heads_in_group": null,
         | 
| 2284 | 
            +
                            "no_op": true,
         | 
| 2285 | 
            +
                            "num_sink_tokens": null,
         | 
| 2286 | 
            +
                            "replace_with_linear": false,
         | 
| 2287 | 
            +
                            "sparsify": null,
         | 
| 2288 | 
            +
                            "unshifted_sink": false,
         | 
| 2289 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2290 | 
            +
                            "window_length": null
         | 
| 2291 | 
            +
                        },
         | 
| 2292 | 
            +
                        "ffn": {
         | 
| 2293 | 
            +
                            "ffn_mult": null,
         | 
| 2294 | 
            +
                            "no_op": true,
         | 
| 2295 | 
            +
                            "replace_with_linear": false,
         | 
| 2296 | 
            +
                            "sparsify": null
         | 
| 2297 | 
            +
                        }
         | 
| 2298 | 
            +
                    },
         | 
| 2299 | 
            +
                    {
         | 
| 2300 | 
            +
                        "attention": {
         | 
| 2301 | 
            +
                            "n_heads_in_group": null,
         | 
| 2302 | 
            +
                            "no_op": true,
         | 
| 2303 | 
            +
                            "num_sink_tokens": null,
         | 
| 2304 | 
            +
                            "replace_with_linear": false,
         | 
| 2305 | 
            +
                            "sparsify": null,
         | 
| 2306 | 
            +
                            "unshifted_sink": false,
         | 
| 2307 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2308 | 
            +
                            "window_length": null
         | 
| 2309 | 
            +
                        },
         | 
| 2310 | 
            +
                        "ffn": {
         | 
| 2311 | 
            +
                            "ffn_mult": null,
         | 
| 2312 | 
            +
                            "no_op": true,
         | 
| 2313 | 
            +
                            "replace_with_linear": false,
         | 
| 2314 | 
            +
                            "sparsify": null
         | 
| 2315 | 
            +
                        }
         | 
| 2316 | 
            +
                    },
         | 
| 2317 | 
            +
                    {
         | 
| 2318 | 
            +
                        "attention": {
         | 
| 2319 | 
            +
                            "n_heads_in_group": null,
         | 
| 2320 | 
            +
                            "no_op": true,
         | 
| 2321 | 
            +
                            "num_sink_tokens": null,
         | 
| 2322 | 
            +
                            "replace_with_linear": false,
         | 
| 2323 | 
            +
                            "sparsify": null,
         | 
| 2324 | 
            +
                            "unshifted_sink": false,
         | 
| 2325 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2326 | 
            +
                            "window_length": null
         | 
| 2327 | 
            +
                        },
         | 
| 2328 | 
            +
                        "ffn": {
         | 
| 2329 | 
            +
                            "ffn_mult": null,
         | 
| 2330 | 
            +
                            "no_op": true,
         | 
| 2331 | 
            +
                            "replace_with_linear": false,
         | 
| 2332 | 
            +
                            "sparsify": null
         | 
| 2333 | 
            +
                        }
         | 
| 2334 | 
            +
                    },
         | 
| 2335 | 
            +
                    {
         | 
| 2336 | 
            +
                        "attention": {
         | 
| 2337 | 
            +
                            "n_heads_in_group": null,
         | 
| 2338 | 
            +
                            "no_op": true,
         | 
| 2339 | 
            +
                            "num_sink_tokens": null,
         | 
| 2340 | 
            +
                            "replace_with_linear": false,
         | 
| 2341 | 
            +
                            "sparsify": null,
         | 
| 2342 | 
            +
                            "unshifted_sink": false,
         | 
| 2343 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2344 | 
            +
                            "window_length": null
         | 
| 2345 | 
            +
                        },
         | 
| 2346 | 
            +
                        "ffn": {
         | 
| 2347 | 
            +
                            "ffn_mult": null,
         | 
| 2348 | 
            +
                            "no_op": true,
         | 
| 2349 | 
            +
                            "replace_with_linear": false,
         | 
| 2350 | 
            +
                            "sparsify": null
         | 
| 2351 | 
            +
                        }
         | 
| 2352 | 
            +
                    },
         | 
| 2353 | 
            +
                    {
         | 
| 2354 | 
            +
                        "attention": {
         | 
| 2355 | 
            +
                            "n_heads_in_group": null,
         | 
| 2356 | 
            +
                            "no_op": true,
         | 
| 2357 | 
            +
                            "num_sink_tokens": null,
         | 
| 2358 | 
            +
                            "replace_with_linear": false,
         | 
| 2359 | 
            +
                            "sparsify": null,
         | 
| 2360 | 
            +
                            "unshifted_sink": false,
         | 
| 2361 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2362 | 
            +
                            "window_length": null
         | 
| 2363 | 
            +
                        },
         | 
| 2364 | 
            +
                        "ffn": {
         | 
| 2365 | 
            +
                            "ffn_mult": null,
         | 
| 2366 | 
            +
                            "no_op": true,
         | 
| 2367 | 
            +
                            "replace_with_linear": false,
         | 
| 2368 | 
            +
                            "sparsify": null
         | 
| 2369 | 
            +
                        }
         | 
| 2370 | 
            +
                    },
         | 
| 2371 | 
            +
                    {
         | 
| 2372 | 
            +
                        "attention": {
         | 
| 2373 | 
            +
                            "n_heads_in_group": null,
         | 
| 2374 | 
            +
                            "no_op": true,
         | 
| 2375 | 
            +
                            "num_sink_tokens": null,
         | 
| 2376 | 
            +
                            "replace_with_linear": false,
         | 
| 2377 | 
            +
                            "sparsify": null,
         | 
| 2378 | 
            +
                            "unshifted_sink": false,
         | 
| 2379 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2380 | 
            +
                            "window_length": null
         | 
| 2381 | 
            +
                        },
         | 
| 2382 | 
            +
                        "ffn": {
         | 
| 2383 | 
            +
                            "ffn_mult": null,
         | 
| 2384 | 
            +
                            "no_op": true,
         | 
| 2385 | 
            +
                            "replace_with_linear": false,
         | 
| 2386 | 
            +
                            "sparsify": null
         | 
| 2387 | 
            +
                        }
         | 
| 2388 | 
            +
                    },
         | 
| 2389 | 
            +
                    {
         | 
| 2390 | 
            +
                        "attention": {
         | 
| 2391 | 
            +
                            "n_heads_in_group": null,
         | 
| 2392 | 
            +
                            "no_op": true,
         | 
| 2393 | 
            +
                            "num_sink_tokens": null,
         | 
| 2394 | 
            +
                            "replace_with_linear": false,
         | 
| 2395 | 
            +
                            "sparsify": null,
         | 
| 2396 | 
            +
                            "unshifted_sink": false,
         | 
| 2397 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2398 | 
            +
                            "window_length": null
         | 
| 2399 | 
            +
                        },
         | 
| 2400 | 
            +
                        "ffn": {
         | 
| 2401 | 
            +
                            "ffn_mult": null,
         | 
| 2402 | 
            +
                            "no_op": true,
         | 
| 2403 | 
            +
                            "replace_with_linear": false,
         | 
| 2404 | 
            +
                            "sparsify": null
         | 
| 2405 | 
            +
                        }
         | 
| 2406 | 
            +
                    },
         | 
| 2407 | 
            +
                    {
         | 
| 2408 | 
            +
                        "attention": {
         | 
| 2409 | 
            +
                            "n_heads_in_group": null,
         | 
| 2410 | 
            +
                            "no_op": true,
         | 
| 2411 | 
            +
                            "num_sink_tokens": null,
         | 
| 2412 | 
            +
                            "replace_with_linear": false,
         | 
| 2413 | 
            +
                            "sparsify": null,
         | 
| 2414 | 
            +
                            "unshifted_sink": false,
         | 
| 2415 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2416 | 
            +
                            "window_length": null
         | 
| 2417 | 
            +
                        },
         | 
| 2418 | 
            +
                        "ffn": {
         | 
| 2419 | 
            +
                            "ffn_mult": null,
         | 
| 2420 | 
            +
                            "no_op": true,
         | 
| 2421 | 
            +
                            "replace_with_linear": false,
         | 
| 2422 | 
            +
                            "sparsify": null
         | 
| 2423 | 
            +
                        }
         | 
| 2424 | 
            +
                    },
         | 
| 2425 | 
            +
                    {
         | 
| 2426 | 
            +
                        "attention": {
         | 
| 2427 | 
            +
                            "n_heads_in_group": null,
         | 
| 2428 | 
            +
                            "no_op": true,
         | 
| 2429 | 
            +
                            "num_sink_tokens": null,
         | 
| 2430 | 
            +
                            "replace_with_linear": false,
         | 
| 2431 | 
            +
                            "sparsify": null,
         | 
| 2432 | 
            +
                            "unshifted_sink": false,
         | 
| 2433 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2434 | 
            +
                            "window_length": null
         | 
| 2435 | 
            +
                        },
         | 
| 2436 | 
            +
                        "ffn": {
         | 
| 2437 | 
            +
                            "ffn_mult": 39.0,
         | 
| 2438 | 
            +
                            "no_op": false,
         | 
| 2439 | 
            +
                            "replace_with_linear": false,
         | 
| 2440 | 
            +
                            "sparsify": null
         | 
| 2441 | 
            +
                        }
         | 
| 2442 | 
            +
                    },
         | 
| 2443 | 
            +
                    {
         | 
| 2444 | 
            +
                        "attention": {
         | 
| 2445 | 
            +
                            "n_heads_in_group": null,
         | 
| 2446 | 
            +
                            "no_op": true,
         | 
| 2447 | 
            +
                            "num_sink_tokens": null,
         | 
| 2448 | 
            +
                            "replace_with_linear": false,
         | 
| 2449 | 
            +
                            "sparsify": null,
         | 
| 2450 | 
            +
                            "unshifted_sink": false,
         | 
| 2451 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2452 | 
            +
                            "window_length": null
         | 
| 2453 | 
            +
                        },
         | 
| 2454 | 
            +
                        "ffn": {
         | 
| 2455 | 
            +
                            "ffn_mult": null,
         | 
| 2456 | 
            +
                            "no_op": true,
         | 
| 2457 | 
            +
                            "replace_with_linear": false,
         | 
| 2458 | 
            +
                            "sparsify": null
         | 
| 2459 | 
            +
                        }
         | 
| 2460 | 
            +
                    },
         | 
| 2461 | 
            +
                    {
         | 
| 2462 | 
            +
                        "attention": {
         | 
| 2463 | 
            +
                            "n_heads_in_group": null,
         | 
| 2464 | 
            +
                            "no_op": true,
         | 
| 2465 | 
            +
                            "num_sink_tokens": null,
         | 
| 2466 | 
            +
                            "replace_with_linear": false,
         | 
| 2467 | 
            +
                            "sparsify": null,
         | 
| 2468 | 
            +
                            "unshifted_sink": false,
         | 
| 2469 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2470 | 
            +
                            "window_length": null
         | 
| 2471 | 
            +
                        },
         | 
| 2472 | 
            +
                        "ffn": {
         | 
| 2473 | 
            +
                            "ffn_mult": null,
         | 
| 2474 | 
            +
                            "no_op": true,
         | 
| 2475 | 
            +
                            "replace_with_linear": false,
         | 
| 2476 | 
            +
                            "sparsify": null
         | 
| 2477 | 
            +
                        }
         | 
| 2478 | 
            +
                    },
         | 
| 2479 | 
            +
                    {
         | 
| 2480 | 
            +
                        "attention": {
         | 
| 2481 | 
            +
                            "n_heads_in_group": null,
         | 
| 2482 | 
            +
                            "no_op": true,
         | 
| 2483 | 
            +
                            "num_sink_tokens": null,
         | 
| 2484 | 
            +
                            "replace_with_linear": false,
         | 
| 2485 | 
            +
                            "sparsify": null,
         | 
| 2486 | 
            +
                            "unshifted_sink": false,
         | 
| 2487 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2488 | 
            +
                            "window_length": null
         | 
| 2489 | 
            +
                        },
         | 
| 2490 | 
            +
                        "ffn": {
         | 
| 2491 | 
            +
                            "ffn_mult": null,
         | 
| 2492 | 
            +
                            "no_op": true,
         | 
| 2493 | 
            +
                            "replace_with_linear": false,
         | 
| 2494 | 
            +
                            "sparsify": null
         | 
| 2495 | 
            +
                        }
         | 
| 2496 | 
            +
                    },
         | 
| 2497 | 
            +
                    {
         | 
| 2498 | 
            +
                        "attention": {
         | 
| 2499 | 
            +
                            "n_heads_in_group": null,
         | 
| 2500 | 
            +
                            "no_op": true,
         | 
| 2501 | 
            +
                            "num_sink_tokens": null,
         | 
| 2502 | 
            +
                            "replace_with_linear": false,
         | 
| 2503 | 
            +
                            "sparsify": null,
         | 
| 2504 | 
            +
                            "unshifted_sink": false,
         | 
| 2505 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2506 | 
            +
                            "window_length": null
         | 
| 2507 | 
            +
                        },
         | 
| 2508 | 
            +
                        "ffn": {
         | 
| 2509 | 
            +
                            "ffn_mult": null,
         | 
| 2510 | 
            +
                            "no_op": true,
         | 
| 2511 | 
            +
                            "replace_with_linear": false,
         | 
| 2512 | 
            +
                            "sparsify": null
         | 
| 2513 | 
            +
                        }
         | 
| 2514 | 
            +
                    },
         | 
| 2515 | 
            +
                    {
         | 
| 2516 | 
            +
                        "attention": {
         | 
| 2517 | 
            +
                            "n_heads_in_group": null,
         | 
| 2518 | 
            +
                            "no_op": true,
         | 
| 2519 | 
            +
                            "num_sink_tokens": null,
         | 
| 2520 | 
            +
                            "replace_with_linear": false,
         | 
| 2521 | 
            +
                            "sparsify": null,
         | 
| 2522 | 
            +
                            "unshifted_sink": false,
         | 
| 2523 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2524 | 
            +
                            "window_length": null
         | 
| 2525 | 
            +
                        },
         | 
| 2526 | 
            +
                        "ffn": {
         | 
| 2527 | 
            +
                            "ffn_mult": null,
         | 
| 2528 | 
            +
                            "no_op": true,
         | 
| 2529 | 
            +
                            "replace_with_linear": false,
         | 
| 2530 | 
            +
                            "sparsify": null
         | 
| 2531 | 
            +
                        }
         | 
| 2532 | 
            +
                    },
         | 
| 2533 | 
            +
                    {
         | 
| 2534 | 
            +
                        "attention": {
         | 
| 2535 | 
            +
                            "n_heads_in_group": null,
         | 
| 2536 | 
            +
                            "no_op": true,
         | 
| 2537 | 
            +
                            "num_sink_tokens": null,
         | 
| 2538 | 
            +
                            "replace_with_linear": false,
         | 
| 2539 | 
            +
                            "sparsify": null,
         | 
| 2540 | 
            +
                            "unshifted_sink": false,
         | 
| 2541 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2542 | 
            +
                            "window_length": null
         | 
| 2543 | 
            +
                        },
         | 
| 2544 | 
            +
                        "ffn": {
         | 
| 2545 | 
            +
                            "ffn_mult": null,
         | 
| 2546 | 
            +
                            "no_op": true,
         | 
| 2547 | 
            +
                            "replace_with_linear": false,
         | 
| 2548 | 
            +
                            "sparsify": null
         | 
| 2549 | 
            +
                        }
         | 
| 2550 | 
            +
                    },
         | 
| 2551 | 
            +
                    {
         | 
| 2552 | 
            +
                        "attention": {
         | 
| 2553 | 
            +
                            "n_heads_in_group": null,
         | 
| 2554 | 
            +
                            "no_op": true,
         | 
| 2555 | 
            +
                            "num_sink_tokens": null,
         | 
| 2556 | 
            +
                            "replace_with_linear": false,
         | 
| 2557 | 
            +
                            "sparsify": null,
         | 
| 2558 | 
            +
                            "unshifted_sink": false,
         | 
| 2559 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2560 | 
            +
                            "window_length": null
         | 
| 2561 | 
            +
                        },
         | 
| 2562 | 
            +
                        "ffn": {
         | 
| 2563 | 
            +
                            "ffn_mult": null,
         | 
| 2564 | 
            +
                            "no_op": true,
         | 
| 2565 | 
            +
                            "replace_with_linear": false,
         | 
| 2566 | 
            +
                            "sparsify": null
         | 
| 2567 | 
            +
                        }
         | 
| 2568 | 
            +
                    },
         | 
| 2569 | 
            +
                    {
         | 
| 2570 | 
            +
                        "attention": {
         | 
| 2571 | 
            +
                            "n_heads_in_group": null,
         | 
| 2572 | 
            +
                            "no_op": true,
         | 
| 2573 | 
            +
                            "num_sink_tokens": null,
         | 
| 2574 | 
            +
                            "replace_with_linear": false,
         | 
| 2575 | 
            +
                            "sparsify": null,
         | 
| 2576 | 
            +
                            "unshifted_sink": false,
         | 
| 2577 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2578 | 
            +
                            "window_length": null
         | 
| 2579 | 
            +
                        },
         | 
| 2580 | 
            +
                        "ffn": {
         | 
| 2581 | 
            +
                            "ffn_mult": null,
         | 
| 2582 | 
            +
                            "no_op": true,
         | 
| 2583 | 
            +
                            "replace_with_linear": false,
         | 
| 2584 | 
            +
                            "sparsify": null
         | 
| 2585 | 
            +
                        }
         | 
| 2586 | 
            +
                    },
         | 
| 2587 | 
            +
                    {
         | 
| 2588 | 
            +
                        "attention": {
         | 
| 2589 | 
            +
                            "n_heads_in_group": null,
         | 
| 2590 | 
            +
                            "no_op": true,
         | 
| 2591 | 
            +
                            "num_sink_tokens": null,
         | 
| 2592 | 
            +
                            "replace_with_linear": false,
         | 
| 2593 | 
            +
                            "sparsify": null,
         | 
| 2594 | 
            +
                            "unshifted_sink": false,
         | 
| 2595 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2596 | 
            +
                            "window_length": null
         | 
| 2597 | 
            +
                        },
         | 
| 2598 | 
            +
                        "ffn": {
         | 
| 2599 | 
            +
                            "ffn_mult": 31.40625,
         | 
| 2600 | 
            +
                            "no_op": false,
         | 
| 2601 | 
            +
                            "replace_with_linear": false,
         | 
| 2602 | 
            +
                            "sparsify": null
         | 
| 2603 | 
            +
                        }
         | 
| 2604 | 
            +
                    },
         | 
| 2605 | 
            +
                    {
         | 
| 2606 | 
            +
                        "attention": {
         | 
| 2607 | 
            +
                            "n_heads_in_group": null,
         | 
| 2608 | 
            +
                            "no_op": true,
         | 
| 2609 | 
            +
                            "num_sink_tokens": null,
         | 
| 2610 | 
            +
                            "replace_with_linear": false,
         | 
| 2611 | 
            +
                            "sparsify": null,
         | 
| 2612 | 
            +
                            "unshifted_sink": false,
         | 
| 2613 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2614 | 
            +
                            "window_length": null
         | 
| 2615 | 
            +
                        },
         | 
| 2616 | 
            +
                        "ffn": {
         | 
| 2617 | 
            +
                            "ffn_mult": null,
         | 
| 2618 | 
            +
                            "no_op": true,
         | 
| 2619 | 
            +
                            "replace_with_linear": false,
         | 
| 2620 | 
            +
                            "sparsify": null
         | 
| 2621 | 
            +
                        }
         | 
| 2622 | 
            +
                    },
         | 
| 2623 | 
            +
                    {
         | 
| 2624 | 
            +
                        "attention": {
         | 
| 2625 | 
            +
                            "n_heads_in_group": null,
         | 
| 2626 | 
            +
                            "no_op": true,
         | 
| 2627 | 
            +
                            "num_sink_tokens": null,
         | 
| 2628 | 
            +
                            "replace_with_linear": false,
         | 
| 2629 | 
            +
                            "sparsify": null,
         | 
| 2630 | 
            +
                            "unshifted_sink": false,
         | 
| 2631 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2632 | 
            +
                            "window_length": null
         | 
| 2633 | 
            +
                        },
         | 
| 2634 | 
            +
                        "ffn": {
         | 
| 2635 | 
            +
                            "ffn_mult": null,
         | 
| 2636 | 
            +
                            "no_op": true,
         | 
| 2637 | 
            +
                            "replace_with_linear": false,
         | 
| 2638 | 
            +
                            "sparsify": null
         | 
| 2639 | 
            +
                        }
         | 
| 2640 | 
            +
                    },
         | 
| 2641 | 
            +
                    {
         | 
| 2642 | 
            +
                        "attention": {
         | 
| 2643 | 
            +
                            "n_heads_in_group": null,
         | 
| 2644 | 
            +
                            "no_op": true,
         | 
| 2645 | 
            +
                            "num_sink_tokens": null,
         | 
| 2646 | 
            +
                            "replace_with_linear": false,
         | 
| 2647 | 
            +
                            "sparsify": null,
         | 
| 2648 | 
            +
                            "unshifted_sink": false,
         | 
| 2649 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2650 | 
            +
                            "window_length": null
         | 
| 2651 | 
            +
                        },
         | 
| 2652 | 
            +
                        "ffn": {
         | 
| 2653 | 
            +
                            "ffn_mult": null,
         | 
| 2654 | 
            +
                            "no_op": true,
         | 
| 2655 | 
            +
                            "replace_with_linear": false,
         | 
| 2656 | 
            +
                            "sparsify": null
         | 
| 2657 | 
            +
                        }
         | 
| 2658 | 
            +
                    },
         | 
| 2659 | 
            +
                    {
         | 
| 2660 | 
            +
                        "attention": {
         | 
| 2661 | 
            +
                            "n_heads_in_group": null,
         | 
| 2662 | 
            +
                            "no_op": true,
         | 
| 2663 | 
            +
                            "num_sink_tokens": null,
         | 
| 2664 | 
            +
                            "replace_with_linear": false,
         | 
| 2665 | 
            +
                            "sparsify": null,
         | 
| 2666 | 
            +
                            "unshifted_sink": false,
         | 
| 2667 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2668 | 
            +
                            "window_length": null
         | 
| 2669 | 
            +
                        },
         | 
| 2670 | 
            +
                        "ffn": {
         | 
| 2671 | 
            +
                            "ffn_mult": null,
         | 
| 2672 | 
            +
                            "no_op": true,
         | 
| 2673 | 
            +
                            "replace_with_linear": false,
         | 
| 2674 | 
            +
                            "sparsify": null
         | 
| 2675 | 
            +
                        }
         | 
| 2676 | 
            +
                    },
         | 
| 2677 | 
            +
                    {
         | 
| 2678 | 
            +
                        "attention": {
         | 
| 2679 | 
            +
                            "n_heads_in_group": null,
         | 
| 2680 | 
            +
                            "no_op": true,
         | 
| 2681 | 
            +
                            "num_sink_tokens": null,
         | 
| 2682 | 
            +
                            "replace_with_linear": false,
         | 
| 2683 | 
            +
                            "sparsify": null,
         | 
| 2684 | 
            +
                            "unshifted_sink": false,
         | 
| 2685 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2686 | 
            +
                            "window_length": null
         | 
| 2687 | 
            +
                        },
         | 
| 2688 | 
            +
                        "ffn": {
         | 
| 2689 | 
            +
                            "ffn_mult": null,
         | 
| 2690 | 
            +
                            "no_op": true,
         | 
| 2691 | 
            +
                            "replace_with_linear": false,
         | 
| 2692 | 
            +
                            "sparsify": null
         | 
| 2693 | 
            +
                        }
         | 
| 2694 | 
            +
                    },
         | 
| 2695 | 
            +
                    {
         | 
| 2696 | 
            +
                        "attention": {
         | 
| 2697 | 
            +
                            "n_heads_in_group": null,
         | 
| 2698 | 
            +
                            "no_op": true,
         | 
| 2699 | 
            +
                            "num_sink_tokens": null,
         | 
| 2700 | 
            +
                            "replace_with_linear": false,
         | 
| 2701 | 
            +
                            "sparsify": null,
         | 
| 2702 | 
            +
                            "unshifted_sink": false,
         | 
| 2703 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2704 | 
            +
                            "window_length": null
         | 
| 2705 | 
            +
                        },
         | 
| 2706 | 
            +
                        "ffn": {
         | 
| 2707 | 
            +
                            "ffn_mult": 27.5625,
         | 
| 2708 | 
            +
                            "no_op": false,
         | 
| 2709 | 
            +
                            "replace_with_linear": false,
         | 
| 2710 | 
            +
                            "sparsify": null
         | 
| 2711 | 
            +
                        }
         | 
| 2712 | 
            +
                    },
         | 
| 2713 | 
            +
                    {
         | 
| 2714 | 
            +
                        "attention": {
         | 
| 2715 | 
            +
                            "n_heads_in_group": null,
         | 
| 2716 | 
            +
                            "no_op": true,
         | 
| 2717 | 
            +
                            "num_sink_tokens": null,
         | 
| 2718 | 
            +
                            "replace_with_linear": false,
         | 
| 2719 | 
            +
                            "sparsify": null,
         | 
| 2720 | 
            +
                            "unshifted_sink": false,
         | 
| 2721 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2722 | 
            +
                            "window_length": null
         | 
| 2723 | 
            +
                        },
         | 
| 2724 | 
            +
                        "ffn": {
         | 
| 2725 | 
            +
                            "ffn_mult": 1.95,
         | 
| 2726 | 
            +
                            "no_op": false,
         | 
| 2727 | 
            +
                            "replace_with_linear": false,
         | 
| 2728 | 
            +
                            "sparsify": null
         | 
| 2729 | 
            +
                        }
         | 
| 2730 | 
            +
                    },
         | 
| 2731 | 
            +
                    {
         | 
| 2732 | 
            +
                        "attention": {
         | 
| 2733 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2734 | 
            +
                            "no_op": false,
         | 
| 2735 | 
            +
                            "num_sink_tokens": null,
         | 
| 2736 | 
            +
                            "replace_with_linear": false,
         | 
| 2737 | 
            +
                            "sparsify": null,
         | 
| 2738 | 
            +
                            "unshifted_sink": false,
         | 
| 2739 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2740 | 
            +
                            "window_length": null
         | 
| 2741 | 
            +
                        },
         | 
| 2742 | 
            +
                        "ffn": {
         | 
| 2743 | 
            +
                            "ffn_mult": 1.95,
         | 
| 2744 | 
            +
                            "no_op": false,
         | 
| 2745 | 
            +
                            "replace_with_linear": false,
         | 
| 2746 | 
            +
                            "sparsify": null
         | 
| 2747 | 
            +
                        }
         | 
| 2748 | 
            +
                    },
         | 
| 2749 | 
            +
                    {
         | 
| 2750 | 
            +
                        "attention": {
         | 
| 2751 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2752 | 
            +
                            "no_op": false,
         | 
| 2753 | 
            +
                            "num_sink_tokens": null,
         | 
| 2754 | 
            +
                            "replace_with_linear": false,
         | 
| 2755 | 
            +
                            "sparsify": null,
         | 
| 2756 | 
            +
                            "unshifted_sink": false,
         | 
| 2757 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2758 | 
            +
                            "window_length": null
         | 
| 2759 | 
            +
                        },
         | 
| 2760 | 
            +
                        "ffn": {
         | 
| 2761 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 2762 | 
            +
                            "no_op": false,
         | 
| 2763 | 
            +
                            "replace_with_linear": false,
         | 
| 2764 | 
            +
                            "sparsify": null
         | 
| 2765 | 
            +
                        }
         | 
| 2766 | 
            +
                    },
         | 
| 2767 | 
            +
                    {
         | 
| 2768 | 
            +
                        "attention": {
         | 
| 2769 | 
            +
                            "n_heads_in_group": null,
         | 
| 2770 | 
            +
                            "no_op": true,
         | 
| 2771 | 
            +
                            "num_sink_tokens": null,
         | 
| 2772 | 
            +
                            "replace_with_linear": false,
         | 
| 2773 | 
            +
                            "sparsify": null,
         | 
| 2774 | 
            +
                            "unshifted_sink": false,
         | 
| 2775 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2776 | 
            +
                            "window_length": null
         | 
| 2777 | 
            +
                        },
         | 
| 2778 | 
            +
                        "ffn": {
         | 
| 2779 | 
            +
                            "ffn_mult": null,
         | 
| 2780 | 
            +
                            "no_op": true,
         | 
| 2781 | 
            +
                            "replace_with_linear": false,
         | 
| 2782 | 
            +
                            "sparsify": null
         | 
| 2783 | 
            +
                        }
         | 
| 2784 | 
            +
                    },
         | 
| 2785 | 
            +
                    {
         | 
| 2786 | 
            +
                        "attention": {
         | 
| 2787 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2788 | 
            +
                            "no_op": false,
         | 
| 2789 | 
            +
                            "num_sink_tokens": null,
         | 
| 2790 | 
            +
                            "replace_with_linear": false,
         | 
| 2791 | 
            +
                            "sparsify": null,
         | 
| 2792 | 
            +
                            "unshifted_sink": false,
         | 
| 2793 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2794 | 
            +
                            "window_length": null
         | 
| 2795 | 
            +
                        },
         | 
| 2796 | 
            +
                        "ffn": {
         | 
| 2797 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 2798 | 
            +
                            "no_op": false,
         | 
| 2799 | 
            +
                            "replace_with_linear": false,
         | 
| 2800 | 
            +
                            "sparsify": null
         | 
| 2801 | 
            +
                        }
         | 
| 2802 | 
            +
                    },
         | 
| 2803 | 
            +
                    {
         | 
| 2804 | 
            +
                        "attention": {
         | 
| 2805 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2806 | 
            +
                            "no_op": false,
         | 
| 2807 | 
            +
                            "num_sink_tokens": null,
         | 
| 2808 | 
            +
                            "replace_with_linear": false,
         | 
| 2809 | 
            +
                            "sparsify": null,
         | 
| 2810 | 
            +
                            "unshifted_sink": false,
         | 
| 2811 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2812 | 
            +
                            "window_length": null
         | 
| 2813 | 
            +
                        },
         | 
| 2814 | 
            +
                        "ffn": {
         | 
| 2815 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 2816 | 
            +
                            "no_op": false,
         | 
| 2817 | 
            +
                            "replace_with_linear": false,
         | 
| 2818 | 
            +
                            "sparsify": null
         | 
| 2819 | 
            +
                        }
         | 
| 2820 | 
            +
                    },
         | 
| 2821 | 
            +
                    {
         | 
| 2822 | 
            +
                        "attention": {
         | 
| 2823 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2824 | 
            +
                            "no_op": false,
         | 
| 2825 | 
            +
                            "num_sink_tokens": null,
         | 
| 2826 | 
            +
                            "replace_with_linear": false,
         | 
| 2827 | 
            +
                            "sparsify": null,
         | 
| 2828 | 
            +
                            "unshifted_sink": false,
         | 
| 2829 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2830 | 
            +
                            "window_length": null
         | 
| 2831 | 
            +
                        },
         | 
| 2832 | 
            +
                        "ffn": {
         | 
| 2833 | 
            +
                            "ffn_mult": 3.4125,
         | 
| 2834 | 
            +
                            "no_op": false,
         | 
| 2835 | 
            +
                            "replace_with_linear": false,
         | 
| 2836 | 
            +
                            "sparsify": null
         | 
| 2837 | 
            +
                        }
         | 
| 2838 | 
            +
                    },
         | 
| 2839 | 
            +
                    {
         | 
| 2840 | 
            +
                        "attention": {
         | 
| 2841 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2842 | 
            +
                            "no_op": false,
         | 
| 2843 | 
            +
                            "num_sink_tokens": null,
         | 
| 2844 | 
            +
                            "replace_with_linear": false,
         | 
| 2845 | 
            +
                            "sparsify": null,
         | 
| 2846 | 
            +
                            "unshifted_sink": false,
         | 
| 2847 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2848 | 
            +
                            "window_length": null
         | 
| 2849 | 
            +
                        },
         | 
| 2850 | 
            +
                        "ffn": {
         | 
| 2851 | 
            +
                            "ffn_mult": 4.875,
         | 
| 2852 | 
            +
                            "no_op": false,
         | 
| 2853 | 
            +
                            "replace_with_linear": false,
         | 
| 2854 | 
            +
                            "sparsify": null
         | 
| 2855 | 
            +
                        }
         | 
| 2856 | 
            +
                    },
         | 
| 2857 | 
            +
                    {
         | 
| 2858 | 
            +
                        "attention": {
         | 
| 2859 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2860 | 
            +
                            "no_op": false,
         | 
| 2861 | 
            +
                            "num_sink_tokens": null,
         | 
| 2862 | 
            +
                            "replace_with_linear": false,
         | 
| 2863 | 
            +
                            "sparsify": null,
         | 
| 2864 | 
            +
                            "unshifted_sink": false,
         | 
| 2865 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2866 | 
            +
                            "window_length": null
         | 
| 2867 | 
            +
                        },
         | 
| 2868 | 
            +
                        "ffn": {
         | 
| 2869 | 
            +
                            "ffn_mult": 4.875,
         | 
| 2870 | 
            +
                            "no_op": false,
         | 
| 2871 | 
            +
                            "replace_with_linear": false,
         | 
| 2872 | 
            +
                            "sparsify": null
         | 
| 2873 | 
            +
                        }
         | 
| 2874 | 
            +
                    },
         | 
| 2875 | 
            +
                    {
         | 
| 2876 | 
            +
                        "attention": {
         | 
| 2877 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2878 | 
            +
                            "no_op": false,
         | 
| 2879 | 
            +
                            "num_sink_tokens": null,
         | 
| 2880 | 
            +
                            "replace_with_linear": false,
         | 
| 2881 | 
            +
                            "sparsify": null,
         | 
| 2882 | 
            +
                            "unshifted_sink": false,
         | 
| 2883 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2884 | 
            +
                            "window_length": null
         | 
| 2885 | 
            +
                        },
         | 
| 2886 | 
            +
                        "ffn": {
         | 
| 2887 | 
            +
                            "ffn_mult": 4.875,
         | 
| 2888 | 
            +
                            "no_op": false,
         | 
| 2889 | 
            +
                            "replace_with_linear": false,
         | 
| 2890 | 
            +
                            "sparsify": null
         | 
| 2891 | 
            +
                        }
         | 
| 2892 | 
            +
                    },
         | 
| 2893 | 
            +
                    {
         | 
| 2894 | 
            +
                        "attention": {
         | 
| 2895 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2896 | 
            +
                            "no_op": false,
         | 
| 2897 | 
            +
                            "num_sink_tokens": null,
         | 
| 2898 | 
            +
                            "replace_with_linear": false,
         | 
| 2899 | 
            +
                            "sparsify": null,
         | 
| 2900 | 
            +
                            "unshifted_sink": false,
         | 
| 2901 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2902 | 
            +
                            "window_length": null
         | 
| 2903 | 
            +
                        },
         | 
| 2904 | 
            +
                        "ffn": {
         | 
| 2905 | 
            +
                            "ffn_mult": 4.875,
         | 
| 2906 | 
            +
                            "no_op": false,
         | 
| 2907 | 
            +
                            "replace_with_linear": false,
         | 
| 2908 | 
            +
                            "sparsify": null
         | 
| 2909 | 
            +
                        }
         | 
| 2910 | 
            +
                    },
         | 
| 2911 | 
            +
                    {
         | 
| 2912 | 
            +
                        "attention": {
         | 
| 2913 | 
            +
                            "n_heads_in_group": 16,
         | 
| 2914 | 
            +
                            "no_op": false,
         | 
| 2915 | 
            +
                            "num_sink_tokens": null,
         | 
| 2916 | 
            +
                            "replace_with_linear": false,
         | 
| 2917 | 
            +
                            "sparsify": null,
         | 
| 2918 | 
            +
                            "unshifted_sink": false,
         | 
| 2919 | 
            +
                            "use_prefill_window_in_sink_attention": false,
         | 
| 2920 | 
            +
                            "window_length": null
         | 
| 2921 | 
            +
                        },
         | 
| 2922 | 
            +
                        "ffn": {
         | 
| 2923 | 
            +
                            "ffn_mult": 2.4375,
         | 
| 2924 | 
            +
                            "no_op": false,
         | 
| 2925 | 
            +
                            "replace_with_linear": false,
         | 
| 2926 | 
            +
                            "sparsify": null
         | 
| 2927 | 
            +
                        }
         | 
| 2928 | 
            +
                    }
         | 
| 2929 | 
            +
                ],
         | 
| 2930 | 
            +
                "bos_token_id": 128000,
         | 
| 2931 | 
            +
                "eos_token_id": [
         | 
| 2932 | 
            +
                    128001,
         | 
| 2933 | 
            +
                    128008,
         | 
| 2934 | 
            +
                    128009
         | 
| 2935 | 
            +
                ],
         | 
| 2936 | 
            +
                "hidden_act": "silu",
         | 
| 2937 | 
            +
                "hidden_size": 16384,
         | 
| 2938 | 
            +
                "initializer_range": 0.02,
         | 
| 2939 | 
            +
                "intermediate_size": null,
         | 
| 2940 | 
            +
                "max_position_embeddings": 131072,
         | 
| 2941 | 
            +
                "mlp_bias": false,
         | 
| 2942 | 
            +
                "model_type": "nemotron-nas",
         | 
| 2943 | 
            +
                "num_attention_heads": 128,
         | 
| 2944 | 
            +
                "num_hidden_layers": 162,
         | 
| 2945 | 
            +
                "num_key_value_heads": null,
         | 
| 2946 | 
            +
                "pretraining_tp": 1,
         | 
| 2947 | 
            +
                "rms_norm_eps": 1e-05,
         | 
| 2948 | 
            +
                "rope_scaling": {
         | 
| 2949 | 
            +
                    "factor": 16.0,
         | 
| 2950 | 
            +
                    "high_freq_factor": 4.0,
         | 
| 2951 | 
            +
                    "low_freq_factor": 1.0,
         | 
| 2952 | 
            +
                    "original_max_position_embeddings": 8192,
         | 
| 2953 | 
            +
                    "rope_type": "llama3"
         | 
| 2954 | 
            +
                },
         | 
| 2955 | 
            +
                "rope_theta": 500000.0,
         | 
| 2956 | 
            +
                "tie_word_embeddings": false,
         | 
| 2957 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 2958 | 
            +
                "transformers_version": "4.45.1",
         | 
| 2959 | 
            +
                "use_cache": true,
         | 
| 2960 | 
            +
                "vocab_size": 128256,
         | 
| 2961 | 
            +
                "quantization_config": {
         | 
| 2962 | 
            +
                    "quant_method": "exl3",
         | 
| 2963 | 
            +
                    "version": "0.0.1",
         | 
| 2964 | 
            +
                    "bits": 3.6,
         | 
| 2965 | 
            +
                    "calibration": {
         | 
| 2966 | 
            +
                        "rows": 100,
         | 
| 2967 | 
            +
                        "cols": 2048
         | 
| 2968 | 
            +
                    }
         | 
| 2969 | 
            +
                }
         | 
| 2970 | 
            +
            }
         | 
    	
        configuration_decilm.py
    ADDED
    
    | @@ -0,0 +1,65 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 Nvidia Corporation. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import dataclasses
         | 
| 17 | 
            +
            import warnings
         | 
| 18 | 
            +
            from typing import Dict, Any
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from transformers.utils import is_flash_attn_2_available
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from .block_config import BlockConfig
         | 
| 23 | 
            +
            from .transformers_4_44_2__configuration_llama import LlamaConfig
         | 
| 24 | 
            +
            from .transformers_4_44_2__modeling_rope_utils import \
         | 
| 25 | 
            +
                rope_config_validation  # fake import to make AutoConfig infer the dependency
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            rope_config_validation  # this line is here to make sure that auto-formatting doesn't remove the import
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            class DeciLMConfig(LlamaConfig):
         | 
| 31 | 
            +
                model_type = "nemotron-nas"
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                def __init__(
         | 
| 34 | 
            +
                        self,
         | 
| 35 | 
            +
                        block_configs: list[dict] | list[BlockConfig] = None,
         | 
| 36 | 
            +
                        **kwargs,
         | 
| 37 | 
            +
                ):
         | 
| 38 | 
            +
                    attn_implementation = kwargs.pop("attn_implementation", None)
         | 
| 39 | 
            +
                    if attn_implementation is None and is_flash_attn_2_available():
         | 
| 40 | 
            +
                        attn_implementation = "flash_attention_2"
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                    if block_configs is not None:
         | 
| 43 | 
            +
                        if isinstance(block_configs[0], dict):
         | 
| 44 | 
            +
                            block_configs = [BlockConfig(**conf) for conf in block_configs]
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                        using_unshifted_sink = any([block_config.attention.unshifted_sink for block_config in block_configs])
         | 
| 47 | 
            +
                        if using_unshifted_sink and attn_implementation != "eager":
         | 
| 48 | 
            +
                            warnings.warn("Forcing attn_implementation='eager' since some attention layers use unshifted sink")
         | 
| 49 | 
            +
                            attn_implementation = "eager"
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    super().__init__(attn_implementation=attn_implementation, **kwargs)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    self.intermediate_size = None
         | 
| 54 | 
            +
                    self.num_key_value_heads = None
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                    if block_configs is not None:
         | 
| 57 | 
            +
                        assert len(block_configs) == self.num_hidden_layers
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    self.block_configs: list[BlockConfig] = block_configs
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                def to_dict(self) -> Dict[str, Any]:
         | 
| 62 | 
            +
                    self_dict = super().to_dict()
         | 
| 63 | 
            +
                    if self.block_configs is not None:
         | 
| 64 | 
            +
                        self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs]
         | 
| 65 | 
            +
                    return self_dict
         | 
    	
        model-00001-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ff79f97063758041a5b2ea92e1944c00b7cba732bf009df3593c0ce274fa08e3
         | 
| 3 | 
            +
            size 8142721624
         | 
    	
        model-00002-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f6654c728f827095a3ca62b3efca0b50c7b0c1f9d4f9b14d6d096d41ceed4102
         | 
| 3 | 
            +
            size 7831078696
         | 
    	
        model-00003-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d9a6e87168e298fa7c0e8d20da8ebd64bc8c0f5e044c4d5995ef2e4e0d3afb5a
         | 
| 3 | 
            +
            size 8029760016
         | 
    	
        model-00004-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:451b232d83bb9eb6e7d16940f0e0ee755eedf94b6246cbaa20eb4d37b4642dc7
         | 
| 3 | 
            +
            size 8141210184
         | 
    	
        model-00005-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ea97f8164c8d9787329b282d75d67190f33d35cced989a049ee5c29759025c30
         | 
| 3 | 
            +
            size 7198761056
         | 
    	
        model-00006-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5875048dd480e592773aa5c3a12d97046d03daefca05c01621c1b37a96664c96
         | 
| 3 | 
            +
            size 7163109472
         | 
    	
        model-00007-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:19346d9ade506771059910a598bf236a7761fa3b266d7b6afa562925b647cb81
         | 
| 3 | 
            +
            size 8253171216
         | 
    	
        model-00008-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:bd3c42374bb01a379c456880d1d850a7e16f45904d494466dee9c02117abfd0f
         | 
| 3 | 
            +
            size 8260163144
         | 
    	
        model-00009-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:6534373f92f1e5bd424f19d3efd62295585f28dbc5c70ccd307160fe8f6c9540
         | 
| 3 | 
            +
            size 7903422632
         | 
    	
        model-00010-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4e9002b0d894d024bcf68216f081f80ce23ebf7ad7188104b2335cee9a7aab82
         | 
| 3 | 
            +
            size 1527413160
         | 
    	
        model-00011-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:36656030100f9357718ecf653da25bcc7ca54324c542f250e943e737aff53b97
         | 
| 3 | 
            +
            size 8182116528
         | 
    	
        model-00012-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:cce60ab077c76f6198cde6bc235c41ec917d2ff0de603d24128091be1d464822
         | 
| 3 | 
            +
            size 9599951024
         | 
    	
        model-00013-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9d0834a464f110b05e2e97ce8546839de65a9be63bf60d76c275bd1a85be0953
         | 
| 3 | 
            +
            size 7730791584
         | 
    	
        model-00014-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8b07966fc1033c49178bfa2716ab1062e43dc86b9c776c0d82e1ee9d5e5fca36
         | 
| 3 | 
            +
            size 8219834008
         | 
    	
        model-00015-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:94200955544b87d72df21273004ca52a84184fc1392c7b64524ea38b7be39eaf
         | 
| 3 | 
            +
            size 7911542856
         | 
    	
        model-00016-of-00016.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ea901216f1e6b7e89c0fc1f9dd9713d990786f9171934cd912fe86747767afc8
         | 
| 3 | 
            +
            size 3865538248
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        modeling_decilm.py
    ADDED
    
    | @@ -0,0 +1,1681 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 Nvidia Corporation, Google Inc, HuggingFace Inc, EleutherAI. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code for Nvidia's model is based on the Llama modeling code by HuggingFace,
         | 
| 5 | 
            +
            # which is in turn based on EleutherAI's GPT-NeoX library and the GPT-NeoX and
         | 
| 6 | 
            +
            # OPT implementations in this library.
         | 
| 7 | 
            +
            # Sliding window code based on Gemma2 by Google.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            import math
         | 
| 22 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            import torch
         | 
| 25 | 
            +
            import torch.nn.functional as F
         | 
| 26 | 
            +
            import torch.utils.checkpoint
         | 
| 27 | 
            +
            from torch import nn
         | 
| 28 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 29 | 
            +
            from transformers import GenerationConfig
         | 
| 30 | 
            +
            from transformers.generation.utils import NEED_SETUP_CACHE_CLASSES_MAPPING, GenerationMixin, GenerateOutput
         | 
| 31 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 32 | 
            +
            from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
         | 
| 33 | 
            +
            from transformers.utils import (
         | 
| 34 | 
            +
                add_start_docstrings,
         | 
| 35 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 36 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 37 | 
            +
                logging,
         | 
| 38 | 
            +
                replace_return_docstrings,
         | 
| 39 | 
            +
            )
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            from .block_config import AttentionConfig, FFNConfig
         | 
| 42 | 
            +
            from .configuration_decilm import DeciLMConfig
         | 
| 43 | 
            +
            from .transformers_4_44_2__activations import ACT2FN
         | 
| 44 | 
            +
            from .transformers_4_44_2__cache_utils import Cache, StaticCache
         | 
| 45 | 
            +
            from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 46 | 
            +
            from .transformers_4_44_2__modeling_flash_attention_utils_backward_compat import _flash_attention_forward
         | 
| 47 | 
            +
            from .transformers_4_44_2__modeling_outputs import (
         | 
| 48 | 
            +
                BaseModelOutputWithPast,
         | 
| 49 | 
            +
                CausalLMOutputWithPast,
         | 
| 50 | 
            +
                QuestionAnsweringModelOutput,
         | 
| 51 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 52 | 
            +
                TokenClassifierOutput,
         | 
| 53 | 
            +
            )
         | 
| 54 | 
            +
            from .transformers_4_44_2__modeling_rope_utils import ROPE_INIT_FUNCTIONS
         | 
| 55 | 
            +
            from .transformers_4_44_2__pytorch_utils import ALL_LAYERNORM_LAYERS
         | 
| 56 | 
            +
            from .variable_cache import VariableCache
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[DeciLMConfig.model_type] = "DeciLMForCausalLM"
         | 
| 59 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            _CONFIG_FOR_DOC = "DeciLMConfig"
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            def _prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 65 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 66 | 
            +
                    sequence_length: int,
         | 
| 67 | 
            +
                    target_length: int,
         | 
| 68 | 
            +
                    dtype: torch.dtype,
         | 
| 69 | 
            +
                    device: torch.device,
         | 
| 70 | 
            +
                    min_dtype: float,
         | 
| 71 | 
            +
                    cache_position: torch.Tensor,
         | 
| 72 | 
            +
                    batch_size: int,
         | 
| 73 | 
            +
            ):
         | 
| 74 | 
            +
                """
         | 
| 75 | 
            +
                Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
         | 
| 76 | 
            +
                `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                Args:
         | 
| 79 | 
            +
                    attention_mask (`torch.Tensor`):
         | 
| 80 | 
            +
                        A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
         | 
| 81 | 
            +
                    sequence_length (`int`):
         | 
| 82 | 
            +
                        The sequence length being processed.
         | 
| 83 | 
            +
                    target_length (`int`):
         | 
| 84 | 
            +
                        The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
         | 
| 85 | 
            +
                    dtype (`torch.dtype`):
         | 
| 86 | 
            +
                        The dtype to use for the 4D attention mask.
         | 
| 87 | 
            +
                    device (`torch.device`):
         | 
| 88 | 
            +
                        The device to place the 4D attention mask on.
         | 
| 89 | 
            +
                    min_dtype (`float`):
         | 
| 90 | 
            +
                        The minimum value representable with the dtype `dtype`.
         | 
| 91 | 
            +
                    cache_position (`torch.Tensor`):
         | 
| 92 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence.
         | 
| 93 | 
            +
                    batch_size (`torch.Tensor`):
         | 
| 94 | 
            +
                        Batch size.
         | 
| 95 | 
            +
                """
         | 
| 96 | 
            +
                if attention_mask is not None and attention_mask.dim() == 4:
         | 
| 97 | 
            +
                    # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
         | 
| 98 | 
            +
                    causal_mask = attention_mask
         | 
| 99 | 
            +
                else:
         | 
| 100 | 
            +
                    causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
         | 
| 101 | 
            +
                    if sequence_length != 1:
         | 
| 102 | 
            +
                        causal_mask = torch.triu(causal_mask, diagonal=1)
         | 
| 103 | 
            +
                    causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
         | 
| 104 | 
            +
                    causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
         | 
| 105 | 
            +
                    if attention_mask is not None:
         | 
| 106 | 
            +
                        causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
         | 
| 107 | 
            +
                        mask_length = attention_mask.shape[-1]
         | 
| 108 | 
            +
                        padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
         | 
| 109 | 
            +
                        padding_mask = padding_mask == 0
         | 
| 110 | 
            +
                        causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
         | 
| 111 | 
            +
                            padding_mask, min_dtype
         | 
| 112 | 
            +
                        )
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                return causal_mask
         | 
| 115 | 
            +
             | 
| 116 | 
            +
             | 
| 117 | 
            +
            class DeciLMRMSNorm(nn.Module):
         | 
| 118 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 119 | 
            +
                    """
         | 
| 120 | 
            +
                    DeciLMRMSNorm is equivalent to T5LayerNorm
         | 
| 121 | 
            +
                    """
         | 
| 122 | 
            +
                    super().__init__()
         | 
| 123 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 124 | 
            +
                    self.variance_epsilon = eps
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def forward(self, hidden_states):
         | 
| 127 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 128 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 129 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 130 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 131 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                def extra_repr(self):
         | 
| 134 | 
            +
                    return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            ALL_LAYERNORM_LAYERS.append(DeciLMRMSNorm)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            class DeciLMRotaryEmbedding(nn.Module):
         | 
| 141 | 
            +
                def __init__(
         | 
| 142 | 
            +
                        self,
         | 
| 143 | 
            +
                        dim=None,
         | 
| 144 | 
            +
                        max_position_embeddings=2048,
         | 
| 145 | 
            +
                        base=10000,
         | 
| 146 | 
            +
                        device=None,
         | 
| 147 | 
            +
                        scaling_factor=1.0,
         | 
| 148 | 
            +
                        rope_type="default",
         | 
| 149 | 
            +
                        config: Optional[DeciLMConfig] = None,
         | 
| 150 | 
            +
                ):
         | 
| 151 | 
            +
                    super().__init__()
         | 
| 152 | 
            +
                    # TODO (joao): remove the `if` below, only used for BC
         | 
| 153 | 
            +
                    self.rope_kwargs = {}
         | 
| 154 | 
            +
                    if config is None:
         | 
| 155 | 
            +
                        logger.warning_once(
         | 
| 156 | 
            +
                            "`DeciLMRotaryEmbedding` can now be fully parameterized by passing the model config through the "
         | 
| 157 | 
            +
                            "`config` argument. All other arguments will be removed in v4.45"
         | 
| 158 | 
            +
                        )
         | 
| 159 | 
            +
                        self.rope_kwargs = {
         | 
| 160 | 
            +
                            "rope_type": rope_type,
         | 
| 161 | 
            +
                            "factor": scaling_factor,
         | 
| 162 | 
            +
                            "dim": dim,
         | 
| 163 | 
            +
                            "base": base,
         | 
| 164 | 
            +
                            "max_position_embeddings": max_position_embeddings,
         | 
| 165 | 
            +
                        }
         | 
| 166 | 
            +
                        self.rope_type = rope_type
         | 
| 167 | 
            +
                        self.max_seq_len_cached = max_position_embeddings
         | 
| 168 | 
            +
                        self.original_max_seq_len = max_position_embeddings
         | 
| 169 | 
            +
                    else:
         | 
| 170 | 
            +
                        # BC: "rope_type" was originally "type"
         | 
| 171 | 
            +
                        if config.rope_scaling is not None:
         | 
| 172 | 
            +
                            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
         | 
| 173 | 
            +
                        else:
         | 
| 174 | 
            +
                            self.rope_type = "default"
         | 
| 175 | 
            +
                        self.max_seq_len_cached = config.max_position_embeddings
         | 
| 176 | 
            +
                        self.original_max_seq_len = config.max_position_embeddings
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    self.config = config
         | 
| 179 | 
            +
                    self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                    inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
         | 
| 182 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 183 | 
            +
                    self.original_inv_freq = self.inv_freq
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def _dynamic_frequency_update(self, position_ids, device):
         | 
| 186 | 
            +
                    """
         | 
| 187 | 
            +
                    dynamic RoPE layers should recompute `inv_freq` in the following situations:
         | 
| 188 | 
            +
                    1 - growing beyond the cached sequence length (allow scaling)
         | 
| 189 | 
            +
                    2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
         | 
| 190 | 
            +
                    """
         | 
| 191 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 192 | 
            +
                    if seq_len > self.max_seq_len_cached:  # growth
         | 
| 193 | 
            +
                        inv_freq, self.attention_scaling = self.rope_init_fn(
         | 
| 194 | 
            +
                            self.config, device, seq_len=seq_len, **self.rope_kwargs
         | 
| 195 | 
            +
                        )
         | 
| 196 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
         | 
| 197 | 
            +
                        self.max_seq_len_cached = seq_len
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
         | 
| 200 | 
            +
                        self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
         | 
| 201 | 
            +
                        self.max_seq_len_cached = self.original_max_seq_len
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                @torch.no_grad()
         | 
| 204 | 
            +
                def forward(self, x, position_ids):
         | 
| 205 | 
            +
                    if "dynamic" in self.rope_type:
         | 
| 206 | 
            +
                        self._dynamic_frequency_update(position_ids, device=x.device)
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    # Core RoPE block
         | 
| 209 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 210 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 211 | 
            +
                    # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
         | 
| 212 | 
            +
                    device_type = x.device.type
         | 
| 213 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
         | 
| 214 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 215 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 216 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 217 | 
            +
                        cos = emb.cos()
         | 
| 218 | 
            +
                        sin = emb.sin()
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
         | 
| 221 | 
            +
                    cos = cos * self.attention_scaling
         | 
| 222 | 
            +
                    sin = sin * self.attention_scaling
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 225 | 
            +
             | 
| 226 | 
            +
             | 
| 227 | 
            +
            class DeciLMLinearScalingRotaryEmbedding(DeciLMRotaryEmbedding):
         | 
| 228 | 
            +
                """DeciLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 231 | 
            +
                    logger.warning_once(
         | 
| 232 | 
            +
                        "`DeciLMLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
         | 
| 233 | 
            +
                        "`DeciLMRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
         | 
| 234 | 
            +
                    )
         | 
| 235 | 
            +
                    kwargs["rope_type"] = "linear"
         | 
| 236 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
             | 
| 239 | 
            +
            class DeciLMDynamicNTKScalingRotaryEmbedding(DeciLMRotaryEmbedding):
         | 
| 240 | 
            +
                """DeciLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 243 | 
            +
                    logger.warning_once(
         | 
| 244 | 
            +
                        "`DeciLMDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
         | 
| 245 | 
            +
                        "`DeciLMRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
         | 
| 246 | 
            +
                        "__init__)."
         | 
| 247 | 
            +
                    )
         | 
| 248 | 
            +
                    kwargs["rope_type"] = "dynamic"
         | 
| 249 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
             | 
| 252 | 
            +
            def rotate_half(x):
         | 
| 253 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 254 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 255 | 
            +
                x2 = x[..., x.shape[-1] // 2:]
         | 
| 256 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
             | 
| 259 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
         | 
| 260 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                Args:
         | 
| 263 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 264 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 265 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 266 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 267 | 
            +
                    position_ids (`torch.Tensor`, *optional*):
         | 
| 268 | 
            +
                        Deprecated and unused.
         | 
| 269 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 270 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 271 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 272 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 273 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 274 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 275 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 276 | 
            +
                Returns:
         | 
| 277 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 278 | 
            +
                """
         | 
| 279 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 280 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 281 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 282 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 283 | 
            +
                return q_embed, k_embed
         | 
| 284 | 
            +
             | 
| 285 | 
            +
             | 
| 286 | 
            +
            class DeciLMMLP(nn.Module):
         | 
| 287 | 
            +
                def __init__(self,
         | 
| 288 | 
            +
                             config: DeciLMConfig,
         | 
| 289 | 
            +
                             ffn_config: FFNConfig,
         | 
| 290 | 
            +
                             ):
         | 
| 291 | 
            +
                    super().__init__()
         | 
| 292 | 
            +
                    self.config = config
         | 
| 293 | 
            +
                    self.ffn_config = ffn_config
         | 
| 294 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 295 | 
            +
                    self.intermediate_size = _ffn_mult_to_intermediate_size(
         | 
| 296 | 
            +
                        ffn_config.ffn_mult, config.hidden_size)  # DeciLM-specific code
         | 
| 297 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
         | 
| 298 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
         | 
| 299 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
         | 
| 300 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                    if ffn_config.sparsify is not None:
         | 
| 303 | 
            +
                        self.register_full_backward_hook(sparsity_backward_hook)
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                def forward(self, x):
         | 
| 306 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 307 | 
            +
                        slice = self.intermediate_size // self.config.pretraining_tp
         | 
| 308 | 
            +
                        gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
         | 
| 309 | 
            +
                        up_proj_slices = self.up_proj.weight.split(slice, dim=0)
         | 
| 310 | 
            +
                        down_proj_slices = self.down_proj.weight.split(slice, dim=1)
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                        gate_proj = torch.cat(
         | 
| 313 | 
            +
                            [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
         | 
| 314 | 
            +
                        )
         | 
| 315 | 
            +
                        up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                        intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
         | 
| 318 | 
            +
                        down_proj = [
         | 
| 319 | 
            +
                            F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
         | 
| 320 | 
            +
                        ]
         | 
| 321 | 
            +
                        down_proj = sum(down_proj)
         | 
| 322 | 
            +
                    else:
         | 
| 323 | 
            +
                        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    return down_proj
         | 
| 326 | 
            +
             | 
| 327 | 
            +
             | 
| 328 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 329 | 
            +
                """
         | 
| 330 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 331 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 332 | 
            +
                """
         | 
| 333 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 334 | 
            +
                if n_rep == 1:
         | 
| 335 | 
            +
                    return hidden_states
         | 
| 336 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 337 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
             | 
| 340 | 
            +
            class DeciLMAttention(nn.Module):
         | 
| 341 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                def __init__(self,
         | 
| 344 | 
            +
                             config: DeciLMConfig,
         | 
| 345 | 
            +
                             attention_config: AttentionConfig,
         | 
| 346 | 
            +
                             layer_idx: Optional[int] = None,
         | 
| 347 | 
            +
                             ):
         | 
| 348 | 
            +
                    super().__init__()
         | 
| 349 | 
            +
                    self.config = config
         | 
| 350 | 
            +
                    self.attention_config = attention_config
         | 
| 351 | 
            +
                    self.layer_idx = layer_idx
         | 
| 352 | 
            +
                    if layer_idx is None:
         | 
| 353 | 
            +
                        logger.warning_once(
         | 
| 354 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 355 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 356 | 
            +
                            "when creating this class."
         | 
| 357 | 
            +
                        )
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 360 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 361 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 362 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 363 | 
            +
                    self.num_key_value_groups = attention_config.n_heads_in_group  # DeciLM-specific code
         | 
| 364 | 
            +
                    self.num_key_value_heads = self.num_heads // self.num_key_value_groups  # DeciLM-specific code
         | 
| 365 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 366 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 367 | 
            +
                    self.is_causal = True
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 370 | 
            +
                        raise ValueError(
         | 
| 371 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 372 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 373 | 
            +
                        )
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
         | 
| 376 | 
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 377 | 
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
         | 
| 378 | 
            +
                    self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    # TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
         | 
| 381 | 
            +
                    self.rotary_emb = DeciLMRotaryEmbedding(config=self.config)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    if attention_config.sparsify is not None:
         | 
| 384 | 
            +
                        self.register_full_backward_hook(sparsity_backward_hook)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                def forward(
         | 
| 387 | 
            +
                        self,
         | 
| 388 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 389 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 390 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 391 | 
            +
                        past_key_value: Optional[Cache] = None,
         | 
| 392 | 
            +
                        output_attentions: bool = False,
         | 
| 393 | 
            +
                        use_cache: bool = False,
         | 
| 394 | 
            +
                        cache_position: Optional[torch.LongTensor] = None,
         | 
| 395 | 
            +
                        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
         | 
| 396 | 
            +
                        **kwargs,
         | 
| 397 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 398 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 399 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 400 | 
            +
                        key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
         | 
| 401 | 
            +
                        query_slices = self.q_proj.weight.split(
         | 
| 402 | 
            +
                            (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
         | 
| 403 | 
            +
                        )
         | 
| 404 | 
            +
                        key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
         | 
| 405 | 
            +
                        value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                        query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 408 | 
            +
                        query_states = torch.cat(query_states, dim=-1)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                        key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 411 | 
            +
                        key_states = torch.cat(key_states, dim=-1)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                        value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 414 | 
            +
                        value_states = torch.cat(value_states, dim=-1)
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    else:
         | 
| 417 | 
            +
                        query_states = self.q_proj(hidden_states)
         | 
| 418 | 
            +
                        key_states = self.k_proj(hidden_states)
         | 
| 419 | 
            +
                        value_states = self.v_proj(hidden_states)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 422 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 423 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    if position_embeddings is None:
         | 
| 426 | 
            +
                        logger.warning_once(
         | 
| 427 | 
            +
                            "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
         | 
| 428 | 
            +
                            "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
         | 
| 429 | 
            +
                            "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
         | 
| 430 | 
            +
                            "removed and `position_embeddings` will be mandatory."
         | 
| 431 | 
            +
                        )
         | 
| 432 | 
            +
                        cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 433 | 
            +
                    else:
         | 
| 434 | 
            +
                        cos, sin = position_embeddings
         | 
| 435 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                    if past_key_value is not None:
         | 
| 438 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 439 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 440 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 443 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    if attention_mask is not None:  # no matter the length, we just slice it
         | 
| 448 | 
            +
                        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 449 | 
            +
                        attn_weights = attn_weights + causal_mask
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    # upcast attention to fp32
         | 
| 452 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 453 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 454 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 457 | 
            +
                        raise ValueError(
         | 
| 458 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 459 | 
            +
                            f" {attn_output.size()}"
         | 
| 460 | 
            +
                        )
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, -1)
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 467 | 
            +
                        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
         | 
| 468 | 
            +
                        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
         | 
| 469 | 
            +
                        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
         | 
| 470 | 
            +
                    else:
         | 
| 471 | 
            +
                        attn_output = self.o_proj(attn_output)
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                    if not output_attentions:
         | 
| 474 | 
            +
                        attn_weights = None
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 477 | 
            +
             | 
| 478 | 
            +
             | 
| 479 | 
            +
            class DeciLMFlashAttention2(DeciLMAttention):
         | 
| 480 | 
            +
                """
         | 
| 481 | 
            +
                DeciLM flash attention module. This module inherits from `DeciLMAttention` as the weights of the module stays
         | 
| 482 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 483 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 484 | 
            +
                """
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 487 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 490 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 491 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 492 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                    self.sliding_window = self.attention_config.prefill_sliding_window
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                def forward(
         | 
| 497 | 
            +
                        self,
         | 
| 498 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 499 | 
            +
                        attention_mask: Optional[torch.LongTensor] = None,
         | 
| 500 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 501 | 
            +
                        past_key_value: Optional[Cache] = None,
         | 
| 502 | 
            +
                        output_attentions: bool = False,
         | 
| 503 | 
            +
                        use_cache: bool = False,
         | 
| 504 | 
            +
                        cache_position: Optional[torch.LongTensor] = None,
         | 
| 505 | 
            +
                        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
         | 
| 506 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 507 | 
            +
                    output_attentions = False
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 512 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 513 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 516 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 517 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 518 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 519 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 520 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    if position_embeddings is None:
         | 
| 523 | 
            +
                        logger.warning_once(
         | 
| 524 | 
            +
                            "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
         | 
| 525 | 
            +
                            "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
         | 
| 526 | 
            +
                            "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
         | 
| 527 | 
            +
                            "removed and `position_embeddings` will be mandatory."
         | 
| 528 | 
            +
                        )
         | 
| 529 | 
            +
                        cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 530 | 
            +
                    else:
         | 
| 531 | 
            +
                        cos, sin = position_embeddings
         | 
| 532 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                    if past_key_value is not None:
         | 
| 535 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 536 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 537 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         | 
| 540 | 
            +
                    # to be able to avoid many of these transpose/reshape/view.
         | 
| 541 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 542 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 543 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                    dropout_rate = self.attention_dropout if self.training else 0.0
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 548 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 549 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 550 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 551 | 
            +
                    # in fp32. (DeciLMRMSNorm handles it correctly)
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    input_dtype = query_states.dtype
         | 
| 554 | 
            +
                    if input_dtype == torch.float32:
         | 
| 555 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 556 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 557 | 
            +
                        # Handle the case where the model is quantized
         | 
| 558 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 559 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 560 | 
            +
                        else:
         | 
| 561 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                        logger.warning_once(
         | 
| 564 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 565 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 566 | 
            +
                            f" {target_dtype}."
         | 
| 567 | 
            +
                        )
         | 
| 568 | 
            +
             | 
| 569 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 570 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 571 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                    attn_output = _flash_attention_forward(
         | 
| 574 | 
            +
                        query_states,
         | 
| 575 | 
            +
                        key_states,
         | 
| 576 | 
            +
                        value_states,
         | 
| 577 | 
            +
                        attention_mask,
         | 
| 578 | 
            +
                        q_len,
         | 
| 579 | 
            +
                        position_ids=position_ids,
         | 
| 580 | 
            +
                        dropout=dropout_rate,
         | 
| 581 | 
            +
                        sliding_window=self.sliding_window,
         | 
| 582 | 
            +
                        use_top_left_mask=self._flash_attn_uses_top_left_mask,
         | 
| 583 | 
            +
                        is_causal=self.is_causal,
         | 
| 584 | 
            +
                    )
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
         | 
| 587 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 588 | 
            +
             | 
| 589 | 
            +
                    if not output_attentions:
         | 
| 590 | 
            +
                        attn_weights = None
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 593 | 
            +
             | 
| 594 | 
            +
             | 
| 595 | 
            +
            DECILM_ATTENTION_CLASSES = {
         | 
| 596 | 
            +
                "eager": DeciLMAttention,
         | 
| 597 | 
            +
                "flash_attention_2": DeciLMFlashAttention2,
         | 
| 598 | 
            +
            }
         | 
| 599 | 
            +
             | 
| 600 | 
            +
             | 
| 601 | 
            +
            class DeciLMDecoderLayer(nn.Module):
         | 
| 602 | 
            +
                # DeciLM-specific code
         | 
| 603 | 
            +
                def __init__(self, config: DeciLMConfig, layer_idx: int):
         | 
| 604 | 
            +
                    super().__init__()
         | 
| 605 | 
            +
                    self.config = config
         | 
| 606 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 607 | 
            +
                    self.block_config = config.block_configs[layer_idx]
         | 
| 608 | 
            +
                    self.attention_config = self.block_config.attention
         | 
| 609 | 
            +
                    self.ffn_config = self.block_config.ffn
         | 
| 610 | 
            +
             | 
| 611 | 
            +
                    if not self.attention_config.no_op:
         | 
| 612 | 
            +
                        self.input_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 613 | 
            +
                        if not self.attention_config.replace_with_linear:
         | 
| 614 | 
            +
                            self.self_attn = DECILM_ATTENTION_CLASSES[config._attn_implementation](
         | 
| 615 | 
            +
                                config=config, attention_config=self.attention_config, layer_idx=layer_idx)
         | 
| 616 | 
            +
                        else:
         | 
| 617 | 
            +
                            self.self_attn = DeciLMLinearAttention(config)
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                    if not self.ffn_config.no_op:
         | 
| 620 | 
            +
                        self.post_attention_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 621 | 
            +
                        if not self.ffn_config.replace_with_linear:
         | 
| 622 | 
            +
                            self.mlp = DeciLMMLP(config, self.ffn_config)
         | 
| 623 | 
            +
                        else:
         | 
| 624 | 
            +
                            self.mlp = DeciLMLinearMLP(config)
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                    self.is_sliding = self.attention_config.is_sliding
         | 
| 627 | 
            +
                    self.sliding_window = self.attention_config.prefill_sliding_window
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                def forward(
         | 
| 630 | 
            +
                        self,
         | 
| 631 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 632 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 633 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 634 | 
            +
                        past_key_value: Optional[Cache] = None,
         | 
| 635 | 
            +
                        output_attentions: Optional[bool] = False,
         | 
| 636 | 
            +
                        use_cache: Optional[bool] = False,
         | 
| 637 | 
            +
                        cache_position: Optional[torch.LongTensor] = None,
         | 
| 638 | 
            +
                        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.45
         | 
| 639 | 
            +
                        **kwargs,
         | 
| 640 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 641 | 
            +
                    """
         | 
| 642 | 
            +
                    Args:
         | 
| 643 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 644 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 645 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 646 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 647 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 648 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 649 | 
            +
                            returned tensors for more detail.
         | 
| 650 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 651 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 652 | 
            +
                            (see `past_key_values`).
         | 
| 653 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 654 | 
            +
                        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 655 | 
            +
                            Indices depicting the position of the input sequence tokens in the sequence
         | 
| 656 | 
            +
                        position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
         | 
| 657 | 
            +
                            Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
         | 
| 658 | 
            +
                            with `head_dim` being the embedding dimension of each attention head.
         | 
| 659 | 
            +
                        kwargs (`dict`, *optional*):
         | 
| 660 | 
            +
                            Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
         | 
| 661 | 
            +
                            into the model
         | 
| 662 | 
            +
                    """
         | 
| 663 | 
            +
                    if self.attention_config.unshifted_sink and self.attention_config.is_sink:
         | 
| 664 | 
            +
                        attention_mask = self._unshifted_sink_mask(
         | 
| 665 | 
            +
                            attention_mask, hidden_states,
         | 
| 666 | 
            +
                            self.attention_config.window_length, self.attention_config.num_sink_tokens)
         | 
| 667 | 
            +
                    else:
         | 
| 668 | 
            +
                        attention_mask = self._gemma2_window_mask(attention_mask, hidden_states, past_key_value)
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                    self_attn_weights = None
         | 
| 671 | 
            +
                    present_key_value = past_key_value
         | 
| 672 | 
            +
                    if self.attention_config.no_op:
         | 
| 673 | 
            +
                        pass
         | 
| 674 | 
            +
                    elif self.attention_config.replace_with_linear:
         | 
| 675 | 
            +
                        residual = hidden_states
         | 
| 676 | 
            +
                        hidden_states = self.input_layernorm(hidden_states)
         | 
| 677 | 
            +
                        hidden_states = self.self_attn(hidden_states)
         | 
| 678 | 
            +
                        hidden_states = residual + hidden_states
         | 
| 679 | 
            +
                    else:
         | 
| 680 | 
            +
                        residual = hidden_states
         | 
| 681 | 
            +
                        hidden_states = self.input_layernorm(hidden_states)
         | 
| 682 | 
            +
                        hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 683 | 
            +
                            hidden_states=hidden_states,
         | 
| 684 | 
            +
                            attention_mask=attention_mask,
         | 
| 685 | 
            +
                            position_ids=position_ids,
         | 
| 686 | 
            +
                            past_key_value=past_key_value,
         | 
| 687 | 
            +
                            output_attentions=output_attentions,
         | 
| 688 | 
            +
                            use_cache=use_cache,
         | 
| 689 | 
            +
                            cache_position=cache_position,
         | 
| 690 | 
            +
                            position_embeddings=position_embeddings,
         | 
| 691 | 
            +
                            **kwargs,
         | 
| 692 | 
            +
                        )
         | 
| 693 | 
            +
                        hidden_states = residual + hidden_states
         | 
| 694 | 
            +
             | 
| 695 | 
            +
                    if not self.ffn_config.no_op:
         | 
| 696 | 
            +
                        residual = hidden_states
         | 
| 697 | 
            +
                        hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 698 | 
            +
                        hidden_states = self.mlp(hidden_states)
         | 
| 699 | 
            +
                        hidden_states = residual + hidden_states
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                    outputs = (hidden_states,)
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                    if output_attentions:
         | 
| 704 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 705 | 
            +
             | 
| 706 | 
            +
                    if use_cache:
         | 
| 707 | 
            +
                        outputs += (present_key_value,)
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                    return outputs
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                def _gemma2_window_mask(self,
         | 
| 712 | 
            +
                                        attention_mask: Optional[torch.Tensor],
         | 
| 713 | 
            +
                                        hidden_states: torch.Tensor,
         | 
| 714 | 
            +
                                        past_key_value: Optional[VariableCache],
         | 
| 715 | 
            +
                                        ) -> Optional[torch.Tensor]:
         | 
| 716 | 
            +
                    if self.is_sliding and attention_mask is not None:  # efficient SDPA and no padding
         | 
| 717 | 
            +
                        # Flash-attn is a 2D tensor
         | 
| 718 | 
            +
                        if self.config._attn_implementation == "flash_attention_2":
         | 
| 719 | 
            +
                            if past_key_value is not None:  # when decoding
         | 
| 720 | 
            +
                                attention_mask = attention_mask[:, -self.sliding_window:]
         | 
| 721 | 
            +
                        else:
         | 
| 722 | 
            +
                            min_dtype = torch.finfo(hidden_states.dtype).min
         | 
| 723 | 
            +
                            sliding_window_mask = torch.tril(
         | 
| 724 | 
            +
                                torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
         | 
| 725 | 
            +
                            )
         | 
| 726 | 
            +
                            attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
         | 
| 727 | 
            +
                            if attention_mask.shape[-1] <= 1:  # when decoding
         | 
| 728 | 
            +
                                attention_mask = attention_mask[:, :, :, -self.sliding_window:]
         | 
| 729 | 
            +
                    return attention_mask
         | 
| 730 | 
            +
             | 
| 731 | 
            +
                def _unshifted_sink_mask(self,
         | 
| 732 | 
            +
                                         attention_mask: torch.Tensor,
         | 
| 733 | 
            +
                                         hidden_states: torch.Tensor,
         | 
| 734 | 
            +
                                         window_length: int,
         | 
| 735 | 
            +
                                         num_sink_tokens: Optional[int],
         | 
| 736 | 
            +
                                         ) -> torch.Tensor:
         | 
| 737 | 
            +
                    assert self.config._attn_implementation == "eager", "Unshifted sink is only supported in 'eager' mode."
         | 
| 738 | 
            +
                    assert attention_mask is not None, "The attention mask seems to not be prepared"
         | 
| 739 | 
            +
             | 
| 740 | 
            +
                    attention_mask = attention_mask.clone()
         | 
| 741 | 
            +
                    min_dtype = torch.finfo(hidden_states.dtype).min
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                    if window_length == 0:
         | 
| 744 | 
            +
                        attention_mask = torch.full_like(attention_mask, fill_value=min_dtype)
         | 
| 745 | 
            +
                    else:
         | 
| 746 | 
            +
                        query_length = attention_mask.shape[-2]
         | 
| 747 | 
            +
                        is_decode = (query_length == 1)
         | 
| 748 | 
            +
                        if is_decode:
         | 
| 749 | 
            +
                            attention_mask[:, :, :, :-window_length] = min_dtype
         | 
| 750 | 
            +
                        else:
         | 
| 751 | 
            +
                            sliding_window_mask = torch.tril(
         | 
| 752 | 
            +
                                torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-window_length
         | 
| 753 | 
            +
                            )
         | 
| 754 | 
            +
                            attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
         | 
| 755 | 
            +
             | 
| 756 | 
            +
                    attention_mask[:, :, :, :num_sink_tokens] = 0
         | 
| 757 | 
            +
                    return attention_mask
         | 
| 758 | 
            +
             | 
| 759 | 
            +
             | 
| 760 | 
            +
            DECILM_START_DOCSTRING = r"""
         | 
| 761 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 762 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 763 | 
            +
                etc.)
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 766 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 767 | 
            +
                and behavior.
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                Parameters:
         | 
| 770 | 
            +
                    config ([`DeciLMConfig`]):
         | 
| 771 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 772 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 773 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 774 | 
            +
            """
         | 
| 775 | 
            +
             | 
| 776 | 
            +
             | 
| 777 | 
            +
            @add_start_docstrings(
         | 
| 778 | 
            +
                "The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
         | 
| 779 | 
            +
                DECILM_START_DOCSTRING,
         | 
| 780 | 
            +
            )
         | 
| 781 | 
            +
            class DeciLMPreTrainedModel(PreTrainedModel):
         | 
| 782 | 
            +
                config_class = DeciLMConfig
         | 
| 783 | 
            +
                base_model_prefix = "model"
         | 
| 784 | 
            +
                supports_gradient_checkpointing = True
         | 
| 785 | 
            +
                _no_split_modules = ["DeciLMDecoderLayer"]
         | 
| 786 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 787 | 
            +
                _supports_flash_attn_2 = True
         | 
| 788 | 
            +
                _supports_sdpa = False
         | 
| 789 | 
            +
                _supports_cache_class = True
         | 
| 790 | 
            +
                _supports_quantized_cache = False
         | 
| 791 | 
            +
                _supports_static_cache = True
         | 
| 792 | 
            +
             | 
| 793 | 
            +
                def _init_weights(self, module):
         | 
| 794 | 
            +
                    std = self.config.initializer_range
         | 
| 795 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 796 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 797 | 
            +
                        if module.bias is not None:
         | 
| 798 | 
            +
                            module.bias.data.zero_()
         | 
| 799 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 800 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 801 | 
            +
                        if module.padding_idx is not None:
         | 
| 802 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                def _prepare_generation_config(
         | 
| 805 | 
            +
                        self, generation_config: Optional[GenerationConfig], **kwargs: dict
         | 
| 806 | 
            +
                ) -> tuple[GenerationConfig, dict]:
         | 
| 807 | 
            +
                    # DeciLM-specific code
         | 
| 808 | 
            +
                    generation_config, model_kwargs = super()._prepare_generation_config(generation_config, **kwargs)
         | 
| 809 | 
            +
                    generation_config.cache_implementation = "variable"
         | 
| 810 | 
            +
                    NEED_SETUP_CACHE_CLASSES_MAPPING["variable"] = VariableCache
         | 
| 811 | 
            +
                    return generation_config, model_kwargs
         | 
| 812 | 
            +
             | 
| 813 | 
            +
             | 
| 814 | 
            +
            DECILM_INPUTS_DOCSTRING = r"""
         | 
| 815 | 
            +
                Args:
         | 
| 816 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 817 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 818 | 
            +
                        it.
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 821 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 824 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 825 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 828 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 833 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 834 | 
            +
             | 
| 835 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 836 | 
            +
                        `past_key_values`).
         | 
| 837 | 
            +
             | 
| 838 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 839 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 840 | 
            +
                        information on the default strategy.
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 843 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 844 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 845 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 846 | 
            +
                        config.n_positions - 1]`.
         | 
| 847 | 
            +
             | 
| 848 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 849 | 
            +
                    past_key_values (`VariableCache`, *optional*):
         | 
| 850 | 
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 851 | 
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         | 
| 852 | 
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         | 
| 853 | 
            +
             | 
| 854 | 
            +
                        If passed to the forward function, past_key_values must be a VariableCache object (see imports).
         | 
| 855 | 
            +
                        For generation purposes, this is already handled inside model.generate().
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 858 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 859 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 860 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 861 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 862 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 863 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 864 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 865 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 866 | 
            +
                        `past_key_values`).
         | 
| 867 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 868 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 869 | 
            +
                        tensors for more detail.
         | 
| 870 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 871 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 872 | 
            +
                        more detail.
         | 
| 873 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 874 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 875 | 
            +
                    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 876 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
         | 
| 877 | 
            +
                        this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
         | 
| 878 | 
            +
                        the complete sequence length.
         | 
| 879 | 
            +
            """
         | 
| 880 | 
            +
             | 
| 881 | 
            +
             | 
| 882 | 
            +
            @add_start_docstrings(
         | 
| 883 | 
            +
                "The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
         | 
| 884 | 
            +
                DECILM_START_DOCSTRING,
         | 
| 885 | 
            +
            )
         | 
| 886 | 
            +
            class DeciLMModel(DeciLMPreTrainedModel):
         | 
| 887 | 
            +
                """
         | 
| 888 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`]
         | 
| 889 | 
            +
             | 
| 890 | 
            +
                Args:
         | 
| 891 | 
            +
                    config: DeciLMConfig
         | 
| 892 | 
            +
                """
         | 
| 893 | 
            +
             | 
| 894 | 
            +
                def __init__(self, config: DeciLMConfig):
         | 
| 895 | 
            +
                    super().__init__(config)
         | 
| 896 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 897 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 898 | 
            +
             | 
| 899 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 900 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 901 | 
            +
                        [DeciLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 902 | 
            +
                    )
         | 
| 903 | 
            +
                    self.norm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 904 | 
            +
                    self.rotary_emb = DeciLMRotaryEmbedding(config=config)
         | 
| 905 | 
            +
                    self.gradient_checkpointing = False
         | 
| 906 | 
            +
             | 
| 907 | 
            +
                    # Initialize weights and apply final processing
         | 
| 908 | 
            +
                    self.post_init()
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                def get_input_embeddings(self):
         | 
| 911 | 
            +
                    return self.embed_tokens
         | 
| 912 | 
            +
             | 
| 913 | 
            +
                def set_input_embeddings(self, value):
         | 
| 914 | 
            +
                    self.embed_tokens = value
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
         | 
| 917 | 
            +
                def forward(
         | 
| 918 | 
            +
                        self,
         | 
| 919 | 
            +
                        input_ids: torch.LongTensor = None,
         | 
| 920 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 921 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 922 | 
            +
                        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 923 | 
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 924 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 925 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 926 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 927 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 928 | 
            +
                        cache_position: Optional[torch.LongTensor] = None,
         | 
| 929 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 930 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 931 | 
            +
                    output_hidden_states = (
         | 
| 932 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 933 | 
            +
                    )
         | 
| 934 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 935 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 936 | 
            +
             | 
| 937 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 938 | 
            +
                        raise ValueError(
         | 
| 939 | 
            +
                            "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
         | 
| 940 | 
            +
                        )
         | 
| 941 | 
            +
             | 
| 942 | 
            +
                    if self.gradient_checkpointing and self.training and use_cache:
         | 
| 943 | 
            +
                        logger.warning_once(
         | 
| 944 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
         | 
| 945 | 
            +
                        )
         | 
| 946 | 
            +
                        use_cache = False
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                    if inputs_embeds is None:
         | 
| 949 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                    is_legacy_cache_format = (past_key_values is not None) and not isinstance(past_key_values, Cache)
         | 
| 952 | 
            +
                    if is_legacy_cache_format:
         | 
| 953 | 
            +
                        raise NotImplementedError("DeciLMModel does not support legacy cache format, please use a newer "
         | 
| 954 | 
            +
                                                  "transformers version or use VariableCache explicitly (see import in this file).")
         | 
| 955 | 
            +
             | 
| 956 | 
            +
                    if cache_position is None:
         | 
| 957 | 
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 958 | 
            +
                        cache_position = torch.arange(
         | 
| 959 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 960 | 
            +
                        )
         | 
| 961 | 
            +
                    if position_ids is None:
         | 
| 962 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 963 | 
            +
             | 
| 964 | 
            +
                    causal_mask = self._update_causal_mask(
         | 
| 965 | 
            +
                        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
         | 
| 966 | 
            +
                    )
         | 
| 967 | 
            +
                    hidden_states = inputs_embeds
         | 
| 968 | 
            +
             | 
| 969 | 
            +
                    # create position embeddings to be shared across the decoder layers
         | 
| 970 | 
            +
                    position_embeddings = self.rotary_emb(hidden_states, position_ids)
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                    # decoder layers
         | 
| 973 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 974 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 975 | 
            +
                    next_decoder_cache = None
         | 
| 976 | 
            +
             | 
| 977 | 
            +
                    for decoder_layer in self.layers:
         | 
| 978 | 
            +
                        if output_hidden_states:
         | 
| 979 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 980 | 
            +
             | 
| 981 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 982 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 983 | 
            +
                                decoder_layer.__call__,
         | 
| 984 | 
            +
                                hidden_states,
         | 
| 985 | 
            +
                                causal_mask,
         | 
| 986 | 
            +
                                position_ids,
         | 
| 987 | 
            +
                                past_key_values,
         | 
| 988 | 
            +
                                output_attentions,
         | 
| 989 | 
            +
                                use_cache,
         | 
| 990 | 
            +
                                cache_position,
         | 
| 991 | 
            +
                                position_embeddings,
         | 
| 992 | 
            +
                            )
         | 
| 993 | 
            +
                        else:
         | 
| 994 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 995 | 
            +
                                hidden_states,
         | 
| 996 | 
            +
                                attention_mask=causal_mask,
         | 
| 997 | 
            +
                                position_ids=position_ids,
         | 
| 998 | 
            +
                                past_key_value=past_key_values,
         | 
| 999 | 
            +
                                output_attentions=output_attentions,
         | 
| 1000 | 
            +
                                use_cache=use_cache,
         | 
| 1001 | 
            +
                                cache_position=cache_position,
         | 
| 1002 | 
            +
                                position_embeddings=position_embeddings,
         | 
| 1003 | 
            +
                            )
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                        if use_cache:
         | 
| 1008 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1009 | 
            +
             | 
| 1010 | 
            +
                        if output_attentions:
         | 
| 1011 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1012 | 
            +
             | 
| 1013 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1014 | 
            +
             | 
| 1015 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1016 | 
            +
                    if output_hidden_states:
         | 
| 1017 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1018 | 
            +
             | 
| 1019 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 1020 | 
            +
             | 
| 1021 | 
            +
                    if not return_dict:
         | 
| 1022 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 1023 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 1024 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1025 | 
            +
                        past_key_values=next_cache,
         | 
| 1026 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1027 | 
            +
                        attentions=all_self_attns,
         | 
| 1028 | 
            +
                    )
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
                def _update_causal_mask(
         | 
| 1031 | 
            +
                        self,
         | 
| 1032 | 
            +
                        attention_mask: torch.Tensor,
         | 
| 1033 | 
            +
                        input_tensor: torch.Tensor,
         | 
| 1034 | 
            +
                        cache_position: torch.Tensor,
         | 
| 1035 | 
            +
                        past_key_values: Cache,
         | 
| 1036 | 
            +
                        output_attentions: bool,
         | 
| 1037 | 
            +
                ):
         | 
| 1038 | 
            +
                    # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
         | 
| 1039 | 
            +
                    # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
         | 
| 1040 | 
            +
                    # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
         | 
| 1041 | 
            +
                    # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
         | 
| 1042 | 
            +
             | 
| 1043 | 
            +
                    if self.config._attn_implementation == "flash_attention_2":
         | 
| 1044 | 
            +
                        if attention_mask is not None and 0.0 in attention_mask:
         | 
| 1045 | 
            +
                            return attention_mask
         | 
| 1046 | 
            +
                        return None
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
                    # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
         | 
| 1049 | 
            +
                    # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
         | 
| 1050 | 
            +
                    # to infer the attention mask.
         | 
| 1051 | 
            +
                    past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 1052 | 
            +
                    assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
         | 
| 1053 | 
            +
                    using_static_cache = isinstance(past_key_values, StaticCache)
         | 
| 1054 | 
            +
             | 
| 1055 | 
            +
                    # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
         | 
| 1056 | 
            +
                    if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
         | 
| 1057 | 
            +
                        if AttentionMaskConverter._ignore_causal_mask_sdpa(
         | 
| 1058 | 
            +
                                attention_mask,
         | 
| 1059 | 
            +
                                inputs_embeds=input_tensor,
         | 
| 1060 | 
            +
                                past_key_values_length=past_seen_tokens,
         | 
| 1061 | 
            +
                                is_training=self.training,
         | 
| 1062 | 
            +
                        ) and all([not layer.is_sliding for layer in self.layers]):
         | 
| 1063 | 
            +
                            return None
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
                    dtype, device = input_tensor.dtype, input_tensor.device
         | 
| 1066 | 
            +
                    min_dtype = torch.finfo(dtype).min
         | 
| 1067 | 
            +
                    sequence_length = input_tensor.shape[1]
         | 
| 1068 | 
            +
                    if using_static_cache:
         | 
| 1069 | 
            +
                        target_length = past_key_values.get_max_length()
         | 
| 1070 | 
            +
                    else:
         | 
| 1071 | 
            +
                        target_length = (
         | 
| 1072 | 
            +
                            attention_mask.shape[-1]
         | 
| 1073 | 
            +
                            if isinstance(attention_mask, torch.Tensor)
         | 
| 1074 | 
            +
                            else past_seen_tokens + sequence_length + 1
         | 
| 1075 | 
            +
                        )
         | 
| 1076 | 
            +
             | 
| 1077 | 
            +
                    # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
         | 
| 1078 | 
            +
                    causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 1079 | 
            +
                        attention_mask,
         | 
| 1080 | 
            +
                        sequence_length=sequence_length,
         | 
| 1081 | 
            +
                        target_length=target_length,
         | 
| 1082 | 
            +
                        dtype=dtype,
         | 
| 1083 | 
            +
                        device=device,
         | 
| 1084 | 
            +
                        min_dtype=min_dtype,
         | 
| 1085 | 
            +
                        cache_position=cache_position,
         | 
| 1086 | 
            +
                        batch_size=input_tensor.shape[0],
         | 
| 1087 | 
            +
                    )
         | 
| 1088 | 
            +
             | 
| 1089 | 
            +
                    if (
         | 
| 1090 | 
            +
                            self.config._attn_implementation == "sdpa"
         | 
| 1091 | 
            +
                            and attention_mask is not None
         | 
| 1092 | 
            +
                            and attention_mask.device.type == "cuda"
         | 
| 1093 | 
            +
                            and not output_attentions
         | 
| 1094 | 
            +
                    ):
         | 
| 1095 | 
            +
                        # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
         | 
| 1096 | 
            +
                        # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 1097 | 
            +
                        # Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 1098 | 
            +
                        causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
         | 
| 1099 | 
            +
             | 
| 1100 | 
            +
                    return causal_mask
         | 
| 1101 | 
            +
             | 
| 1102 | 
            +
             | 
| 1103 | 
            +
            class DeciLMForCausalLM(DeciLMPreTrainedModel, GenerationMixin):
         | 
| 1104 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
                def __init__(self, config):
         | 
| 1107 | 
            +
                    super().__init__(config)
         | 
| 1108 | 
            +
                    self.model = DeciLMModel(config)
         | 
| 1109 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1110 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1111 | 
            +
             | 
| 1112 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1113 | 
            +
                    self.post_init()
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                def get_input_embeddings(self):
         | 
| 1116 | 
            +
                    return self.model.embed_tokens
         | 
| 1117 | 
            +
             | 
| 1118 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1119 | 
            +
                    self.model.embed_tokens = value
         | 
| 1120 | 
            +
             | 
| 1121 | 
            +
                def get_output_embeddings(self):
         | 
| 1122 | 
            +
                    return self.lm_head
         | 
| 1123 | 
            +
             | 
| 1124 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1125 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1126 | 
            +
             | 
| 1127 | 
            +
                def set_decoder(self, decoder):
         | 
| 1128 | 
            +
                    self.model = decoder
         | 
| 1129 | 
            +
             | 
| 1130 | 
            +
                def get_decoder(self):
         | 
| 1131 | 
            +
                    return self.model
         | 
| 1132 | 
            +
             | 
| 1133 | 
            +
                @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
         | 
| 1134 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1135 | 
            +
                def forward(
         | 
| 1136 | 
            +
                        self,
         | 
| 1137 | 
            +
                        input_ids: torch.LongTensor = None,
         | 
| 1138 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 1139 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 1140 | 
            +
                        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 1141 | 
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1142 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 1143 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 1144 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 1145 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 1146 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 1147 | 
            +
                        cache_position: Optional[torch.LongTensor] = None,
         | 
| 1148 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 1149 | 
            +
                    r"""
         | 
| 1150 | 
            +
                    Args:
         | 
| 1151 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1152 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1153 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1154 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1155 | 
            +
             | 
| 1156 | 
            +
                    Return:
         | 
| 1157 | 
            +
                    """
         | 
| 1158 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1159 | 
            +
                    output_hidden_states = (
         | 
| 1160 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1161 | 
            +
                    )
         | 
| 1162 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1163 | 
            +
             | 
| 1164 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1165 | 
            +
                    outputs = self.model(
         | 
| 1166 | 
            +
                        input_ids=input_ids,
         | 
| 1167 | 
            +
                        attention_mask=attention_mask,
         | 
| 1168 | 
            +
                        position_ids=position_ids,
         | 
| 1169 | 
            +
                        past_key_values=past_key_values,
         | 
| 1170 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1171 | 
            +
                        use_cache=use_cache,
         | 
| 1172 | 
            +
                        output_attentions=output_attentions,
         | 
| 1173 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1174 | 
            +
                        return_dict=return_dict,
         | 
| 1175 | 
            +
                        cache_position=cache_position,
         | 
| 1176 | 
            +
                    )
         | 
| 1177 | 
            +
             | 
| 1178 | 
            +
                    hidden_states = outputs[0]
         | 
| 1179 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 1180 | 
            +
                        lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
         | 
| 1181 | 
            +
                        logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
         | 
| 1182 | 
            +
                        logits = torch.cat(logits, dim=-1)
         | 
| 1183 | 
            +
                    else:
         | 
| 1184 | 
            +
                        logits = self.lm_head(hidden_states)
         | 
| 1185 | 
            +
                    logits = logits.float()
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
                    loss = None
         | 
| 1188 | 
            +
                    if labels is not None:
         | 
| 1189 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1190 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1191 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1192 | 
            +
                        # Flatten the tokens
         | 
| 1193 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1194 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1195 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1196 | 
            +
                        # Enable model parallelism
         | 
| 1197 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1198 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1199 | 
            +
             | 
| 1200 | 
            +
                    if not return_dict:
         | 
| 1201 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1202 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1203 | 
            +
             | 
| 1204 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1205 | 
            +
                        loss=loss,
         | 
| 1206 | 
            +
                        logits=logits,
         | 
| 1207 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1208 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1209 | 
            +
                        attentions=outputs.attentions,
         | 
| 1210 | 
            +
                    )
         | 
| 1211 | 
            +
             | 
| 1212 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1213 | 
            +
                        self,
         | 
| 1214 | 
            +
                        input_ids,
         | 
| 1215 | 
            +
                        past_key_values=None,
         | 
| 1216 | 
            +
                        attention_mask=None,
         | 
| 1217 | 
            +
                        inputs_embeds=None,
         | 
| 1218 | 
            +
                        cache_position=None,
         | 
| 1219 | 
            +
                        position_ids=None,
         | 
| 1220 | 
            +
                        use_cache=True,
         | 
| 1221 | 
            +
                        **kwargs,
         | 
| 1222 | 
            +
                ):
         | 
| 1223 | 
            +
                    # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
         | 
| 1224 | 
            +
                    # Exception 1: when passing input_embeds, input_ids may be missing entries
         | 
| 1225 | 
            +
                    # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
         | 
| 1226 | 
            +
                    if past_key_values is not None:
         | 
| 1227 | 
            +
                        if inputs_embeds is not None:  # Exception 1
         | 
| 1228 | 
            +
                            input_ids = input_ids[:, -cache_position.shape[0]:]
         | 
| 1229 | 
            +
                        elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
         | 
| 1230 | 
            +
                            input_ids = input_ids[:, cache_position]
         | 
| 1231 | 
            +
             | 
| 1232 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1233 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1234 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1235 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1236 | 
            +
                        if past_key_values:
         | 
| 1237 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1]:]
         | 
| 1238 | 
            +
             | 
| 1239 | 
            +
                            # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
         | 
| 1240 | 
            +
                            position_ids = position_ids.clone(memory_format=torch.contiguous_format)
         | 
| 1241 | 
            +
             | 
| 1242 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1243 | 
            +
                    if inputs_embeds is not None and cache_position[0] == 0:
         | 
| 1244 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
         | 
| 1245 | 
            +
                    else:
         | 
| 1246 | 
            +
                        # The clone here is for the same reason as for `position_ids`.
         | 
| 1247 | 
            +
                        model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
         | 
| 1248 | 
            +
             | 
| 1249 | 
            +
                    assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
         | 
| 1250 | 
            +
                    if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
         | 
| 1251 | 
            +
                        if model_inputs["inputs_embeds"] is not None:
         | 
| 1252 | 
            +
                            batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
         | 
| 1253 | 
            +
                            device = model_inputs["inputs_embeds"].device
         | 
| 1254 | 
            +
                        else:
         | 
| 1255 | 
            +
                            batch_size, sequence_length = model_inputs["input_ids"].shape
         | 
| 1256 | 
            +
                            device = model_inputs["input_ids"].device
         | 
| 1257 | 
            +
             | 
| 1258 | 
            +
                        dtype = self.lm_head.weight.dtype
         | 
| 1259 | 
            +
                        min_dtype = torch.finfo(dtype).min
         | 
| 1260 | 
            +
             | 
| 1261 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 1262 | 
            +
                            attention_mask,
         | 
| 1263 | 
            +
                            sequence_length=sequence_length,
         | 
| 1264 | 
            +
                            target_length=past_key_values.get_max_length(),
         | 
| 1265 | 
            +
                            dtype=dtype,
         | 
| 1266 | 
            +
                            device=device,
         | 
| 1267 | 
            +
                            min_dtype=min_dtype,
         | 
| 1268 | 
            +
                            cache_position=cache_position,
         | 
| 1269 | 
            +
                            batch_size=batch_size,
         | 
| 1270 | 
            +
                        )
         | 
| 1271 | 
            +
             | 
| 1272 | 
            +
                    model_inputs.update(
         | 
| 1273 | 
            +
                        {
         | 
| 1274 | 
            +
                            "position_ids": position_ids,
         | 
| 1275 | 
            +
                            "cache_position": cache_position,
         | 
| 1276 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1277 | 
            +
                            "use_cache": use_cache,
         | 
| 1278 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1279 | 
            +
                        }
         | 
| 1280 | 
            +
                    )
         | 
| 1281 | 
            +
                    return model_inputs
         | 
| 1282 | 
            +
             | 
| 1283 | 
            +
                def _maybe_initialize_input_ids_for_generation(
         | 
| 1284 | 
            +
                        self,
         | 
| 1285 | 
            +
                        inputs: Optional[torch.Tensor] = None,
         | 
| 1286 | 
            +
                        bos_token_id: Optional[torch.Tensor] = None,
         | 
| 1287 | 
            +
                        model_kwargs: Optional[dict[str, torch.Tensor]] = None,
         | 
| 1288 | 
            +
                ) -> torch.LongTensor:
         | 
| 1289 | 
            +
                    """
         | 
| 1290 | 
            +
                    Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
         | 
| 1291 | 
            +
                    """
         | 
| 1292 | 
            +
                    input_ids = super()._maybe_initialize_input_ids_for_generation(
         | 
| 1293 | 
            +
                        inputs=inputs, bos_token_id=bos_token_id, model_kwargs=model_kwargs)
         | 
| 1294 | 
            +
                    if (
         | 
| 1295 | 
            +
                            "inputs_embeds" in model_kwargs
         | 
| 1296 | 
            +
                            and input_ids is not None
         | 
| 1297 | 
            +
                            and input_ids.shape[1] == 0
         | 
| 1298 | 
            +
                    ):
         | 
| 1299 | 
            +
                        batch_size, input_sequence_length = model_kwargs["inputs_embeds"].shape[:2]
         | 
| 1300 | 
            +
                        input_ids = torch.zeros((batch_size, input_sequence_length), dtype=torch.long, device=self.device)
         | 
| 1301 | 
            +
                    return input_ids
         | 
| 1302 | 
            +
             | 
| 1303 | 
            +
                def generate(
         | 
| 1304 | 
            +
                        self,
         | 
| 1305 | 
            +
                        inputs: Optional[torch.Tensor] = None,
         | 
| 1306 | 
            +
                        *args,
         | 
| 1307 | 
            +
                        **kwargs,
         | 
| 1308 | 
            +
                ) -> Union[GenerateOutput, torch.LongTensor]:
         | 
| 1309 | 
            +
                    """
         | 
| 1310 | 
            +
                    Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
         | 
| 1311 | 
            +
                    """
         | 
| 1312 | 
            +
                    only_passed_inputs_embeds = (
         | 
| 1313 | 
            +
                            "inputs_embeds" in kwargs and
         | 
| 1314 | 
            +
                            "input_ids" not in kwargs and
         | 
| 1315 | 
            +
                            inputs is None
         | 
| 1316 | 
            +
                    )
         | 
| 1317 | 
            +
                    if only_passed_inputs_embeds:
         | 
| 1318 | 
            +
                        input_sequence_length = kwargs["inputs_embeds"].shape[1]
         | 
| 1319 | 
            +
             | 
| 1320 | 
            +
                    generation_output = super().generate(inputs=inputs, *args, **kwargs)
         | 
| 1321 | 
            +
             | 
| 1322 | 
            +
                    if only_passed_inputs_embeds and isinstance(generation_output, torch.Tensor):
         | 
| 1323 | 
            +
                        generation_output = generation_output[:, input_sequence_length:]
         | 
| 1324 | 
            +
             | 
| 1325 | 
            +
                    return generation_output
         | 
| 1326 | 
            +
             | 
| 1327 | 
            +
             | 
| 1328 | 
            +
            @add_start_docstrings(
         | 
| 1329 | 
            +
                """
         | 
| 1330 | 
            +
                The DeciLM Model transformer with a sequence classification head on top (linear layer).
         | 
| 1331 | 
            +
             | 
| 1332 | 
            +
                [`DeciLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 1333 | 
            +
                (e.g. GPT-2) do.
         | 
| 1334 | 
            +
             | 
| 1335 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1336 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1337 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1338 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1339 | 
            +
                each row of the batch).
         | 
| 1340 | 
            +
                """,
         | 
| 1341 | 
            +
                DECILM_START_DOCSTRING,
         | 
| 1342 | 
            +
            )
         | 
| 1343 | 
            +
            class DeciLMForSequenceClassification(DeciLMPreTrainedModel):
         | 
| 1344 | 
            +
                def __init__(self, config):
         | 
| 1345 | 
            +
                    super().__init__(config)
         | 
| 1346 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1347 | 
            +
                    self.model = DeciLMModel(config)
         | 
| 1348 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1349 | 
            +
             | 
| 1350 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1351 | 
            +
                    self.post_init()
         | 
| 1352 | 
            +
             | 
| 1353 | 
            +
                def get_input_embeddings(self):
         | 
| 1354 | 
            +
                    return self.model.embed_tokens
         | 
| 1355 | 
            +
             | 
| 1356 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1357 | 
            +
                    self.model.embed_tokens = value
         | 
| 1358 | 
            +
             | 
| 1359 | 
            +
                @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
         | 
| 1360 | 
            +
                def forward(
         | 
| 1361 | 
            +
                        self,
         | 
| 1362 | 
            +
                        input_ids: Optional[torch.LongTensor] = None,
         | 
| 1363 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 1364 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 1365 | 
            +
                        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 1366 | 
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1367 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 1368 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 1369 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 1370 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 1371 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 1372 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1373 | 
            +
                    r"""
         | 
| 1374 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1375 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1376 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1377 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1378 | 
            +
                    """
         | 
| 1379 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1380 | 
            +
             | 
| 1381 | 
            +
                    transformer_outputs = self.model(
         | 
| 1382 | 
            +
                        input_ids,
         | 
| 1383 | 
            +
                        attention_mask=attention_mask,
         | 
| 1384 | 
            +
                        position_ids=position_ids,
         | 
| 1385 | 
            +
                        past_key_values=past_key_values,
         | 
| 1386 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1387 | 
            +
                        use_cache=use_cache,
         | 
| 1388 | 
            +
                        output_attentions=output_attentions,
         | 
| 1389 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1390 | 
            +
                        return_dict=return_dict,
         | 
| 1391 | 
            +
                    )
         | 
| 1392 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1393 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1394 | 
            +
             | 
| 1395 | 
            +
                    if input_ids is not None:
         | 
| 1396 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1397 | 
            +
                    else:
         | 
| 1398 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1399 | 
            +
             | 
| 1400 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1401 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 1402 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1403 | 
            +
                        sequence_lengths = -1
         | 
| 1404 | 
            +
                    else:
         | 
| 1405 | 
            +
                        if input_ids is not None:
         | 
| 1406 | 
            +
                            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
         | 
| 1407 | 
            +
                            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
         | 
| 1408 | 
            +
                            sequence_lengths = sequence_lengths % input_ids.shape[-1]
         | 
| 1409 | 
            +
                            sequence_lengths = sequence_lengths.to(logits.device)
         | 
| 1410 | 
            +
                        else:
         | 
| 1411 | 
            +
                            sequence_lengths = -1
         | 
| 1412 | 
            +
             | 
| 1413 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1414 | 
            +
             | 
| 1415 | 
            +
                    loss = None
         | 
| 1416 | 
            +
                    if labels is not None:
         | 
| 1417 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1418 | 
            +
                        if self.config.problem_type is None:
         | 
| 1419 | 
            +
                            if self.num_labels == 1:
         | 
| 1420 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1421 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1422 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1423 | 
            +
                            else:
         | 
| 1424 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1425 | 
            +
             | 
| 1426 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1427 | 
            +
                            loss_fct = MSELoss()
         | 
| 1428 | 
            +
                            if self.num_labels == 1:
         | 
| 1429 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1430 | 
            +
                            else:
         | 
| 1431 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1432 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1433 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1434 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1435 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1436 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1437 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1438 | 
            +
                    if not return_dict:
         | 
| 1439 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1440 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1441 | 
            +
             | 
| 1442 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1443 | 
            +
                        loss=loss,
         | 
| 1444 | 
            +
                        logits=pooled_logits,
         | 
| 1445 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1446 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1447 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1448 | 
            +
                    )
         | 
| 1449 | 
            +
             | 
| 1450 | 
            +
             | 
| 1451 | 
            +
            @add_start_docstrings(
         | 
| 1452 | 
            +
                """
         | 
| 1453 | 
            +
            The DeciLM Model transformer with a span classification head on top for extractive question-answering tasks like
         | 
| 1454 | 
            +
            SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
         | 
| 1455 | 
            +
                """,
         | 
| 1456 | 
            +
                DECILM_START_DOCSTRING,
         | 
| 1457 | 
            +
            )
         | 
| 1458 | 
            +
            class DeciLMForQuestionAnswering(DeciLMPreTrainedModel):
         | 
| 1459 | 
            +
                base_model_prefix = "transformer"
         | 
| 1460 | 
            +
             | 
| 1461 | 
            +
                # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->DeciLM
         | 
| 1462 | 
            +
                def __init__(self, config):
         | 
| 1463 | 
            +
                    super().__init__(config)
         | 
| 1464 | 
            +
                    self.transformer = DeciLMModel(config)
         | 
| 1465 | 
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, 2)
         | 
| 1466 | 
            +
             | 
| 1467 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1468 | 
            +
                    self.post_init()
         | 
| 1469 | 
            +
             | 
| 1470 | 
            +
                def get_input_embeddings(self):
         | 
| 1471 | 
            +
                    return self.transformer.embed_tokens
         | 
| 1472 | 
            +
             | 
| 1473 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1474 | 
            +
                    self.transformer.embed_tokens = value
         | 
| 1475 | 
            +
             | 
| 1476 | 
            +
                @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
         | 
| 1477 | 
            +
                def forward(
         | 
| 1478 | 
            +
                        self,
         | 
| 1479 | 
            +
                        input_ids: Optional[torch.LongTensor] = None,
         | 
| 1480 | 
            +
                        attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 1481 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 1482 | 
            +
                        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 1483 | 
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1484 | 
            +
                        start_positions: Optional[torch.LongTensor] = None,
         | 
| 1485 | 
            +
                        end_positions: Optional[torch.LongTensor] = None,
         | 
| 1486 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 1487 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 1488 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 1489 | 
            +
                ) -> Union[Tuple, QuestionAnsweringModelOutput]:
         | 
| 1490 | 
            +
                    r"""
         | 
| 1491 | 
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1492 | 
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         | 
| 1493 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1494 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1495 | 
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1496 | 
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         | 
| 1497 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1498 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1499 | 
            +
                    """
         | 
| 1500 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1501 | 
            +
             | 
| 1502 | 
            +
                    outputs = self.transformer(
         | 
| 1503 | 
            +
                        input_ids,
         | 
| 1504 | 
            +
                        attention_mask=attention_mask,
         | 
| 1505 | 
            +
                        position_ids=position_ids,
         | 
| 1506 | 
            +
                        past_key_values=past_key_values,
         | 
| 1507 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1508 | 
            +
                        output_attentions=output_attentions,
         | 
| 1509 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1510 | 
            +
                        return_dict=return_dict,
         | 
| 1511 | 
            +
                    )
         | 
| 1512 | 
            +
             | 
| 1513 | 
            +
                    sequence_output = outputs[0]
         | 
| 1514 | 
            +
             | 
| 1515 | 
            +
                    logits = self.qa_outputs(sequence_output)
         | 
| 1516 | 
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         | 
| 1517 | 
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         | 
| 1518 | 
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         | 
| 1519 | 
            +
             | 
| 1520 | 
            +
                    total_loss = None
         | 
| 1521 | 
            +
                    if start_positions is not None and end_positions is not None:
         | 
| 1522 | 
            +
                        # If we are on multi-GPU, split add a dimension
         | 
| 1523 | 
            +
                        if len(start_positions.size()) > 1:
         | 
| 1524 | 
            +
                            start_positions = start_positions.squeeze(-1).to(start_logits.device)
         | 
| 1525 | 
            +
                        if len(end_positions.size()) > 1:
         | 
| 1526 | 
            +
                            end_positions = end_positions.squeeze(-1).to(end_logits.device)
         | 
| 1527 | 
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         | 
| 1528 | 
            +
                        ignored_index = start_logits.size(1)
         | 
| 1529 | 
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         | 
| 1530 | 
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         | 
| 1531 | 
            +
             | 
| 1532 | 
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         | 
| 1533 | 
            +
                        start_loss = loss_fct(start_logits, start_positions)
         | 
| 1534 | 
            +
                        end_loss = loss_fct(end_logits, end_positions)
         | 
| 1535 | 
            +
                        total_loss = (start_loss + end_loss) / 2
         | 
| 1536 | 
            +
             | 
| 1537 | 
            +
                    if not return_dict:
         | 
| 1538 | 
            +
                        output = (start_logits, end_logits) + outputs[2:]
         | 
| 1539 | 
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         | 
| 1540 | 
            +
             | 
| 1541 | 
            +
                    return QuestionAnsweringModelOutput(
         | 
| 1542 | 
            +
                        loss=total_loss,
         | 
| 1543 | 
            +
                        start_logits=start_logits,
         | 
| 1544 | 
            +
                        end_logits=end_logits,
         | 
| 1545 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1546 | 
            +
                        attentions=outputs.attentions,
         | 
| 1547 | 
            +
                    )
         | 
| 1548 | 
            +
             | 
| 1549 | 
            +
             | 
| 1550 | 
            +
            @add_start_docstrings(
         | 
| 1551 | 
            +
                """
         | 
| 1552 | 
            +
                The DeciLM Model transformer with a token classification head on top (a linear layer on top of the hidden-states
         | 
| 1553 | 
            +
                output) e.g. for Named-Entity-Recognition (NER) tasks.
         | 
| 1554 | 
            +
                """,
         | 
| 1555 | 
            +
                DECILM_START_DOCSTRING,
         | 
| 1556 | 
            +
            )
         | 
| 1557 | 
            +
            class DeciLMForTokenClassification(DeciLMPreTrainedModel):
         | 
| 1558 | 
            +
                def __init__(self, config):
         | 
| 1559 | 
            +
                    super().__init__(config)
         | 
| 1560 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1561 | 
            +
                    self.model = DeciLMModel(config)
         | 
| 1562 | 
            +
                    if getattr(config, "classifier_dropout", None) is not None:
         | 
| 1563 | 
            +
                        classifier_dropout = config.classifier_dropout
         | 
| 1564 | 
            +
                    elif getattr(config, "hidden_dropout", None) is not None:
         | 
| 1565 | 
            +
                        classifier_dropout = config.hidden_dropout
         | 
| 1566 | 
            +
                    else:
         | 
| 1567 | 
            +
                        classifier_dropout = 0.1
         | 
| 1568 | 
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         | 
| 1569 | 
            +
                    self.score = nn.Linear(config.hidden_size, config.num_labels)
         | 
| 1570 | 
            +
             | 
| 1571 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1572 | 
            +
                    self.post_init()
         | 
| 1573 | 
            +
             | 
| 1574 | 
            +
                def get_input_embeddings(self):
         | 
| 1575 | 
            +
                    return self.model.embed_tokens
         | 
| 1576 | 
            +
             | 
| 1577 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1578 | 
            +
                    self.model.embed_tokens = value
         | 
| 1579 | 
            +
             | 
| 1580 | 
            +
                @add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
         | 
| 1581 | 
            +
                def forward(
         | 
| 1582 | 
            +
                        self,
         | 
| 1583 | 
            +
                        input_ids: Optional[torch.LongTensor] = None,
         | 
| 1584 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 1585 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 1586 | 
            +
                        past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1587 | 
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1588 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 1589 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 1590 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 1591 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 1592 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 1593 | 
            +
                ) -> Union[Tuple, TokenClassifierOutput]:
         | 
| 1594 | 
            +
                    r"""
         | 
| 1595 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1596 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1597 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1598 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1599 | 
            +
                    """
         | 
| 1600 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1601 | 
            +
             | 
| 1602 | 
            +
                    outputs = self.model(
         | 
| 1603 | 
            +
                        input_ids,
         | 
| 1604 | 
            +
                        attention_mask=attention_mask,
         | 
| 1605 | 
            +
                        position_ids=position_ids,
         | 
| 1606 | 
            +
                        past_key_values=past_key_values,
         | 
| 1607 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1608 | 
            +
                        use_cache=use_cache,
         | 
| 1609 | 
            +
                        output_attentions=output_attentions,
         | 
| 1610 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1611 | 
            +
                        return_dict=return_dict,
         | 
| 1612 | 
            +
                    )
         | 
| 1613 | 
            +
                    sequence_output = outputs[0]
         | 
| 1614 | 
            +
                    sequence_output = self.dropout(sequence_output)
         | 
| 1615 | 
            +
                    logits = self.score(sequence_output)
         | 
| 1616 | 
            +
             | 
| 1617 | 
            +
                    loss = None
         | 
| 1618 | 
            +
                    if labels is not None:
         | 
| 1619 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1620 | 
            +
                        loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1621 | 
            +
             | 
| 1622 | 
            +
                    if not return_dict:
         | 
| 1623 | 
            +
                        output = (logits,) + outputs[2:]
         | 
| 1624 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1625 | 
            +
             | 
| 1626 | 
            +
                    return TokenClassifierOutput(
         | 
| 1627 | 
            +
                        loss=loss,
         | 
| 1628 | 
            +
                        logits=logits,
         | 
| 1629 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1630 | 
            +
                        attentions=outputs.attentions,
         | 
| 1631 | 
            +
                    )
         | 
| 1632 | 
            +
             | 
| 1633 | 
            +
             | 
| 1634 | 
            +
            ########################################################################
         | 
| 1635 | 
            +
            # DeciLM-specific code
         | 
| 1636 | 
            +
            ########################################################################
         | 
| 1637 | 
            +
             | 
| 1638 | 
            +
             | 
| 1639 | 
            +
            def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
         | 
| 1640 | 
            +
                # DeciLM-specific code
         | 
| 1641 | 
            +
                intermediate_size = int(2 * ffn_mult * n_embd / 3)
         | 
| 1642 | 
            +
                return _find_multiple(intermediate_size, 256)
         | 
| 1643 | 
            +
             | 
| 1644 | 
            +
             | 
| 1645 | 
            +
            def _find_multiple(n: int, k: int) -> int:
         | 
| 1646 | 
            +
                # DeciLM-specific code
         | 
| 1647 | 
            +
                if n % k == 0:
         | 
| 1648 | 
            +
                    return n
         | 
| 1649 | 
            +
                return n + k - (n % k)
         | 
| 1650 | 
            +
             | 
| 1651 | 
            +
             | 
| 1652 | 
            +
            class DeciLMLinearMLP(nn.Module):
         | 
| 1653 | 
            +
                # DeciLM-specific code
         | 
| 1654 | 
            +
                def __init__(self,
         | 
| 1655 | 
            +
                             config: DeciLMConfig,
         | 
| 1656 | 
            +
                             ):
         | 
| 1657 | 
            +
                    super().__init__()
         | 
| 1658 | 
            +
                    self.linear_mlp = nn.Linear(in_features=config.hidden_size,
         | 
| 1659 | 
            +
                                                out_features=config.hidden_size,
         | 
| 1660 | 
            +
                                                bias=False)
         | 
| 1661 | 
            +
             | 
| 1662 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 1663 | 
            +
                    return self.linear_mlp.forward(x)
         | 
| 1664 | 
            +
             | 
| 1665 | 
            +
             | 
| 1666 | 
            +
            class DeciLMLinearAttention(nn.Module):
         | 
| 1667 | 
            +
                # DeciLM-specific code
         | 
| 1668 | 
            +
                def __init__(self,
         | 
| 1669 | 
            +
                             config: DeciLMConfig,
         | 
| 1670 | 
            +
                             ):
         | 
| 1671 | 
            +
                    super().__init__()
         | 
| 1672 | 
            +
                    self.linear_attn = nn.Linear(in_features=config.hidden_size,
         | 
| 1673 | 
            +
                                                 out_features=config.hidden_size,
         | 
| 1674 | 
            +
                                                 bias=False)
         | 
| 1675 | 
            +
             | 
| 1676 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 1677 | 
            +
                    return self.linear_attn.forward(x)
         | 
| 1678 | 
            +
             | 
| 1679 | 
            +
             | 
| 1680 | 
            +
            def sparsity_backward_hook(*args, **kwargs):
         | 
| 1681 | 
            +
                raise NotImplementedError("No support for sparsity when training HF DeciLM (inference is ok though)")
         | 
    	
        nemo_common.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {}
         | 
    	
        nemo_model_config.yaml
    ADDED
    
    | @@ -0,0 +1,211 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            restore_from_path: null
         | 
| 2 | 
            +
            restore_from_ckpt: null
         | 
| 3 | 
            +
            mcore_gpt: true
         | 
| 4 | 
            +
            micro_batch_size: 1
         | 
| 5 | 
            +
            global_batch_size: 288
         | 
| 6 | 
            +
            tensor_model_parallel_size: 8
         | 
| 7 | 
            +
            pipeline_model_parallel_size: 18
         | 
| 8 | 
            +
            virtual_pipeline_model_parallel_size: null
         | 
| 9 | 
            +
            encoder_seq_length: 17408
         | 
| 10 | 
            +
            max_position_embeddings: 17408
         | 
| 11 | 
            +
            num_layers: 162
         | 
| 12 | 
            +
            hidden_size: 16384
         | 
| 13 | 
            +
            ffn_hidden_size: 11008
         | 
| 14 | 
            +
            num_attention_heads: 128
         | 
| 15 | 
            +
            init_method_std: 0.02
         | 
| 16 | 
            +
            use_scaled_init_method: true
         | 
| 17 | 
            +
            hidden_dropout: 0.0
         | 
| 18 | 
            +
            attention_dropout: 0.0
         | 
| 19 | 
            +
            ffn_dropout: 0.0
         | 
| 20 | 
            +
            kv_channels: null
         | 
| 21 | 
            +
            apply_query_key_layer_scaling: true
         | 
| 22 | 
            +
            normalization: rmsnorm
         | 
| 23 | 
            +
            layernorm_epsilon: 1.0e-05
         | 
| 24 | 
            +
            do_layer_norm_weight_decay: false
         | 
| 25 | 
            +
            make_vocab_size_divisible_by: 128
         | 
| 26 | 
            +
            pre_process: true
         | 
| 27 | 
            +
            post_process: true
         | 
| 28 | 
            +
            persist_layer_norm: true
         | 
| 29 | 
            +
            bias: false
         | 
| 30 | 
            +
            activation: fast-swiglu
         | 
| 31 | 
            +
            headscale: false
         | 
| 32 | 
            +
            transformer_block_type: pre_ln
         | 
| 33 | 
            +
            openai_gelu: false
         | 
| 34 | 
            +
            normalize_attention_scores: true
         | 
| 35 | 
            +
            position_embedding_type: rope
         | 
| 36 | 
            +
            rotary_percentage: 1.0
         | 
| 37 | 
            +
            attention_type: multihead
         | 
| 38 | 
            +
            share_embeddings_and_output_weights: false
         | 
| 39 | 
            +
            overlap_p2p_comm: false
         | 
| 40 | 
            +
            batch_p2p_comm: true
         | 
| 41 | 
            +
            num_query_groups: 8
         | 
| 42 | 
            +
            tokenizer:
         | 
| 43 | 
            +
              library: huggingface
         | 
| 44 | 
            +
              type: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
         | 
| 45 | 
            +
              use_fast: true
         | 
| 46 | 
            +
            native_amp_init_scale: 4294967296
         | 
| 47 | 
            +
            native_amp_growth_interval: 1000
         | 
| 48 | 
            +
            hysteresis: 2
         | 
| 49 | 
            +
            fp32_residual_connection: false
         | 
| 50 | 
            +
            fp16_lm_cross_entropy: false
         | 
| 51 | 
            +
            megatron_amp_O2: true
         | 
| 52 | 
            +
            grad_allreduce_chunk_size_mb: 125
         | 
| 53 | 
            +
            grad_div_ar_fusion: true
         | 
| 54 | 
            +
            gradient_accumulation_fusion: false
         | 
| 55 | 
            +
            bias_activation_fusion: false
         | 
| 56 | 
            +
            bias_dropout_add_fusion: false
         | 
| 57 | 
            +
            masked_softmax_fusion: true
         | 
| 58 | 
            +
            get_attention_mask_from_fusion: true
         | 
| 59 | 
            +
            apply_rope_fusion: false
         | 
| 60 | 
            +
            seed: 1234
         | 
| 61 | 
            +
            resume_from_checkpoint: null
         | 
| 62 | 
            +
            use_cpu_initialization: false
         | 
| 63 | 
            +
            onnx_safe: false
         | 
| 64 | 
            +
            apex_transformer_log_level: 30
         | 
| 65 | 
            +
            gradient_as_bucket_view: true
         | 
| 66 | 
            +
            sync_batch_comm: false
         | 
| 67 | 
            +
            activations_checkpoint_granularity: full
         | 
| 68 | 
            +
            activations_checkpoint_method: uniform
         | 
| 69 | 
            +
            activations_checkpoint_num_layers: 1
         | 
| 70 | 
            +
            num_micro_batches_with_partial_activation_checkpoints: null
         | 
| 71 | 
            +
            activations_checkpoint_layers_per_pipeline: null
         | 
| 72 | 
            +
            sequence_parallel: true
         | 
| 73 | 
            +
            transformer_engine: true
         | 
| 74 | 
            +
            fp8: false
         | 
| 75 | 
            +
            fp8_e4m3: false
         | 
| 76 | 
            +
            fp8_hybrid: true
         | 
| 77 | 
            +
            fp8_margin: 0
         | 
| 78 | 
            +
            fp8_interval: 1
         | 
| 79 | 
            +
            fp8_amax_history_len: 1024
         | 
| 80 | 
            +
            fp8_amax_compute_algo: max
         | 
| 81 | 
            +
            reduce_amax: true
         | 
| 82 | 
            +
            use_emha: false
         | 
| 83 | 
            +
            data:
         | 
| 84 | 
            +
              index_mapping_dir: null
         | 
| 85 | 
            +
              data_impl: jsonl
         | 
| 86 | 
            +
              splits_string: null
         | 
| 87 | 
            +
              seq_length: 17408
         | 
| 88 | 
            +
              skip_warmup: true
         | 
| 89 | 
            +
              num_workers: 0
         | 
| 90 | 
            +
              dataloader_type: single
         | 
| 91 | 
            +
              reset_position_ids: false
         | 
| 92 | 
            +
              reset_attention_mask: false
         | 
| 93 | 
            +
              eod_mask_loss: false
         | 
| 94 | 
            +
              validation_drop_last: true
         | 
| 95 | 
            +
              no_seqlen_plus_one_input_tokens: false
         | 
| 96 | 
            +
              pad_samples_to_global_batch_size: false
         | 
| 97 | 
            +
              shuffle_documents: true
         | 
| 98 | 
            +
              apply_chat_template: false
         | 
| 99 | 
            +
              prompt_file: null
         | 
| 100 | 
            +
              system_prompt_file: null
         | 
| 101 | 
            +
              shuffle_train_data: false
         | 
| 102 | 
            +
              system_prompt: detailed thinking off
         | 
| 103 | 
            +
              data_prefix:
         | 
| 104 | 
            +
                train:
         | 
| 105 | 
            +
                - /lustre/fsw/portfolios/llmservice/users/jiaqiz/data/reinforce/hs2/hs2.multiturn.rl.sys12.train.jsonl
         | 
| 106 | 
            +
                validation:
         | 
| 107 | 
            +
                - /lustre/fsw/portfolios/llmservice/users/jiaqiz/data/reinforce/hs2/hs2.multiturn.rl.sys12.val.jsonl
         | 
| 108 | 
            +
                test:
         | 
| 109 | 
            +
                - /lustre/fsw/portfolios/llmservice/users/jiaqiz/data/reinforce/hs2/hs2.multiturn.rl.sys12.val.jsonl
         | 
| 110 | 
            +
            nsys_profile:
         | 
| 111 | 
            +
              enabled: false
         | 
| 112 | 
            +
              start_step: 10
         | 
| 113 | 
            +
              end_step: 10
         | 
| 114 | 
            +
              ranks:
         | 
| 115 | 
            +
              - 0
         | 
| 116 | 
            +
              gen_shape: false
         | 
| 117 | 
            +
            optim:
         | 
| 118 | 
            +
              name: distributed_fused_adam
         | 
| 119 | 
            +
              lr: 3.00001e-07
         | 
| 120 | 
            +
              weight_decay: 0.1
         | 
| 121 | 
            +
              betas:
         | 
| 122 | 
            +
              - 0.9
         | 
| 123 | 
            +
              - 0.98
         | 
| 124 | 
            +
              sched:
         | 
| 125 | 
            +
                name: CosineAnnealing
         | 
| 126 | 
            +
                warmup_steps: 10
         | 
| 127 | 
            +
                constant_steps: 1000
         | 
| 128 | 
            +
                min_lr: 3.0e-07
         | 
| 129 | 
            +
                max_steps: 3802
         | 
| 130 | 
            +
              bucket_cap_mb: 200
         | 
| 131 | 
            +
              overlap_grad_sync: false
         | 
| 132 | 
            +
              overlap_param_sync: false
         | 
| 133 | 
            +
              contiguous_grad_buffer: true
         | 
| 134 | 
            +
            rotary_base: 500000.0
         | 
| 135 | 
            +
            scale_positional_embedding: true
         | 
| 136 | 
            +
            seq_len_interpolation_factor: null
         | 
| 137 | 
            +
            heterogeneous_layers_config_path: /home/boryiings/lustre/aligner/253B/checkpoints/sft_step1800_nemo/NeMo/config.json
         | 
| 138 | 
            +
            name: heterogeneous_gpt
         | 
| 139 | 
            +
            precision: bf16
         | 
| 140 | 
            +
            hf_model_name_or_configs_dir: /lustre/fs1/portfolios/llmservice/users/jiaqiz/results/253b-id-step14-diffrank-evelina-gpqa-scp116k-aops-llmjudge-prompt2-long-16klen-lr5e7-72nodes/checkpoints/HF/step21
         | 
| 141 | 
            +
            grpo:
         | 
| 142 | 
            +
              share_dir: /dev/shm/checkpoints_2248637
         | 
| 143 | 
            +
              forward_micro_batch_size: 1
         | 
| 144 | 
            +
              offload_adam_states: true
         | 
| 145 | 
            +
              ratio_eps: 0.2
         | 
| 146 | 
            +
              sampling_params:
         | 
| 147 | 
            +
                use_greedy: false
         | 
| 148 | 
            +
                temperature: 1
         | 
| 149 | 
            +
                top_k: -1
         | 
| 150 | 
            +
                top_p: 1.0
         | 
| 151 | 
            +
                repetition_penalty: 1.0
         | 
| 152 | 
            +
                add_BOS: false
         | 
| 153 | 
            +
                all_probs: false
         | 
| 154 | 
            +
                compute_logprob: false
         | 
| 155 | 
            +
                end_strings:
         | 
| 156 | 
            +
                - <|endoftext|>
         | 
| 157 | 
            +
                - <extra_id_1>
         | 
| 158 | 
            +
              length_params:
         | 
| 159 | 
            +
                max_length: 16384
         | 
| 160 | 
            +
                min_length: 1
         | 
| 161 | 
            +
              generation_rollout_mbs: 16
         | 
| 162 | 
            +
              trt_model_dir: /tmp/trt_llm_model
         | 
| 163 | 
            +
              initial_policy_kl_penalty: 0.0001
         | 
| 164 | 
            +
              inference_backend:
         | 
| 165 | 
            +
                type: vllm
         | 
| 166 | 
            +
                enable: true
         | 
| 167 | 
            +
                seed: 1234
         | 
| 168 | 
            +
                max_input_len: 1024
         | 
| 169 | 
            +
                reshard: true
         | 
| 170 | 
            +
                config:
         | 
| 171 | 
            +
                  trt_llm:
         | 
| 172 | 
            +
                    enable: false
         | 
| 173 | 
            +
                    model_type: llama
         | 
| 174 | 
            +
                    unload_engine_train: false
         | 
| 175 | 
            +
                  vllm:
         | 
| 176 | 
            +
                    enable: true
         | 
| 177 | 
            +
                    port: 4321
         | 
| 178 | 
            +
                    ip: cw-dfw-h100-001-262-012
         | 
| 179 | 
            +
                  trt_llm_pytorch:
         | 
| 180 | 
            +
                    enable: false
         | 
| 181 | 
            +
                    port: 4321
         | 
| 182 | 
            +
                    ip: localhost
         | 
| 183 | 
            +
            peft:
         | 
| 184 | 
            +
              peft_scheme: none
         | 
| 185 | 
            +
              restore_from_path: null
         | 
| 186 | 
            +
              restore_from_ckpt:
         | 
| 187 | 
            +
                checkpoint_dir: null
         | 
| 188 | 
            +
                checkpoint_name: null
         | 
| 189 | 
            +
              lora_tuning:
         | 
| 190 | 
            +
                target_modules:
         | 
| 191 | 
            +
                - attention_qkv
         | 
| 192 | 
            +
                adapter_dim: 32
         | 
| 193 | 
            +
                adapter_dropout: 0.0
         | 
| 194 | 
            +
                column_init_method: xavier
         | 
| 195 | 
            +
                row_init_method: zero
         | 
| 196 | 
            +
                layer_selection: null
         | 
| 197 | 
            +
                weight_tying: false
         | 
| 198 | 
            +
                position_embedding_strategy: null
         | 
| 199 | 
            +
            context_parallel_size: 2
         | 
| 200 | 
            +
            dist_ckpt_format: torch_dist
         | 
| 201 | 
            +
            dist_ckpt_load_on_device: true
         | 
| 202 | 
            +
            dist_ckpt_parallel_save: true
         | 
| 203 | 
            +
            dist_ckpt_parallel_save_within_dp: false
         | 
| 204 | 
            +
            dist_ckpt_parallel_load: false
         | 
| 205 | 
            +
            dist_ckpt_torch_dist_multiproc: 2
         | 
| 206 | 
            +
            dist_ckpt_assume_constant_structure: false
         | 
| 207 | 
            +
            dist_ckpt_parallel_dist_opt: true
         | 
| 208 | 
            +
            dist_ckpt_load_strictness: log_all
         | 
| 209 | 
            +
            deallocate_pipeline_outputs: false
         | 
| 210 | 
            +
            target: nemo_aligner.experimental.grpo.models.nlp.gpt.megatron_gpt_grpo_actor.MegatronGPTActorModel
         | 
| 211 | 
            +
            nemo_version: 2.2.0rc0
         | 
    	
        quantization_config.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,16 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "<|begin_of_text|>",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "eos_token": {
         | 
| 10 | 
            +
                "content": "<|eot_id|>",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              }
         | 
| 16 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
         | 
| 3 | 
            +
            size 17209920
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,2063 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "128000": {
         | 
| 4 | 
            +
                  "content": "<|begin_of_text|>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "128001": {
         | 
| 12 | 
            +
                  "content": "<|end_of_text|>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "128002": {
         | 
| 20 | 
            +
                  "content": "<|reserved_special_token_0|>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "128003": {
         | 
| 28 | 
            +
                  "content": "<|reserved_special_token_1|>",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "128004": {
         | 
| 36 | 
            +
                  "content": "<|finetune_right_pad_id|>",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                },
         | 
| 43 | 
            +
                "128005": {
         | 
| 44 | 
            +
                  "content": "<|reserved_special_token_2|>",
         | 
| 45 | 
            +
                  "lstrip": false,
         | 
| 46 | 
            +
                  "normalized": false,
         | 
| 47 | 
            +
                  "rstrip": false,
         | 
| 48 | 
            +
                  "single_word": false,
         | 
| 49 | 
            +
                  "special": true
         | 
| 50 | 
            +
                },
         | 
| 51 | 
            +
                "128006": {
         | 
| 52 | 
            +
                  "content": "<|start_header_id|>",
         | 
| 53 | 
            +
                  "lstrip": false,
         | 
| 54 | 
            +
                  "normalized": false,
         | 
| 55 | 
            +
                  "rstrip": false,
         | 
| 56 | 
            +
                  "single_word": false,
         | 
| 57 | 
            +
                  "special": true
         | 
| 58 | 
            +
                },
         | 
| 59 | 
            +
                "128007": {
         | 
| 60 | 
            +
                  "content": "<|end_header_id|>",
         | 
| 61 | 
            +
                  "lstrip": false,
         | 
| 62 | 
            +
                  "normalized": false,
         | 
| 63 | 
            +
                  "rstrip": false,
         | 
| 64 | 
            +
                  "single_word": false,
         | 
| 65 | 
            +
                  "special": true
         | 
| 66 | 
            +
                },
         | 
| 67 | 
            +
                "128008": {
         | 
| 68 | 
            +
                  "content": "<|eom_id|>",
         | 
| 69 | 
            +
                  "lstrip": false,
         | 
| 70 | 
            +
                  "normalized": false,
         | 
| 71 | 
            +
                  "rstrip": false,
         | 
| 72 | 
            +
                  "single_word": false,
         | 
| 73 | 
            +
                  "special": true
         | 
| 74 | 
            +
                },
         | 
| 75 | 
            +
                "128009": {
         | 
| 76 | 
            +
                  "content": "<|eot_id|>",
         | 
| 77 | 
            +
                  "lstrip": false,
         | 
| 78 | 
            +
                  "normalized": false,
         | 
| 79 | 
            +
                  "rstrip": false,
         | 
| 80 | 
            +
                  "single_word": false,
         | 
| 81 | 
            +
                  "special": true
         | 
| 82 | 
            +
                },
         | 
| 83 | 
            +
                "128010": {
         | 
| 84 | 
            +
                  "content": "<|python_tag|>",
         | 
| 85 | 
            +
                  "lstrip": false,
         | 
| 86 | 
            +
                  "normalized": false,
         | 
| 87 | 
            +
                  "rstrip": false,
         | 
| 88 | 
            +
                  "single_word": false,
         | 
| 89 | 
            +
                  "special": true
         | 
| 90 | 
            +
                },
         | 
| 91 | 
            +
                "128011": {
         | 
| 92 | 
            +
                  "content": "<|reserved_special_token_3|>",
         | 
| 93 | 
            +
                  "lstrip": false,
         | 
| 94 | 
            +
                  "normalized": false,
         | 
| 95 | 
            +
                  "rstrip": false,
         | 
| 96 | 
            +
                  "single_word": false,
         | 
| 97 | 
            +
                  "special": true
         | 
| 98 | 
            +
                },
         | 
| 99 | 
            +
                "128012": {
         | 
| 100 | 
            +
                  "content": "<|reserved_special_token_4|>",
         | 
| 101 | 
            +
                  "lstrip": false,
         | 
| 102 | 
            +
                  "normalized": false,
         | 
| 103 | 
            +
                  "rstrip": false,
         | 
| 104 | 
            +
                  "single_word": false,
         | 
| 105 | 
            +
                  "special": true
         | 
| 106 | 
            +
                },
         | 
| 107 | 
            +
                "128013": {
         | 
| 108 | 
            +
                  "content": "<|reserved_special_token_5|>",
         | 
| 109 | 
            +
                  "lstrip": false,
         | 
| 110 | 
            +
                  "normalized": false,
         | 
| 111 | 
            +
                  "rstrip": false,
         | 
| 112 | 
            +
                  "single_word": false,
         | 
| 113 | 
            +
                  "special": true
         | 
| 114 | 
            +
                },
         | 
| 115 | 
            +
                "128014": {
         | 
| 116 | 
            +
                  "content": "<|reserved_special_token_6|>",
         | 
| 117 | 
            +
                  "lstrip": false,
         | 
| 118 | 
            +
                  "normalized": false,
         | 
| 119 | 
            +
                  "rstrip": false,
         | 
| 120 | 
            +
                  "single_word": false,
         | 
| 121 | 
            +
                  "special": true
         | 
| 122 | 
            +
                },
         | 
| 123 | 
            +
                "128015": {
         | 
| 124 | 
            +
                  "content": "<|reserved_special_token_7|>",
         | 
| 125 | 
            +
                  "lstrip": false,
         | 
| 126 | 
            +
                  "normalized": false,
         | 
| 127 | 
            +
                  "rstrip": false,
         | 
| 128 | 
            +
                  "single_word": false,
         | 
| 129 | 
            +
                  "special": true
         | 
| 130 | 
            +
                },
         | 
| 131 | 
            +
                "128016": {
         | 
| 132 | 
            +
                  "content": "<|reserved_special_token_8|>",
         | 
| 133 | 
            +
                  "lstrip": false,
         | 
| 134 | 
            +
                  "normalized": false,
         | 
| 135 | 
            +
                  "rstrip": false,
         | 
| 136 | 
            +
                  "single_word": false,
         | 
| 137 | 
            +
                  "special": true
         | 
| 138 | 
            +
                },
         | 
| 139 | 
            +
                "128017": {
         | 
| 140 | 
            +
                  "content": "<|reserved_special_token_9|>",
         | 
| 141 | 
            +
                  "lstrip": false,
         | 
| 142 | 
            +
                  "normalized": false,
         | 
| 143 | 
            +
                  "rstrip": false,
         | 
| 144 | 
            +
                  "single_word": false,
         | 
| 145 | 
            +
                  "special": true
         | 
| 146 | 
            +
                },
         | 
| 147 | 
            +
                "128018": {
         | 
| 148 | 
            +
                  "content": "<|reserved_special_token_10|>",
         | 
| 149 | 
            +
                  "lstrip": false,
         | 
| 150 | 
            +
                  "normalized": false,
         | 
| 151 | 
            +
                  "rstrip": false,
         | 
| 152 | 
            +
                  "single_word": false,
         | 
| 153 | 
            +
                  "special": true
         | 
| 154 | 
            +
                },
         | 
| 155 | 
            +
                "128019": {
         | 
| 156 | 
            +
                  "content": "<|reserved_special_token_11|>",
         | 
| 157 | 
            +
                  "lstrip": false,
         | 
| 158 | 
            +
                  "normalized": false,
         | 
| 159 | 
            +
                  "rstrip": false,
         | 
| 160 | 
            +
                  "single_word": false,
         | 
| 161 | 
            +
                  "special": true
         | 
| 162 | 
            +
                },
         | 
| 163 | 
            +
                "128020": {
         | 
| 164 | 
            +
                  "content": "<|reserved_special_token_12|>",
         | 
| 165 | 
            +
                  "lstrip": false,
         | 
| 166 | 
            +
                  "normalized": false,
         | 
| 167 | 
            +
                  "rstrip": false,
         | 
| 168 | 
            +
                  "single_word": false,
         | 
| 169 | 
            +
                  "special": true
         | 
| 170 | 
            +
                },
         | 
| 171 | 
            +
                "128021": {
         | 
| 172 | 
            +
                  "content": "<|reserved_special_token_13|>",
         | 
| 173 | 
            +
                  "lstrip": false,
         | 
| 174 | 
            +
                  "normalized": false,
         | 
| 175 | 
            +
                  "rstrip": false,
         | 
| 176 | 
            +
                  "single_word": false,
         | 
| 177 | 
            +
                  "special": true
         | 
| 178 | 
            +
                },
         | 
| 179 | 
            +
                "128022": {
         | 
| 180 | 
            +
                  "content": "<|reserved_special_token_14|>",
         | 
| 181 | 
            +
                  "lstrip": false,
         | 
| 182 | 
            +
                  "normalized": false,
         | 
| 183 | 
            +
                  "rstrip": false,
         | 
| 184 | 
            +
                  "single_word": false,
         | 
| 185 | 
            +
                  "special": true
         | 
| 186 | 
            +
                },
         | 
| 187 | 
            +
                "128023": {
         | 
| 188 | 
            +
                  "content": "<|reserved_special_token_15|>",
         | 
| 189 | 
            +
                  "lstrip": false,
         | 
| 190 | 
            +
                  "normalized": false,
         | 
| 191 | 
            +
                  "rstrip": false,
         | 
| 192 | 
            +
                  "single_word": false,
         | 
| 193 | 
            +
                  "special": true
         | 
| 194 | 
            +
                },
         | 
| 195 | 
            +
                "128024": {
         | 
| 196 | 
            +
                  "content": "<|reserved_special_token_16|>",
         | 
| 197 | 
            +
                  "lstrip": false,
         | 
| 198 | 
            +
                  "normalized": false,
         | 
| 199 | 
            +
                  "rstrip": false,
         | 
| 200 | 
            +
                  "single_word": false,
         | 
| 201 | 
            +
                  "special": true
         | 
| 202 | 
            +
                },
         | 
| 203 | 
            +
                "128025": {
         | 
| 204 | 
            +
                  "content": "<|reserved_special_token_17|>",
         | 
| 205 | 
            +
                  "lstrip": false,
         | 
| 206 | 
            +
                  "normalized": false,
         | 
| 207 | 
            +
                  "rstrip": false,
         | 
| 208 | 
            +
                  "single_word": false,
         | 
| 209 | 
            +
                  "special": true
         | 
| 210 | 
            +
                },
         | 
| 211 | 
            +
                "128026": {
         | 
| 212 | 
            +
                  "content": "<|reserved_special_token_18|>",
         | 
| 213 | 
            +
                  "lstrip": false,
         | 
| 214 | 
            +
                  "normalized": false,
         | 
| 215 | 
            +
                  "rstrip": false,
         | 
| 216 | 
            +
                  "single_word": false,
         | 
| 217 | 
            +
                  "special": true
         | 
| 218 | 
            +
                },
         | 
| 219 | 
            +
                "128027": {
         | 
| 220 | 
            +
                  "content": "<|reserved_special_token_19|>",
         | 
| 221 | 
            +
                  "lstrip": false,
         | 
| 222 | 
            +
                  "normalized": false,
         | 
| 223 | 
            +
                  "rstrip": false,
         | 
| 224 | 
            +
                  "single_word": false,
         | 
| 225 | 
            +
                  "special": true
         | 
| 226 | 
            +
                },
         | 
| 227 | 
            +
                "128028": {
         | 
| 228 | 
            +
                  "content": "<|reserved_special_token_20|>",
         | 
| 229 | 
            +
                  "lstrip": false,
         | 
| 230 | 
            +
                  "normalized": false,
         | 
| 231 | 
            +
                  "rstrip": false,
         | 
| 232 | 
            +
                  "single_word": false,
         | 
| 233 | 
            +
                  "special": true
         | 
| 234 | 
            +
                },
         | 
| 235 | 
            +
                "128029": {
         | 
| 236 | 
            +
                  "content": "<|reserved_special_token_21|>",
         | 
| 237 | 
            +
                  "lstrip": false,
         | 
| 238 | 
            +
                  "normalized": false,
         | 
| 239 | 
            +
                  "rstrip": false,
         | 
| 240 | 
            +
                  "single_word": false,
         | 
| 241 | 
            +
                  "special": true
         | 
| 242 | 
            +
                },
         | 
| 243 | 
            +
                "128030": {
         | 
| 244 | 
            +
                  "content": "<|reserved_special_token_22|>",
         | 
| 245 | 
            +
                  "lstrip": false,
         | 
| 246 | 
            +
                  "normalized": false,
         | 
| 247 | 
            +
                  "rstrip": false,
         | 
| 248 | 
            +
                  "single_word": false,
         | 
| 249 | 
            +
                  "special": true
         | 
| 250 | 
            +
                },
         | 
| 251 | 
            +
                "128031": {
         | 
| 252 | 
            +
                  "content": "<|reserved_special_token_23|>",
         | 
| 253 | 
            +
                  "lstrip": false,
         | 
| 254 | 
            +
                  "normalized": false,
         | 
| 255 | 
            +
                  "rstrip": false,
         | 
| 256 | 
            +
                  "single_word": false,
         | 
| 257 | 
            +
                  "special": true
         | 
| 258 | 
            +
                },
         | 
| 259 | 
            +
                "128032": {
         | 
| 260 | 
            +
                  "content": "<|reserved_special_token_24|>",
         | 
| 261 | 
            +
                  "lstrip": false,
         | 
| 262 | 
            +
                  "normalized": false,
         | 
| 263 | 
            +
                  "rstrip": false,
         | 
| 264 | 
            +
                  "single_word": false,
         | 
| 265 | 
            +
                  "special": true
         | 
| 266 | 
            +
                },
         | 
| 267 | 
            +
                "128033": {
         | 
| 268 | 
            +
                  "content": "<|reserved_special_token_25|>",
         | 
| 269 | 
            +
                  "lstrip": false,
         | 
| 270 | 
            +
                  "normalized": false,
         | 
| 271 | 
            +
                  "rstrip": false,
         | 
| 272 | 
            +
                  "single_word": false,
         | 
| 273 | 
            +
                  "special": true
         | 
| 274 | 
            +
                },
         | 
| 275 | 
            +
                "128034": {
         | 
| 276 | 
            +
                  "content": "<|reserved_special_token_26|>",
         | 
| 277 | 
            +
                  "lstrip": false,
         | 
| 278 | 
            +
                  "normalized": false,
         | 
| 279 | 
            +
                  "rstrip": false,
         | 
| 280 | 
            +
                  "single_word": false,
         | 
| 281 | 
            +
                  "special": true
         | 
| 282 | 
            +
                },
         | 
| 283 | 
            +
                "128035": {
         | 
| 284 | 
            +
                  "content": "<|reserved_special_token_27|>",
         | 
| 285 | 
            +
                  "lstrip": false,
         | 
| 286 | 
            +
                  "normalized": false,
         | 
| 287 | 
            +
                  "rstrip": false,
         | 
| 288 | 
            +
                  "single_word": false,
         | 
| 289 | 
            +
                  "special": true
         | 
| 290 | 
            +
                },
         | 
| 291 | 
            +
                "128036": {
         | 
| 292 | 
            +
                  "content": "<|reserved_special_token_28|>",
         | 
| 293 | 
            +
                  "lstrip": false,
         | 
| 294 | 
            +
                  "normalized": false,
         | 
| 295 | 
            +
                  "rstrip": false,
         | 
| 296 | 
            +
                  "single_word": false,
         | 
| 297 | 
            +
                  "special": true
         | 
| 298 | 
            +
                },
         | 
| 299 | 
            +
                "128037": {
         | 
| 300 | 
            +
                  "content": "<|reserved_special_token_29|>",
         | 
| 301 | 
            +
                  "lstrip": false,
         | 
| 302 | 
            +
                  "normalized": false,
         | 
| 303 | 
            +
                  "rstrip": false,
         | 
| 304 | 
            +
                  "single_word": false,
         | 
| 305 | 
            +
                  "special": true
         | 
| 306 | 
            +
                },
         | 
| 307 | 
            +
                "128038": {
         | 
| 308 | 
            +
                  "content": "<|reserved_special_token_30|>",
         | 
| 309 | 
            +
                  "lstrip": false,
         | 
| 310 | 
            +
                  "normalized": false,
         | 
| 311 | 
            +
                  "rstrip": false,
         | 
| 312 | 
            +
                  "single_word": false,
         | 
| 313 | 
            +
                  "special": true
         | 
| 314 | 
            +
                },
         | 
| 315 | 
            +
                "128039": {
         | 
| 316 | 
            +
                  "content": "<|reserved_special_token_31|>",
         | 
| 317 | 
            +
                  "lstrip": false,
         | 
| 318 | 
            +
                  "normalized": false,
         | 
| 319 | 
            +
                  "rstrip": false,
         | 
| 320 | 
            +
                  "single_word": false,
         | 
| 321 | 
            +
                  "special": true
         | 
| 322 | 
            +
                },
         | 
| 323 | 
            +
                "128040": {
         | 
| 324 | 
            +
                  "content": "<|reserved_special_token_32|>",
         | 
| 325 | 
            +
                  "lstrip": false,
         | 
| 326 | 
            +
                  "normalized": false,
         | 
| 327 | 
            +
                  "rstrip": false,
         | 
| 328 | 
            +
                  "single_word": false,
         | 
| 329 | 
            +
                  "special": true
         | 
| 330 | 
            +
                },
         | 
| 331 | 
            +
                "128041": {
         | 
| 332 | 
            +
                  "content": "<|reserved_special_token_33|>",
         | 
| 333 | 
            +
                  "lstrip": false,
         | 
| 334 | 
            +
                  "normalized": false,
         | 
| 335 | 
            +
                  "rstrip": false,
         | 
| 336 | 
            +
                  "single_word": false,
         | 
| 337 | 
            +
                  "special": true
         | 
| 338 | 
            +
                },
         | 
| 339 | 
            +
                "128042": {
         | 
| 340 | 
            +
                  "content": "<|reserved_special_token_34|>",
         | 
| 341 | 
            +
                  "lstrip": false,
         | 
| 342 | 
            +
                  "normalized": false,
         | 
| 343 | 
            +
                  "rstrip": false,
         | 
| 344 | 
            +
                  "single_word": false,
         | 
| 345 | 
            +
                  "special": true
         | 
| 346 | 
            +
                },
         | 
| 347 | 
            +
                "128043": {
         | 
| 348 | 
            +
                  "content": "<|reserved_special_token_35|>",
         | 
| 349 | 
            +
                  "lstrip": false,
         | 
| 350 | 
            +
                  "normalized": false,
         | 
| 351 | 
            +
                  "rstrip": false,
         | 
| 352 | 
            +
                  "single_word": false,
         | 
| 353 | 
            +
                  "special": true
         | 
| 354 | 
            +
                },
         | 
| 355 | 
            +
                "128044": {
         | 
| 356 | 
            +
                  "content": "<|reserved_special_token_36|>",
         | 
| 357 | 
            +
                  "lstrip": false,
         | 
| 358 | 
            +
                  "normalized": false,
         | 
| 359 | 
            +
                  "rstrip": false,
         | 
| 360 | 
            +
                  "single_word": false,
         | 
| 361 | 
            +
                  "special": true
         | 
| 362 | 
            +
                },
         | 
| 363 | 
            +
                "128045": {
         | 
| 364 | 
            +
                  "content": "<|reserved_special_token_37|>",
         | 
| 365 | 
            +
                  "lstrip": false,
         | 
| 366 | 
            +
                  "normalized": false,
         | 
| 367 | 
            +
                  "rstrip": false,
         | 
| 368 | 
            +
                  "single_word": false,
         | 
| 369 | 
            +
                  "special": true
         | 
| 370 | 
            +
                },
         | 
| 371 | 
            +
                "128046": {
         | 
| 372 | 
            +
                  "content": "<|reserved_special_token_38|>",
         | 
| 373 | 
            +
                  "lstrip": false,
         | 
| 374 | 
            +
                  "normalized": false,
         | 
| 375 | 
            +
                  "rstrip": false,
         | 
| 376 | 
            +
                  "single_word": false,
         | 
| 377 | 
            +
                  "special": true
         | 
| 378 | 
            +
                },
         | 
| 379 | 
            +
                "128047": {
         | 
| 380 | 
            +
                  "content": "<|reserved_special_token_39|>",
         | 
| 381 | 
            +
                  "lstrip": false,
         | 
| 382 | 
            +
                  "normalized": false,
         | 
| 383 | 
            +
                  "rstrip": false,
         | 
| 384 | 
            +
                  "single_word": false,
         | 
| 385 | 
            +
                  "special": true
         | 
| 386 | 
            +
                },
         | 
| 387 | 
            +
                "128048": {
         | 
| 388 | 
            +
                  "content": "<|reserved_special_token_40|>",
         | 
| 389 | 
            +
                  "lstrip": false,
         | 
| 390 | 
            +
                  "normalized": false,
         | 
| 391 | 
            +
                  "rstrip": false,
         | 
| 392 | 
            +
                  "single_word": false,
         | 
| 393 | 
            +
                  "special": true
         | 
| 394 | 
            +
                },
         | 
| 395 | 
            +
                "128049": {
         | 
| 396 | 
            +
                  "content": "<|reserved_special_token_41|>",
         | 
| 397 | 
            +
                  "lstrip": false,
         | 
| 398 | 
            +
                  "normalized": false,
         | 
| 399 | 
            +
                  "rstrip": false,
         | 
| 400 | 
            +
                  "single_word": false,
         | 
| 401 | 
            +
                  "special": true
         | 
| 402 | 
            +
                },
         | 
| 403 | 
            +
                "128050": {
         | 
| 404 | 
            +
                  "content": "<|reserved_special_token_42|>",
         | 
| 405 | 
            +
                  "lstrip": false,
         | 
| 406 | 
            +
                  "normalized": false,
         | 
| 407 | 
            +
                  "rstrip": false,
         | 
| 408 | 
            +
                  "single_word": false,
         | 
| 409 | 
            +
                  "special": true
         | 
| 410 | 
            +
                },
         | 
| 411 | 
            +
                "128051": {
         | 
| 412 | 
            +
                  "content": "<|reserved_special_token_43|>",
         | 
| 413 | 
            +
                  "lstrip": false,
         | 
| 414 | 
            +
                  "normalized": false,
         | 
| 415 | 
            +
                  "rstrip": false,
         | 
| 416 | 
            +
                  "single_word": false,
         | 
| 417 | 
            +
                  "special": true
         | 
| 418 | 
            +
                },
         | 
| 419 | 
            +
                "128052": {
         | 
| 420 | 
            +
                  "content": "<|reserved_special_token_44|>",
         | 
| 421 | 
            +
                  "lstrip": false,
         | 
| 422 | 
            +
                  "normalized": false,
         | 
| 423 | 
            +
                  "rstrip": false,
         | 
| 424 | 
            +
                  "single_word": false,
         | 
| 425 | 
            +
                  "special": true
         | 
| 426 | 
            +
                },
         | 
| 427 | 
            +
                "128053": {
         | 
| 428 | 
            +
                  "content": "<|reserved_special_token_45|>",
         | 
| 429 | 
            +
                  "lstrip": false,
         | 
| 430 | 
            +
                  "normalized": false,
         | 
| 431 | 
            +
                  "rstrip": false,
         | 
| 432 | 
            +
                  "single_word": false,
         | 
| 433 | 
            +
                  "special": true
         | 
| 434 | 
            +
                },
         | 
| 435 | 
            +
                "128054": {
         | 
| 436 | 
            +
                  "content": "<|reserved_special_token_46|>",
         | 
| 437 | 
            +
                  "lstrip": false,
         | 
| 438 | 
            +
                  "normalized": false,
         | 
| 439 | 
            +
                  "rstrip": false,
         | 
| 440 | 
            +
                  "single_word": false,
         | 
| 441 | 
            +
                  "special": true
         | 
| 442 | 
            +
                },
         | 
| 443 | 
            +
                "128055": {
         | 
| 444 | 
            +
                  "content": "<|reserved_special_token_47|>",
         | 
| 445 | 
            +
                  "lstrip": false,
         | 
| 446 | 
            +
                  "normalized": false,
         | 
| 447 | 
            +
                  "rstrip": false,
         | 
| 448 | 
            +
                  "single_word": false,
         | 
| 449 | 
            +
                  "special": true
         | 
| 450 | 
            +
                },
         | 
| 451 | 
            +
                "128056": {
         | 
| 452 | 
            +
                  "content": "<|reserved_special_token_48|>",
         | 
| 453 | 
            +
                  "lstrip": false,
         | 
| 454 | 
            +
                  "normalized": false,
         | 
| 455 | 
            +
                  "rstrip": false,
         | 
| 456 | 
            +
                  "single_word": false,
         | 
| 457 | 
            +
                  "special": true
         | 
| 458 | 
            +
                },
         | 
| 459 | 
            +
                "128057": {
         | 
| 460 | 
            +
                  "content": "<|reserved_special_token_49|>",
         | 
| 461 | 
            +
                  "lstrip": false,
         | 
| 462 | 
            +
                  "normalized": false,
         | 
| 463 | 
            +
                  "rstrip": false,
         | 
| 464 | 
            +
                  "single_word": false,
         | 
| 465 | 
            +
                  "special": true
         | 
| 466 | 
            +
                },
         | 
| 467 | 
            +
                "128058": {
         | 
| 468 | 
            +
                  "content": "<|reserved_special_token_50|>",
         | 
| 469 | 
            +
                  "lstrip": false,
         | 
| 470 | 
            +
                  "normalized": false,
         | 
| 471 | 
            +
                  "rstrip": false,
         | 
| 472 | 
            +
                  "single_word": false,
         | 
| 473 | 
            +
                  "special": true
         | 
| 474 | 
            +
                },
         | 
| 475 | 
            +
                "128059": {
         | 
| 476 | 
            +
                  "content": "<|reserved_special_token_51|>",
         | 
| 477 | 
            +
                  "lstrip": false,
         | 
| 478 | 
            +
                  "normalized": false,
         | 
| 479 | 
            +
                  "rstrip": false,
         | 
| 480 | 
            +
                  "single_word": false,
         | 
| 481 | 
            +
                  "special": true
         | 
| 482 | 
            +
                },
         | 
| 483 | 
            +
                "128060": {
         | 
| 484 | 
            +
                  "content": "<|reserved_special_token_52|>",
         | 
| 485 | 
            +
                  "lstrip": false,
         | 
| 486 | 
            +
                  "normalized": false,
         | 
| 487 | 
            +
                  "rstrip": false,
         | 
| 488 | 
            +
                  "single_word": false,
         | 
| 489 | 
            +
                  "special": true
         | 
| 490 | 
            +
                },
         | 
| 491 | 
            +
                "128061": {
         | 
| 492 | 
            +
                  "content": "<|reserved_special_token_53|>",
         | 
| 493 | 
            +
                  "lstrip": false,
         | 
| 494 | 
            +
                  "normalized": false,
         | 
| 495 | 
            +
                  "rstrip": false,
         | 
| 496 | 
            +
                  "single_word": false,
         | 
| 497 | 
            +
                  "special": true
         | 
| 498 | 
            +
                },
         | 
| 499 | 
            +
                "128062": {
         | 
| 500 | 
            +
                  "content": "<|reserved_special_token_54|>",
         | 
| 501 | 
            +
                  "lstrip": false,
         | 
| 502 | 
            +
                  "normalized": false,
         | 
| 503 | 
            +
                  "rstrip": false,
         | 
| 504 | 
            +
                  "single_word": false,
         | 
| 505 | 
            +
                  "special": true
         | 
| 506 | 
            +
                },
         | 
| 507 | 
            +
                "128063": {
         | 
| 508 | 
            +
                  "content": "<|reserved_special_token_55|>",
         | 
| 509 | 
            +
                  "lstrip": false,
         | 
| 510 | 
            +
                  "normalized": false,
         | 
| 511 | 
            +
                  "rstrip": false,
         | 
| 512 | 
            +
                  "single_word": false,
         | 
| 513 | 
            +
                  "special": true
         | 
| 514 | 
            +
                },
         | 
| 515 | 
            +
                "128064": {
         | 
| 516 | 
            +
                  "content": "<|reserved_special_token_56|>",
         | 
| 517 | 
            +
                  "lstrip": false,
         | 
| 518 | 
            +
                  "normalized": false,
         | 
| 519 | 
            +
                  "rstrip": false,
         | 
| 520 | 
            +
                  "single_word": false,
         | 
| 521 | 
            +
                  "special": true
         | 
| 522 | 
            +
                },
         | 
| 523 | 
            +
                "128065": {
         | 
| 524 | 
            +
                  "content": "<|reserved_special_token_57|>",
         | 
| 525 | 
            +
                  "lstrip": false,
         | 
| 526 | 
            +
                  "normalized": false,
         | 
| 527 | 
            +
                  "rstrip": false,
         | 
| 528 | 
            +
                  "single_word": false,
         | 
| 529 | 
            +
                  "special": true
         | 
| 530 | 
            +
                },
         | 
| 531 | 
            +
                "128066": {
         | 
| 532 | 
            +
                  "content": "<|reserved_special_token_58|>",
         | 
| 533 | 
            +
                  "lstrip": false,
         | 
| 534 | 
            +
                  "normalized": false,
         | 
| 535 | 
            +
                  "rstrip": false,
         | 
| 536 | 
            +
                  "single_word": false,
         | 
| 537 | 
            +
                  "special": true
         | 
| 538 | 
            +
                },
         | 
| 539 | 
            +
                "128067": {
         | 
| 540 | 
            +
                  "content": "<|reserved_special_token_59|>",
         | 
| 541 | 
            +
                  "lstrip": false,
         | 
| 542 | 
            +
                  "normalized": false,
         | 
| 543 | 
            +
                  "rstrip": false,
         | 
| 544 | 
            +
                  "single_word": false,
         | 
| 545 | 
            +
                  "special": true
         | 
| 546 | 
            +
                },
         | 
| 547 | 
            +
                "128068": {
         | 
| 548 | 
            +
                  "content": "<|reserved_special_token_60|>",
         | 
| 549 | 
            +
                  "lstrip": false,
         | 
| 550 | 
            +
                  "normalized": false,
         | 
| 551 | 
            +
                  "rstrip": false,
         | 
| 552 | 
            +
                  "single_word": false,
         | 
| 553 | 
            +
                  "special": true
         | 
| 554 | 
            +
                },
         | 
| 555 | 
            +
                "128069": {
         | 
| 556 | 
            +
                  "content": "<|reserved_special_token_61|>",
         | 
| 557 | 
            +
                  "lstrip": false,
         | 
| 558 | 
            +
                  "normalized": false,
         | 
| 559 | 
            +
                  "rstrip": false,
         | 
| 560 | 
            +
                  "single_word": false,
         | 
| 561 | 
            +
                  "special": true
         | 
| 562 | 
            +
                },
         | 
| 563 | 
            +
                "128070": {
         | 
| 564 | 
            +
                  "content": "<|reserved_special_token_62|>",
         | 
| 565 | 
            +
                  "lstrip": false,
         | 
| 566 | 
            +
                  "normalized": false,
         | 
| 567 | 
            +
                  "rstrip": false,
         | 
| 568 | 
            +
                  "single_word": false,
         | 
| 569 | 
            +
                  "special": true
         | 
| 570 | 
            +
                },
         | 
| 571 | 
            +
                "128071": {
         | 
| 572 | 
            +
                  "content": "<|reserved_special_token_63|>",
         | 
| 573 | 
            +
                  "lstrip": false,
         | 
| 574 | 
            +
                  "normalized": false,
         | 
| 575 | 
            +
                  "rstrip": false,
         | 
| 576 | 
            +
                  "single_word": false,
         | 
| 577 | 
            +
                  "special": true
         | 
| 578 | 
            +
                },
         | 
| 579 | 
            +
                "128072": {
         | 
| 580 | 
            +
                  "content": "<|reserved_special_token_64|>",
         | 
| 581 | 
            +
                  "lstrip": false,
         | 
| 582 | 
            +
                  "normalized": false,
         | 
| 583 | 
            +
                  "rstrip": false,
         | 
| 584 | 
            +
                  "single_word": false,
         | 
| 585 | 
            +
                  "special": true
         | 
| 586 | 
            +
                },
         | 
| 587 | 
            +
                "128073": {
         | 
| 588 | 
            +
                  "content": "<|reserved_special_token_65|>",
         | 
| 589 | 
            +
                  "lstrip": false,
         | 
| 590 | 
            +
                  "normalized": false,
         | 
| 591 | 
            +
                  "rstrip": false,
         | 
| 592 | 
            +
                  "single_word": false,
         | 
| 593 | 
            +
                  "special": true
         | 
| 594 | 
            +
                },
         | 
| 595 | 
            +
                "128074": {
         | 
| 596 | 
            +
                  "content": "<|reserved_special_token_66|>",
         | 
| 597 | 
            +
                  "lstrip": false,
         | 
| 598 | 
            +
                  "normalized": false,
         | 
| 599 | 
            +
                  "rstrip": false,
         | 
| 600 | 
            +
                  "single_word": false,
         | 
| 601 | 
            +
                  "special": true
         | 
| 602 | 
            +
                },
         | 
| 603 | 
            +
                "128075": {
         | 
| 604 | 
            +
                  "content": "<|reserved_special_token_67|>",
         | 
| 605 | 
            +
                  "lstrip": false,
         | 
| 606 | 
            +
                  "normalized": false,
         | 
| 607 | 
            +
                  "rstrip": false,
         | 
| 608 | 
            +
                  "single_word": false,
         | 
| 609 | 
            +
                  "special": true
         | 
| 610 | 
            +
                },
         | 
| 611 | 
            +
                "128076": {
         | 
| 612 | 
            +
                  "content": "<|reserved_special_token_68|>",
         | 
| 613 | 
            +
                  "lstrip": false,
         | 
| 614 | 
            +
                  "normalized": false,
         | 
| 615 | 
            +
                  "rstrip": false,
         | 
| 616 | 
            +
                  "single_word": false,
         | 
| 617 | 
            +
                  "special": true
         | 
| 618 | 
            +
                },
         | 
| 619 | 
            +
                "128077": {
         | 
| 620 | 
            +
                  "content": "<|reserved_special_token_69|>",
         | 
| 621 | 
            +
                  "lstrip": false,
         | 
| 622 | 
            +
                  "normalized": false,
         | 
| 623 | 
            +
                  "rstrip": false,
         | 
| 624 | 
            +
                  "single_word": false,
         | 
| 625 | 
            +
                  "special": true
         | 
| 626 | 
            +
                },
         | 
| 627 | 
            +
                "128078": {
         | 
| 628 | 
            +
                  "content": "<|reserved_special_token_70|>",
         | 
| 629 | 
            +
                  "lstrip": false,
         | 
| 630 | 
            +
                  "normalized": false,
         | 
| 631 | 
            +
                  "rstrip": false,
         | 
| 632 | 
            +
                  "single_word": false,
         | 
| 633 | 
            +
                  "special": true
         | 
| 634 | 
            +
                },
         | 
| 635 | 
            +
                "128079": {
         | 
| 636 | 
            +
                  "content": "<|reserved_special_token_71|>",
         | 
| 637 | 
            +
                  "lstrip": false,
         | 
| 638 | 
            +
                  "normalized": false,
         | 
| 639 | 
            +
                  "rstrip": false,
         | 
| 640 | 
            +
                  "single_word": false,
         | 
| 641 | 
            +
                  "special": true
         | 
| 642 | 
            +
                },
         | 
| 643 | 
            +
                "128080": {
         | 
| 644 | 
            +
                  "content": "<|reserved_special_token_72|>",
         | 
| 645 | 
            +
                  "lstrip": false,
         | 
| 646 | 
            +
                  "normalized": false,
         | 
| 647 | 
            +
                  "rstrip": false,
         | 
| 648 | 
            +
                  "single_word": false,
         | 
| 649 | 
            +
                  "special": true
         | 
| 650 | 
            +
                },
         | 
| 651 | 
            +
                "128081": {
         | 
| 652 | 
            +
                  "content": "<|reserved_special_token_73|>",
         | 
| 653 | 
            +
                  "lstrip": false,
         | 
| 654 | 
            +
                  "normalized": false,
         | 
| 655 | 
            +
                  "rstrip": false,
         | 
| 656 | 
            +
                  "single_word": false,
         | 
| 657 | 
            +
                  "special": true
         | 
| 658 | 
            +
                },
         | 
| 659 | 
            +
                "128082": {
         | 
| 660 | 
            +
                  "content": "<|reserved_special_token_74|>",
         | 
| 661 | 
            +
                  "lstrip": false,
         | 
| 662 | 
            +
                  "normalized": false,
         | 
| 663 | 
            +
                  "rstrip": false,
         | 
| 664 | 
            +
                  "single_word": false,
         | 
| 665 | 
            +
                  "special": true
         | 
| 666 | 
            +
                },
         | 
| 667 | 
            +
                "128083": {
         | 
| 668 | 
            +
                  "content": "<|reserved_special_token_75|>",
         | 
| 669 | 
            +
                  "lstrip": false,
         | 
| 670 | 
            +
                  "normalized": false,
         | 
| 671 | 
            +
                  "rstrip": false,
         | 
| 672 | 
            +
                  "single_word": false,
         | 
| 673 | 
            +
                  "special": true
         | 
| 674 | 
            +
                },
         | 
| 675 | 
            +
                "128084": {
         | 
| 676 | 
            +
                  "content": "<|reserved_special_token_76|>",
         | 
| 677 | 
            +
                  "lstrip": false,
         | 
| 678 | 
            +
                  "normalized": false,
         | 
| 679 | 
            +
                  "rstrip": false,
         | 
| 680 | 
            +
                  "single_word": false,
         | 
| 681 | 
            +
                  "special": true
         | 
| 682 | 
            +
                },
         | 
| 683 | 
            +
                "128085": {
         | 
| 684 | 
            +
                  "content": "<|reserved_special_token_77|>",
         | 
| 685 | 
            +
                  "lstrip": false,
         | 
| 686 | 
            +
                  "normalized": false,
         | 
| 687 | 
            +
                  "rstrip": false,
         | 
| 688 | 
            +
                  "single_word": false,
         | 
| 689 | 
            +
                  "special": true
         | 
| 690 | 
            +
                },
         | 
| 691 | 
            +
                "128086": {
         | 
| 692 | 
            +
                  "content": "<|reserved_special_token_78|>",
         | 
| 693 | 
            +
                  "lstrip": false,
         | 
| 694 | 
            +
                  "normalized": false,
         | 
| 695 | 
            +
                  "rstrip": false,
         | 
| 696 | 
            +
                  "single_word": false,
         | 
| 697 | 
            +
                  "special": true
         | 
| 698 | 
            +
                },
         | 
| 699 | 
            +
                "128087": {
         | 
| 700 | 
            +
                  "content": "<|reserved_special_token_79|>",
         | 
| 701 | 
            +
                  "lstrip": false,
         | 
| 702 | 
            +
                  "normalized": false,
         | 
| 703 | 
            +
                  "rstrip": false,
         | 
| 704 | 
            +
                  "single_word": false,
         | 
| 705 | 
            +
                  "special": true
         | 
| 706 | 
            +
                },
         | 
| 707 | 
            +
                "128088": {
         | 
| 708 | 
            +
                  "content": "<|reserved_special_token_80|>",
         | 
| 709 | 
            +
                  "lstrip": false,
         | 
| 710 | 
            +
                  "normalized": false,
         | 
| 711 | 
            +
                  "rstrip": false,
         | 
| 712 | 
            +
                  "single_word": false,
         | 
| 713 | 
            +
                  "special": true
         | 
| 714 | 
            +
                },
         | 
| 715 | 
            +
                "128089": {
         | 
| 716 | 
            +
                  "content": "<|reserved_special_token_81|>",
         | 
| 717 | 
            +
                  "lstrip": false,
         | 
| 718 | 
            +
                  "normalized": false,
         | 
| 719 | 
            +
                  "rstrip": false,
         | 
| 720 | 
            +
                  "single_word": false,
         | 
| 721 | 
            +
                  "special": true
         | 
| 722 | 
            +
                },
         | 
| 723 | 
            +
                "128090": {
         | 
| 724 | 
            +
                  "content": "<|reserved_special_token_82|>",
         | 
| 725 | 
            +
                  "lstrip": false,
         | 
| 726 | 
            +
                  "normalized": false,
         | 
| 727 | 
            +
                  "rstrip": false,
         | 
| 728 | 
            +
                  "single_word": false,
         | 
| 729 | 
            +
                  "special": true
         | 
| 730 | 
            +
                },
         | 
| 731 | 
            +
                "128091": {
         | 
| 732 | 
            +
                  "content": "<|reserved_special_token_83|>",
         | 
| 733 | 
            +
                  "lstrip": false,
         | 
| 734 | 
            +
                  "normalized": false,
         | 
| 735 | 
            +
                  "rstrip": false,
         | 
| 736 | 
            +
                  "single_word": false,
         | 
| 737 | 
            +
                  "special": true
         | 
| 738 | 
            +
                },
         | 
| 739 | 
            +
                "128092": {
         | 
| 740 | 
            +
                  "content": "<|reserved_special_token_84|>",
         | 
| 741 | 
            +
                  "lstrip": false,
         | 
| 742 | 
            +
                  "normalized": false,
         | 
| 743 | 
            +
                  "rstrip": false,
         | 
| 744 | 
            +
                  "single_word": false,
         | 
| 745 | 
            +
                  "special": true
         | 
| 746 | 
            +
                },
         | 
| 747 | 
            +
                "128093": {
         | 
| 748 | 
            +
                  "content": "<|reserved_special_token_85|>",
         | 
| 749 | 
            +
                  "lstrip": false,
         | 
| 750 | 
            +
                  "normalized": false,
         | 
| 751 | 
            +
                  "rstrip": false,
         | 
| 752 | 
            +
                  "single_word": false,
         | 
| 753 | 
            +
                  "special": true
         | 
| 754 | 
            +
                },
         | 
| 755 | 
            +
                "128094": {
         | 
| 756 | 
            +
                  "content": "<|reserved_special_token_86|>",
         | 
| 757 | 
            +
                  "lstrip": false,
         | 
| 758 | 
            +
                  "normalized": false,
         | 
| 759 | 
            +
                  "rstrip": false,
         | 
| 760 | 
            +
                  "single_word": false,
         | 
| 761 | 
            +
                  "special": true
         | 
| 762 | 
            +
                },
         | 
| 763 | 
            +
                "128095": {
         | 
| 764 | 
            +
                  "content": "<|reserved_special_token_87|>",
         | 
| 765 | 
            +
                  "lstrip": false,
         | 
| 766 | 
            +
                  "normalized": false,
         | 
| 767 | 
            +
                  "rstrip": false,
         | 
| 768 | 
            +
                  "single_word": false,
         | 
| 769 | 
            +
                  "special": true
         | 
| 770 | 
            +
                },
         | 
| 771 | 
            +
                "128096": {
         | 
| 772 | 
            +
                  "content": "<|reserved_special_token_88|>",
         | 
| 773 | 
            +
                  "lstrip": false,
         | 
| 774 | 
            +
                  "normalized": false,
         | 
| 775 | 
            +
                  "rstrip": false,
         | 
| 776 | 
            +
                  "single_word": false,
         | 
| 777 | 
            +
                  "special": true
         | 
| 778 | 
            +
                },
         | 
| 779 | 
            +
                "128097": {
         | 
| 780 | 
            +
                  "content": "<|reserved_special_token_89|>",
         | 
| 781 | 
            +
                  "lstrip": false,
         | 
| 782 | 
            +
                  "normalized": false,
         | 
| 783 | 
            +
                  "rstrip": false,
         | 
| 784 | 
            +
                  "single_word": false,
         | 
| 785 | 
            +
                  "special": true
         | 
| 786 | 
            +
                },
         | 
| 787 | 
            +
                "128098": {
         | 
| 788 | 
            +
                  "content": "<|reserved_special_token_90|>",
         | 
| 789 | 
            +
                  "lstrip": false,
         | 
| 790 | 
            +
                  "normalized": false,
         | 
| 791 | 
            +
                  "rstrip": false,
         | 
| 792 | 
            +
                  "single_word": false,
         | 
| 793 | 
            +
                  "special": true
         | 
| 794 | 
            +
                },
         | 
| 795 | 
            +
                "128099": {
         | 
| 796 | 
            +
                  "content": "<|reserved_special_token_91|>",
         | 
| 797 | 
            +
                  "lstrip": false,
         | 
| 798 | 
            +
                  "normalized": false,
         | 
| 799 | 
            +
                  "rstrip": false,
         | 
| 800 | 
            +
                  "single_word": false,
         | 
| 801 | 
            +
                  "special": true
         | 
| 802 | 
            +
                },
         | 
| 803 | 
            +
                "128100": {
         | 
| 804 | 
            +
                  "content": "<|reserved_special_token_92|>",
         | 
| 805 | 
            +
                  "lstrip": false,
         | 
| 806 | 
            +
                  "normalized": false,
         | 
| 807 | 
            +
                  "rstrip": false,
         | 
| 808 | 
            +
                  "single_word": false,
         | 
| 809 | 
            +
                  "special": true
         | 
| 810 | 
            +
                },
         | 
| 811 | 
            +
                "128101": {
         | 
| 812 | 
            +
                  "content": "<|reserved_special_token_93|>",
         | 
| 813 | 
            +
                  "lstrip": false,
         | 
| 814 | 
            +
                  "normalized": false,
         | 
| 815 | 
            +
                  "rstrip": false,
         | 
| 816 | 
            +
                  "single_word": false,
         | 
| 817 | 
            +
                  "special": true
         | 
| 818 | 
            +
                },
         | 
| 819 | 
            +
                "128102": {
         | 
| 820 | 
            +
                  "content": "<|reserved_special_token_94|>",
         | 
| 821 | 
            +
                  "lstrip": false,
         | 
| 822 | 
            +
                  "normalized": false,
         | 
| 823 | 
            +
                  "rstrip": false,
         | 
| 824 | 
            +
                  "single_word": false,
         | 
| 825 | 
            +
                  "special": true
         | 
| 826 | 
            +
                },
         | 
| 827 | 
            +
                "128103": {
         | 
| 828 | 
            +
                  "content": "<|reserved_special_token_95|>",
         | 
| 829 | 
            +
                  "lstrip": false,
         | 
| 830 | 
            +
                  "normalized": false,
         | 
| 831 | 
            +
                  "rstrip": false,
         | 
| 832 | 
            +
                  "single_word": false,
         | 
| 833 | 
            +
                  "special": true
         | 
| 834 | 
            +
                },
         | 
| 835 | 
            +
                "128104": {
         | 
| 836 | 
            +
                  "content": "<|reserved_special_token_96|>",
         | 
| 837 | 
            +
                  "lstrip": false,
         | 
| 838 | 
            +
                  "normalized": false,
         | 
| 839 | 
            +
                  "rstrip": false,
         | 
| 840 | 
            +
                  "single_word": false,
         | 
| 841 | 
            +
                  "special": true
         | 
| 842 | 
            +
                },
         | 
| 843 | 
            +
                "128105": {
         | 
| 844 | 
            +
                  "content": "<|reserved_special_token_97|>",
         | 
| 845 | 
            +
                  "lstrip": false,
         | 
| 846 | 
            +
                  "normalized": false,
         | 
| 847 | 
            +
                  "rstrip": false,
         | 
| 848 | 
            +
                  "single_word": false,
         | 
| 849 | 
            +
                  "special": true
         | 
| 850 | 
            +
                },
         | 
| 851 | 
            +
                "128106": {
         | 
| 852 | 
            +
                  "content": "<|reserved_special_token_98|>",
         | 
| 853 | 
            +
                  "lstrip": false,
         | 
| 854 | 
            +
                  "normalized": false,
         | 
| 855 | 
            +
                  "rstrip": false,
         | 
| 856 | 
            +
                  "single_word": false,
         | 
| 857 | 
            +
                  "special": true
         | 
| 858 | 
            +
                },
         | 
| 859 | 
            +
                "128107": {
         | 
| 860 | 
            +
                  "content": "<|reserved_special_token_99|>",
         | 
| 861 | 
            +
                  "lstrip": false,
         | 
| 862 | 
            +
                  "normalized": false,
         | 
| 863 | 
            +
                  "rstrip": false,
         | 
| 864 | 
            +
                  "single_word": false,
         | 
| 865 | 
            +
                  "special": true
         | 
| 866 | 
            +
                },
         | 
| 867 | 
            +
                "128108": {
         | 
| 868 | 
            +
                  "content": "<|reserved_special_token_100|>",
         | 
| 869 | 
            +
                  "lstrip": false,
         | 
| 870 | 
            +
                  "normalized": false,
         | 
| 871 | 
            +
                  "rstrip": false,
         | 
| 872 | 
            +
                  "single_word": false,
         | 
| 873 | 
            +
                  "special": true
         | 
| 874 | 
            +
                },
         | 
| 875 | 
            +
                "128109": {
         | 
| 876 | 
            +
                  "content": "<|reserved_special_token_101|>",
         | 
| 877 | 
            +
                  "lstrip": false,
         | 
| 878 | 
            +
                  "normalized": false,
         | 
| 879 | 
            +
                  "rstrip": false,
         | 
| 880 | 
            +
                  "single_word": false,
         | 
| 881 | 
            +
                  "special": true
         | 
| 882 | 
            +
                },
         | 
| 883 | 
            +
                "128110": {
         | 
| 884 | 
            +
                  "content": "<|reserved_special_token_102|>",
         | 
| 885 | 
            +
                  "lstrip": false,
         | 
| 886 | 
            +
                  "normalized": false,
         | 
| 887 | 
            +
                  "rstrip": false,
         | 
| 888 | 
            +
                  "single_word": false,
         | 
| 889 | 
            +
                  "special": true
         | 
| 890 | 
            +
                },
         | 
| 891 | 
            +
                "128111": {
         | 
| 892 | 
            +
                  "content": "<|reserved_special_token_103|>",
         | 
| 893 | 
            +
                  "lstrip": false,
         | 
| 894 | 
            +
                  "normalized": false,
         | 
| 895 | 
            +
                  "rstrip": false,
         | 
| 896 | 
            +
                  "single_word": false,
         | 
| 897 | 
            +
                  "special": true
         | 
| 898 | 
            +
                },
         | 
| 899 | 
            +
                "128112": {
         | 
| 900 | 
            +
                  "content": "<|reserved_special_token_104|>",
         | 
| 901 | 
            +
                  "lstrip": false,
         | 
| 902 | 
            +
                  "normalized": false,
         | 
| 903 | 
            +
                  "rstrip": false,
         | 
| 904 | 
            +
                  "single_word": false,
         | 
| 905 | 
            +
                  "special": true
         | 
| 906 | 
            +
                },
         | 
| 907 | 
            +
                "128113": {
         | 
| 908 | 
            +
                  "content": "<|reserved_special_token_105|>",
         | 
| 909 | 
            +
                  "lstrip": false,
         | 
| 910 | 
            +
                  "normalized": false,
         | 
| 911 | 
            +
                  "rstrip": false,
         | 
| 912 | 
            +
                  "single_word": false,
         | 
| 913 | 
            +
                  "special": true
         | 
| 914 | 
            +
                },
         | 
| 915 | 
            +
                "128114": {
         | 
| 916 | 
            +
                  "content": "<|reserved_special_token_106|>",
         | 
| 917 | 
            +
                  "lstrip": false,
         | 
| 918 | 
            +
                  "normalized": false,
         | 
| 919 | 
            +
                  "rstrip": false,
         | 
| 920 | 
            +
                  "single_word": false,
         | 
| 921 | 
            +
                  "special": true
         | 
| 922 | 
            +
                },
         | 
| 923 | 
            +
                "128115": {
         | 
| 924 | 
            +
                  "content": "<|reserved_special_token_107|>",
         | 
| 925 | 
            +
                  "lstrip": false,
         | 
| 926 | 
            +
                  "normalized": false,
         | 
| 927 | 
            +
                  "rstrip": false,
         | 
| 928 | 
            +
                  "single_word": false,
         | 
| 929 | 
            +
                  "special": true
         | 
| 930 | 
            +
                },
         | 
| 931 | 
            +
                "128116": {
         | 
| 932 | 
            +
                  "content": "<|reserved_special_token_108|>",
         | 
| 933 | 
            +
                  "lstrip": false,
         | 
| 934 | 
            +
                  "normalized": false,
         | 
| 935 | 
            +
                  "rstrip": false,
         | 
| 936 | 
            +
                  "single_word": false,
         | 
| 937 | 
            +
                  "special": true
         | 
| 938 | 
            +
                },
         | 
| 939 | 
            +
                "128117": {
         | 
| 940 | 
            +
                  "content": "<|reserved_special_token_109|>",
         | 
| 941 | 
            +
                  "lstrip": false,
         | 
| 942 | 
            +
                  "normalized": false,
         | 
| 943 | 
            +
                  "rstrip": false,
         | 
| 944 | 
            +
                  "single_word": false,
         | 
| 945 | 
            +
                  "special": true
         | 
| 946 | 
            +
                },
         | 
| 947 | 
            +
                "128118": {
         | 
| 948 | 
            +
                  "content": "<|reserved_special_token_110|>",
         | 
| 949 | 
            +
                  "lstrip": false,
         | 
| 950 | 
            +
                  "normalized": false,
         | 
| 951 | 
            +
                  "rstrip": false,
         | 
| 952 | 
            +
                  "single_word": false,
         | 
| 953 | 
            +
                  "special": true
         | 
| 954 | 
            +
                },
         | 
| 955 | 
            +
                "128119": {
         | 
| 956 | 
            +
                  "content": "<|reserved_special_token_111|>",
         | 
| 957 | 
            +
                  "lstrip": false,
         | 
| 958 | 
            +
                  "normalized": false,
         | 
| 959 | 
            +
                  "rstrip": false,
         | 
| 960 | 
            +
                  "single_word": false,
         | 
| 961 | 
            +
                  "special": true
         | 
| 962 | 
            +
                },
         | 
| 963 | 
            +
                "128120": {
         | 
| 964 | 
            +
                  "content": "<|reserved_special_token_112|>",
         | 
| 965 | 
            +
                  "lstrip": false,
         | 
| 966 | 
            +
                  "normalized": false,
         | 
| 967 | 
            +
                  "rstrip": false,
         | 
| 968 | 
            +
                  "single_word": false,
         | 
| 969 | 
            +
                  "special": true
         | 
| 970 | 
            +
                },
         | 
| 971 | 
            +
                "128121": {
         | 
| 972 | 
            +
                  "content": "<|reserved_special_token_113|>",
         | 
| 973 | 
            +
                  "lstrip": false,
         | 
| 974 | 
            +
                  "normalized": false,
         | 
| 975 | 
            +
                  "rstrip": false,
         | 
| 976 | 
            +
                  "single_word": false,
         | 
| 977 | 
            +
                  "special": true
         | 
| 978 | 
            +
                },
         | 
| 979 | 
            +
                "128122": {
         | 
| 980 | 
            +
                  "content": "<|reserved_special_token_114|>",
         | 
| 981 | 
            +
                  "lstrip": false,
         | 
| 982 | 
            +
                  "normalized": false,
         | 
| 983 | 
            +
                  "rstrip": false,
         | 
| 984 | 
            +
                  "single_word": false,
         | 
| 985 | 
            +
                  "special": true
         | 
| 986 | 
            +
                },
         | 
| 987 | 
            +
                "128123": {
         | 
| 988 | 
            +
                  "content": "<|reserved_special_token_115|>",
         | 
| 989 | 
            +
                  "lstrip": false,
         | 
| 990 | 
            +
                  "normalized": false,
         | 
| 991 | 
            +
                  "rstrip": false,
         | 
| 992 | 
            +
                  "single_word": false,
         | 
| 993 | 
            +
                  "special": true
         | 
| 994 | 
            +
                },
         | 
| 995 | 
            +
                "128124": {
         | 
| 996 | 
            +
                  "content": "<|reserved_special_token_116|>",
         | 
| 997 | 
            +
                  "lstrip": false,
         | 
| 998 | 
            +
                  "normalized": false,
         | 
| 999 | 
            +
                  "rstrip": false,
         | 
| 1000 | 
            +
                  "single_word": false,
         | 
| 1001 | 
            +
                  "special": true
         | 
| 1002 | 
            +
                },
         | 
| 1003 | 
            +
                "128125": {
         | 
| 1004 | 
            +
                  "content": "<|reserved_special_token_117|>",
         | 
| 1005 | 
            +
                  "lstrip": false,
         | 
| 1006 | 
            +
                  "normalized": false,
         | 
| 1007 | 
            +
                  "rstrip": false,
         | 
| 1008 | 
            +
                  "single_word": false,
         | 
| 1009 | 
            +
                  "special": true
         | 
| 1010 | 
            +
                },
         | 
| 1011 | 
            +
                "128126": {
         | 
| 1012 | 
            +
                  "content": "<|reserved_special_token_118|>",
         | 
| 1013 | 
            +
                  "lstrip": false,
         | 
| 1014 | 
            +
                  "normalized": false,
         | 
| 1015 | 
            +
                  "rstrip": false,
         | 
| 1016 | 
            +
                  "single_word": false,
         | 
| 1017 | 
            +
                  "special": true
         | 
| 1018 | 
            +
                },
         | 
| 1019 | 
            +
                "128127": {
         | 
| 1020 | 
            +
                  "content": "<|reserved_special_token_119|>",
         | 
| 1021 | 
            +
                  "lstrip": false,
         | 
| 1022 | 
            +
                  "normalized": false,
         | 
| 1023 | 
            +
                  "rstrip": false,
         | 
| 1024 | 
            +
                  "single_word": false,
         | 
| 1025 | 
            +
                  "special": true
         | 
| 1026 | 
            +
                },
         | 
| 1027 | 
            +
                "128128": {
         | 
| 1028 | 
            +
                  "content": "<|reserved_special_token_120|>",
         | 
| 1029 | 
            +
                  "lstrip": false,
         | 
| 1030 | 
            +
                  "normalized": false,
         | 
| 1031 | 
            +
                  "rstrip": false,
         | 
| 1032 | 
            +
                  "single_word": false,
         | 
| 1033 | 
            +
                  "special": true
         | 
| 1034 | 
            +
                },
         | 
| 1035 | 
            +
                "128129": {
         | 
| 1036 | 
            +
                  "content": "<|reserved_special_token_121|>",
         | 
| 1037 | 
            +
                  "lstrip": false,
         | 
| 1038 | 
            +
                  "normalized": false,
         | 
| 1039 | 
            +
                  "rstrip": false,
         | 
| 1040 | 
            +
                  "single_word": false,
         | 
| 1041 | 
            +
                  "special": true
         | 
| 1042 | 
            +
                },
         | 
| 1043 | 
            +
                "128130": {
         | 
| 1044 | 
            +
                  "content": "<|reserved_special_token_122|>",
         | 
| 1045 | 
            +
                  "lstrip": false,
         | 
| 1046 | 
            +
                  "normalized": false,
         | 
| 1047 | 
            +
                  "rstrip": false,
         | 
| 1048 | 
            +
                  "single_word": false,
         | 
| 1049 | 
            +
                  "special": true
         | 
| 1050 | 
            +
                },
         | 
| 1051 | 
            +
                "128131": {
         | 
| 1052 | 
            +
                  "content": "<|reserved_special_token_123|>",
         | 
| 1053 | 
            +
                  "lstrip": false,
         | 
| 1054 | 
            +
                  "normalized": false,
         | 
| 1055 | 
            +
                  "rstrip": false,
         | 
| 1056 | 
            +
                  "single_word": false,
         | 
| 1057 | 
            +
                  "special": true
         | 
| 1058 | 
            +
                },
         | 
| 1059 | 
            +
                "128132": {
         | 
| 1060 | 
            +
                  "content": "<|reserved_special_token_124|>",
         | 
| 1061 | 
            +
                  "lstrip": false,
         | 
| 1062 | 
            +
                  "normalized": false,
         | 
| 1063 | 
            +
                  "rstrip": false,
         | 
| 1064 | 
            +
                  "single_word": false,
         | 
| 1065 | 
            +
                  "special": true
         | 
| 1066 | 
            +
                },
         | 
| 1067 | 
            +
                "128133": {
         | 
| 1068 | 
            +
                  "content": "<|reserved_special_token_125|>",
         | 
| 1069 | 
            +
                  "lstrip": false,
         | 
| 1070 | 
            +
                  "normalized": false,
         | 
| 1071 | 
            +
                  "rstrip": false,
         | 
| 1072 | 
            +
                  "single_word": false,
         | 
| 1073 | 
            +
                  "special": true
         | 
| 1074 | 
            +
                },
         | 
| 1075 | 
            +
                "128134": {
         | 
| 1076 | 
            +
                  "content": "<|reserved_special_token_126|>",
         | 
| 1077 | 
            +
                  "lstrip": false,
         | 
| 1078 | 
            +
                  "normalized": false,
         | 
| 1079 | 
            +
                  "rstrip": false,
         | 
| 1080 | 
            +
                  "single_word": false,
         | 
| 1081 | 
            +
                  "special": true
         | 
| 1082 | 
            +
                },
         | 
| 1083 | 
            +
                "128135": {
         | 
| 1084 | 
            +
                  "content": "<|reserved_special_token_127|>",
         | 
| 1085 | 
            +
                  "lstrip": false,
         | 
| 1086 | 
            +
                  "normalized": false,
         | 
| 1087 | 
            +
                  "rstrip": false,
         | 
| 1088 | 
            +
                  "single_word": false,
         | 
| 1089 | 
            +
                  "special": true
         | 
| 1090 | 
            +
                },
         | 
| 1091 | 
            +
                "128136": {
         | 
| 1092 | 
            +
                  "content": "<|reserved_special_token_128|>",
         | 
| 1093 | 
            +
                  "lstrip": false,
         | 
| 1094 | 
            +
                  "normalized": false,
         | 
| 1095 | 
            +
                  "rstrip": false,
         | 
| 1096 | 
            +
                  "single_word": false,
         | 
| 1097 | 
            +
                  "special": true
         | 
| 1098 | 
            +
                },
         | 
| 1099 | 
            +
                "128137": {
         | 
| 1100 | 
            +
                  "content": "<|reserved_special_token_129|>",
         | 
| 1101 | 
            +
                  "lstrip": false,
         | 
| 1102 | 
            +
                  "normalized": false,
         | 
| 1103 | 
            +
                  "rstrip": false,
         | 
| 1104 | 
            +
                  "single_word": false,
         | 
| 1105 | 
            +
                  "special": true
         | 
| 1106 | 
            +
                },
         | 
| 1107 | 
            +
                "128138": {
         | 
| 1108 | 
            +
                  "content": "<|reserved_special_token_130|>",
         | 
| 1109 | 
            +
                  "lstrip": false,
         | 
| 1110 | 
            +
                  "normalized": false,
         | 
| 1111 | 
            +
                  "rstrip": false,
         | 
| 1112 | 
            +
                  "single_word": false,
         | 
| 1113 | 
            +
                  "special": true
         | 
| 1114 | 
            +
                },
         | 
| 1115 | 
            +
                "128139": {
         | 
| 1116 | 
            +
                  "content": "<|reserved_special_token_131|>",
         | 
| 1117 | 
            +
                  "lstrip": false,
         | 
| 1118 | 
            +
                  "normalized": false,
         | 
| 1119 | 
            +
                  "rstrip": false,
         | 
| 1120 | 
            +
                  "single_word": false,
         | 
| 1121 | 
            +
                  "special": true
         | 
| 1122 | 
            +
                },
         | 
| 1123 | 
            +
                "128140": {
         | 
| 1124 | 
            +
                  "content": "<|reserved_special_token_132|>",
         | 
| 1125 | 
            +
                  "lstrip": false,
         | 
| 1126 | 
            +
                  "normalized": false,
         | 
| 1127 | 
            +
                  "rstrip": false,
         | 
| 1128 | 
            +
                  "single_word": false,
         | 
| 1129 | 
            +
                  "special": true
         | 
| 1130 | 
            +
                },
         | 
| 1131 | 
            +
                "128141": {
         | 
| 1132 | 
            +
                  "content": "<|reserved_special_token_133|>",
         | 
| 1133 | 
            +
                  "lstrip": false,
         | 
| 1134 | 
            +
                  "normalized": false,
         | 
| 1135 | 
            +
                  "rstrip": false,
         | 
| 1136 | 
            +
                  "single_word": false,
         | 
| 1137 | 
            +
                  "special": true
         | 
| 1138 | 
            +
                },
         | 
| 1139 | 
            +
                "128142": {
         | 
| 1140 | 
            +
                  "content": "<|reserved_special_token_134|>",
         | 
| 1141 | 
            +
                  "lstrip": false,
         | 
| 1142 | 
            +
                  "normalized": false,
         | 
| 1143 | 
            +
                  "rstrip": false,
         | 
| 1144 | 
            +
                  "single_word": false,
         | 
| 1145 | 
            +
                  "special": true
         | 
| 1146 | 
            +
                },
         | 
| 1147 | 
            +
                "128143": {
         | 
| 1148 | 
            +
                  "content": "<|reserved_special_token_135|>",
         | 
| 1149 | 
            +
                  "lstrip": false,
         | 
| 1150 | 
            +
                  "normalized": false,
         | 
| 1151 | 
            +
                  "rstrip": false,
         | 
| 1152 | 
            +
                  "single_word": false,
         | 
| 1153 | 
            +
                  "special": true
         | 
| 1154 | 
            +
                },
         | 
| 1155 | 
            +
                "128144": {
         | 
| 1156 | 
            +
                  "content": "<|reserved_special_token_136|>",
         | 
| 1157 | 
            +
                  "lstrip": false,
         | 
| 1158 | 
            +
                  "normalized": false,
         | 
| 1159 | 
            +
                  "rstrip": false,
         | 
| 1160 | 
            +
                  "single_word": false,
         | 
| 1161 | 
            +
                  "special": true
         | 
| 1162 | 
            +
                },
         | 
| 1163 | 
            +
                "128145": {
         | 
| 1164 | 
            +
                  "content": "<|reserved_special_token_137|>",
         | 
| 1165 | 
            +
                  "lstrip": false,
         | 
| 1166 | 
            +
                  "normalized": false,
         | 
| 1167 | 
            +
                  "rstrip": false,
         | 
| 1168 | 
            +
                  "single_word": false,
         | 
| 1169 | 
            +
                  "special": true
         | 
| 1170 | 
            +
                },
         | 
| 1171 | 
            +
                "128146": {
         | 
| 1172 | 
            +
                  "content": "<|reserved_special_token_138|>",
         | 
| 1173 | 
            +
                  "lstrip": false,
         | 
| 1174 | 
            +
                  "normalized": false,
         | 
| 1175 | 
            +
                  "rstrip": false,
         | 
| 1176 | 
            +
                  "single_word": false,
         | 
| 1177 | 
            +
                  "special": true
         | 
| 1178 | 
            +
                },
         | 
| 1179 | 
            +
                "128147": {
         | 
| 1180 | 
            +
                  "content": "<|reserved_special_token_139|>",
         | 
| 1181 | 
            +
                  "lstrip": false,
         | 
| 1182 | 
            +
                  "normalized": false,
         | 
| 1183 | 
            +
                  "rstrip": false,
         | 
| 1184 | 
            +
                  "single_word": false,
         | 
| 1185 | 
            +
                  "special": true
         | 
| 1186 | 
            +
                },
         | 
| 1187 | 
            +
                "128148": {
         | 
| 1188 | 
            +
                  "content": "<|reserved_special_token_140|>",
         | 
| 1189 | 
            +
                  "lstrip": false,
         | 
| 1190 | 
            +
                  "normalized": false,
         | 
| 1191 | 
            +
                  "rstrip": false,
         | 
| 1192 | 
            +
                  "single_word": false,
         | 
| 1193 | 
            +
                  "special": true
         | 
| 1194 | 
            +
                },
         | 
| 1195 | 
            +
                "128149": {
         | 
| 1196 | 
            +
                  "content": "<|reserved_special_token_141|>",
         | 
| 1197 | 
            +
                  "lstrip": false,
         | 
| 1198 | 
            +
                  "normalized": false,
         | 
| 1199 | 
            +
                  "rstrip": false,
         | 
| 1200 | 
            +
                  "single_word": false,
         | 
| 1201 | 
            +
                  "special": true
         | 
| 1202 | 
            +
                },
         | 
| 1203 | 
            +
                "128150": {
         | 
| 1204 | 
            +
                  "content": "<|reserved_special_token_142|>",
         | 
| 1205 | 
            +
                  "lstrip": false,
         | 
| 1206 | 
            +
                  "normalized": false,
         | 
| 1207 | 
            +
                  "rstrip": false,
         | 
| 1208 | 
            +
                  "single_word": false,
         | 
| 1209 | 
            +
                  "special": true
         | 
| 1210 | 
            +
                },
         | 
| 1211 | 
            +
                "128151": {
         | 
| 1212 | 
            +
                  "content": "<|reserved_special_token_143|>",
         | 
| 1213 | 
            +
                  "lstrip": false,
         | 
| 1214 | 
            +
                  "normalized": false,
         | 
| 1215 | 
            +
                  "rstrip": false,
         | 
| 1216 | 
            +
                  "single_word": false,
         | 
| 1217 | 
            +
                  "special": true
         | 
| 1218 | 
            +
                },
         | 
| 1219 | 
            +
                "128152": {
         | 
| 1220 | 
            +
                  "content": "<|reserved_special_token_144|>",
         | 
| 1221 | 
            +
                  "lstrip": false,
         | 
| 1222 | 
            +
                  "normalized": false,
         | 
| 1223 | 
            +
                  "rstrip": false,
         | 
| 1224 | 
            +
                  "single_word": false,
         | 
| 1225 | 
            +
                  "special": true
         | 
| 1226 | 
            +
                },
         | 
| 1227 | 
            +
                "128153": {
         | 
| 1228 | 
            +
                  "content": "<|reserved_special_token_145|>",
         | 
| 1229 | 
            +
                  "lstrip": false,
         | 
| 1230 | 
            +
                  "normalized": false,
         | 
| 1231 | 
            +
                  "rstrip": false,
         | 
| 1232 | 
            +
                  "single_word": false,
         | 
| 1233 | 
            +
                  "special": true
         | 
| 1234 | 
            +
                },
         | 
| 1235 | 
            +
                "128154": {
         | 
| 1236 | 
            +
                  "content": "<|reserved_special_token_146|>",
         | 
| 1237 | 
            +
                  "lstrip": false,
         | 
| 1238 | 
            +
                  "normalized": false,
         | 
| 1239 | 
            +
                  "rstrip": false,
         | 
| 1240 | 
            +
                  "single_word": false,
         | 
| 1241 | 
            +
                  "special": true
         | 
| 1242 | 
            +
                },
         | 
| 1243 | 
            +
                "128155": {
         | 
| 1244 | 
            +
                  "content": "<|reserved_special_token_147|>",
         | 
| 1245 | 
            +
                  "lstrip": false,
         | 
| 1246 | 
            +
                  "normalized": false,
         | 
| 1247 | 
            +
                  "rstrip": false,
         | 
| 1248 | 
            +
                  "single_word": false,
         | 
| 1249 | 
            +
                  "special": true
         | 
| 1250 | 
            +
                },
         | 
| 1251 | 
            +
                "128156": {
         | 
| 1252 | 
            +
                  "content": "<|reserved_special_token_148|>",
         | 
| 1253 | 
            +
                  "lstrip": false,
         | 
| 1254 | 
            +
                  "normalized": false,
         | 
| 1255 | 
            +
                  "rstrip": false,
         | 
| 1256 | 
            +
                  "single_word": false,
         | 
| 1257 | 
            +
                  "special": true
         | 
| 1258 | 
            +
                },
         | 
| 1259 | 
            +
                "128157": {
         | 
| 1260 | 
            +
                  "content": "<|reserved_special_token_149|>",
         | 
| 1261 | 
            +
                  "lstrip": false,
         | 
| 1262 | 
            +
                  "normalized": false,
         | 
| 1263 | 
            +
                  "rstrip": false,
         | 
| 1264 | 
            +
                  "single_word": false,
         | 
| 1265 | 
            +
                  "special": true
         | 
| 1266 | 
            +
                },
         | 
| 1267 | 
            +
                "128158": {
         | 
| 1268 | 
            +
                  "content": "<|reserved_special_token_150|>",
         | 
| 1269 | 
            +
                  "lstrip": false,
         | 
| 1270 | 
            +
                  "normalized": false,
         | 
| 1271 | 
            +
                  "rstrip": false,
         | 
| 1272 | 
            +
                  "single_word": false,
         | 
| 1273 | 
            +
                  "special": true
         | 
| 1274 | 
            +
                },
         | 
| 1275 | 
            +
                "128159": {
         | 
| 1276 | 
            +
                  "content": "<|reserved_special_token_151|>",
         | 
| 1277 | 
            +
                  "lstrip": false,
         | 
| 1278 | 
            +
                  "normalized": false,
         | 
| 1279 | 
            +
                  "rstrip": false,
         | 
| 1280 | 
            +
                  "single_word": false,
         | 
| 1281 | 
            +
                  "special": true
         | 
| 1282 | 
            +
                },
         | 
| 1283 | 
            +
                "128160": {
         | 
| 1284 | 
            +
                  "content": "<|reserved_special_token_152|>",
         | 
| 1285 | 
            +
                  "lstrip": false,
         | 
| 1286 | 
            +
                  "normalized": false,
         | 
| 1287 | 
            +
                  "rstrip": false,
         | 
| 1288 | 
            +
                  "single_word": false,
         | 
| 1289 | 
            +
                  "special": true
         | 
| 1290 | 
            +
                },
         | 
| 1291 | 
            +
                "128161": {
         | 
| 1292 | 
            +
                  "content": "<|reserved_special_token_153|>",
         | 
| 1293 | 
            +
                  "lstrip": false,
         | 
| 1294 | 
            +
                  "normalized": false,
         | 
| 1295 | 
            +
                  "rstrip": false,
         | 
| 1296 | 
            +
                  "single_word": false,
         | 
| 1297 | 
            +
                  "special": true
         | 
| 1298 | 
            +
                },
         | 
| 1299 | 
            +
                "128162": {
         | 
| 1300 | 
            +
                  "content": "<|reserved_special_token_154|>",
         | 
| 1301 | 
            +
                  "lstrip": false,
         | 
| 1302 | 
            +
                  "normalized": false,
         | 
| 1303 | 
            +
                  "rstrip": false,
         | 
| 1304 | 
            +
                  "single_word": false,
         | 
| 1305 | 
            +
                  "special": true
         | 
| 1306 | 
            +
                },
         | 
| 1307 | 
            +
                "128163": {
         | 
| 1308 | 
            +
                  "content": "<|reserved_special_token_155|>",
         | 
| 1309 | 
            +
                  "lstrip": false,
         | 
| 1310 | 
            +
                  "normalized": false,
         | 
| 1311 | 
            +
                  "rstrip": false,
         | 
| 1312 | 
            +
                  "single_word": false,
         | 
| 1313 | 
            +
                  "special": true
         | 
| 1314 | 
            +
                },
         | 
| 1315 | 
            +
                "128164": {
         | 
| 1316 | 
            +
                  "content": "<|reserved_special_token_156|>",
         | 
| 1317 | 
            +
                  "lstrip": false,
         | 
| 1318 | 
            +
                  "normalized": false,
         | 
| 1319 | 
            +
                  "rstrip": false,
         | 
| 1320 | 
            +
                  "single_word": false,
         | 
| 1321 | 
            +
                  "special": true
         | 
| 1322 | 
            +
                },
         | 
| 1323 | 
            +
                "128165": {
         | 
| 1324 | 
            +
                  "content": "<|reserved_special_token_157|>",
         | 
| 1325 | 
            +
                  "lstrip": false,
         | 
| 1326 | 
            +
                  "normalized": false,
         | 
| 1327 | 
            +
                  "rstrip": false,
         | 
| 1328 | 
            +
                  "single_word": false,
         | 
| 1329 | 
            +
                  "special": true
         | 
| 1330 | 
            +
                },
         | 
| 1331 | 
            +
                "128166": {
         | 
| 1332 | 
            +
                  "content": "<|reserved_special_token_158|>",
         | 
| 1333 | 
            +
                  "lstrip": false,
         | 
| 1334 | 
            +
                  "normalized": false,
         | 
| 1335 | 
            +
                  "rstrip": false,
         | 
| 1336 | 
            +
                  "single_word": false,
         | 
| 1337 | 
            +
                  "special": true
         | 
| 1338 | 
            +
                },
         | 
| 1339 | 
            +
                "128167": {
         | 
| 1340 | 
            +
                  "content": "<|reserved_special_token_159|>",
         | 
| 1341 | 
            +
                  "lstrip": false,
         | 
| 1342 | 
            +
                  "normalized": false,
         | 
| 1343 | 
            +
                  "rstrip": false,
         | 
| 1344 | 
            +
                  "single_word": false,
         | 
| 1345 | 
            +
                  "special": true
         | 
| 1346 | 
            +
                },
         | 
| 1347 | 
            +
                "128168": {
         | 
| 1348 | 
            +
                  "content": "<|reserved_special_token_160|>",
         | 
| 1349 | 
            +
                  "lstrip": false,
         | 
| 1350 | 
            +
                  "normalized": false,
         | 
| 1351 | 
            +
                  "rstrip": false,
         | 
| 1352 | 
            +
                  "single_word": false,
         | 
| 1353 | 
            +
                  "special": true
         | 
| 1354 | 
            +
                },
         | 
| 1355 | 
            +
                "128169": {
         | 
| 1356 | 
            +
                  "content": "<|reserved_special_token_161|>",
         | 
| 1357 | 
            +
                  "lstrip": false,
         | 
| 1358 | 
            +
                  "normalized": false,
         | 
| 1359 | 
            +
                  "rstrip": false,
         | 
| 1360 | 
            +
                  "single_word": false,
         | 
| 1361 | 
            +
                  "special": true
         | 
| 1362 | 
            +
                },
         | 
| 1363 | 
            +
                "128170": {
         | 
| 1364 | 
            +
                  "content": "<|reserved_special_token_162|>",
         | 
| 1365 | 
            +
                  "lstrip": false,
         | 
| 1366 | 
            +
                  "normalized": false,
         | 
| 1367 | 
            +
                  "rstrip": false,
         | 
| 1368 | 
            +
                  "single_word": false,
         | 
| 1369 | 
            +
                  "special": true
         | 
| 1370 | 
            +
                },
         | 
| 1371 | 
            +
                "128171": {
         | 
| 1372 | 
            +
                  "content": "<|reserved_special_token_163|>",
         | 
| 1373 | 
            +
                  "lstrip": false,
         | 
| 1374 | 
            +
                  "normalized": false,
         | 
| 1375 | 
            +
                  "rstrip": false,
         | 
| 1376 | 
            +
                  "single_word": false,
         | 
| 1377 | 
            +
                  "special": true
         | 
| 1378 | 
            +
                },
         | 
| 1379 | 
            +
                "128172": {
         | 
| 1380 | 
            +
                  "content": "<|reserved_special_token_164|>",
         | 
| 1381 | 
            +
                  "lstrip": false,
         | 
| 1382 | 
            +
                  "normalized": false,
         | 
| 1383 | 
            +
                  "rstrip": false,
         | 
| 1384 | 
            +
                  "single_word": false,
         | 
| 1385 | 
            +
                  "special": true
         | 
| 1386 | 
            +
                },
         | 
| 1387 | 
            +
                "128173": {
         | 
| 1388 | 
            +
                  "content": "<|reserved_special_token_165|>",
         | 
| 1389 | 
            +
                  "lstrip": false,
         | 
| 1390 | 
            +
                  "normalized": false,
         | 
| 1391 | 
            +
                  "rstrip": false,
         | 
| 1392 | 
            +
                  "single_word": false,
         | 
| 1393 | 
            +
                  "special": true
         | 
| 1394 | 
            +
                },
         | 
| 1395 | 
            +
                "128174": {
         | 
| 1396 | 
            +
                  "content": "<|reserved_special_token_166|>",
         | 
| 1397 | 
            +
                  "lstrip": false,
         | 
| 1398 | 
            +
                  "normalized": false,
         | 
| 1399 | 
            +
                  "rstrip": false,
         | 
| 1400 | 
            +
                  "single_word": false,
         | 
| 1401 | 
            +
                  "special": true
         | 
| 1402 | 
            +
                },
         | 
| 1403 | 
            +
                "128175": {
         | 
| 1404 | 
            +
                  "content": "<|reserved_special_token_167|>",
         | 
| 1405 | 
            +
                  "lstrip": false,
         | 
| 1406 | 
            +
                  "normalized": false,
         | 
| 1407 | 
            +
                  "rstrip": false,
         | 
| 1408 | 
            +
                  "single_word": false,
         | 
| 1409 | 
            +
                  "special": true
         | 
| 1410 | 
            +
                },
         | 
| 1411 | 
            +
                "128176": {
         | 
| 1412 | 
            +
                  "content": "<|reserved_special_token_168|>",
         | 
| 1413 | 
            +
                  "lstrip": false,
         | 
| 1414 | 
            +
                  "normalized": false,
         | 
| 1415 | 
            +
                  "rstrip": false,
         | 
| 1416 | 
            +
                  "single_word": false,
         | 
| 1417 | 
            +
                  "special": true
         | 
| 1418 | 
            +
                },
         | 
| 1419 | 
            +
                "128177": {
         | 
| 1420 | 
            +
                  "content": "<|reserved_special_token_169|>",
         | 
| 1421 | 
            +
                  "lstrip": false,
         | 
| 1422 | 
            +
                  "normalized": false,
         | 
| 1423 | 
            +
                  "rstrip": false,
         | 
| 1424 | 
            +
                  "single_word": false,
         | 
| 1425 | 
            +
                  "special": true
         | 
| 1426 | 
            +
                },
         | 
| 1427 | 
            +
                "128178": {
         | 
| 1428 | 
            +
                  "content": "<|reserved_special_token_170|>",
         | 
| 1429 | 
            +
                  "lstrip": false,
         | 
| 1430 | 
            +
                  "normalized": false,
         | 
| 1431 | 
            +
                  "rstrip": false,
         | 
| 1432 | 
            +
                  "single_word": false,
         | 
| 1433 | 
            +
                  "special": true
         | 
| 1434 | 
            +
                },
         | 
| 1435 | 
            +
                "128179": {
         | 
| 1436 | 
            +
                  "content": "<|reserved_special_token_171|>",
         | 
| 1437 | 
            +
                  "lstrip": false,
         | 
| 1438 | 
            +
                  "normalized": false,
         | 
| 1439 | 
            +
                  "rstrip": false,
         | 
| 1440 | 
            +
                  "single_word": false,
         | 
| 1441 | 
            +
                  "special": true
         | 
| 1442 | 
            +
                },
         | 
| 1443 | 
            +
                "128180": {
         | 
| 1444 | 
            +
                  "content": "<|reserved_special_token_172|>",
         | 
| 1445 | 
            +
                  "lstrip": false,
         | 
| 1446 | 
            +
                  "normalized": false,
         | 
| 1447 | 
            +
                  "rstrip": false,
         | 
| 1448 | 
            +
                  "single_word": false,
         | 
| 1449 | 
            +
                  "special": true
         | 
| 1450 | 
            +
                },
         | 
| 1451 | 
            +
                "128181": {
         | 
| 1452 | 
            +
                  "content": "<|reserved_special_token_173|>",
         | 
| 1453 | 
            +
                  "lstrip": false,
         | 
| 1454 | 
            +
                  "normalized": false,
         | 
| 1455 | 
            +
                  "rstrip": false,
         | 
| 1456 | 
            +
                  "single_word": false,
         | 
| 1457 | 
            +
                  "special": true
         | 
| 1458 | 
            +
                },
         | 
| 1459 | 
            +
                "128182": {
         | 
| 1460 | 
            +
                  "content": "<|reserved_special_token_174|>",
         | 
| 1461 | 
            +
                  "lstrip": false,
         | 
| 1462 | 
            +
                  "normalized": false,
         | 
| 1463 | 
            +
                  "rstrip": false,
         | 
| 1464 | 
            +
                  "single_word": false,
         | 
| 1465 | 
            +
                  "special": true
         | 
| 1466 | 
            +
                },
         | 
| 1467 | 
            +
                "128183": {
         | 
| 1468 | 
            +
                  "content": "<|reserved_special_token_175|>",
         | 
| 1469 | 
            +
                  "lstrip": false,
         | 
| 1470 | 
            +
                  "normalized": false,
         | 
| 1471 | 
            +
                  "rstrip": false,
         | 
| 1472 | 
            +
                  "single_word": false,
         | 
| 1473 | 
            +
                  "special": true
         | 
| 1474 | 
            +
                },
         | 
| 1475 | 
            +
                "128184": {
         | 
| 1476 | 
            +
                  "content": "<|reserved_special_token_176|>",
         | 
| 1477 | 
            +
                  "lstrip": false,
         | 
| 1478 | 
            +
                  "normalized": false,
         | 
| 1479 | 
            +
                  "rstrip": false,
         | 
| 1480 | 
            +
                  "single_word": false,
         | 
| 1481 | 
            +
                  "special": true
         | 
| 1482 | 
            +
                },
         | 
| 1483 | 
            +
                "128185": {
         | 
| 1484 | 
            +
                  "content": "<|reserved_special_token_177|>",
         | 
| 1485 | 
            +
                  "lstrip": false,
         | 
| 1486 | 
            +
                  "normalized": false,
         | 
| 1487 | 
            +
                  "rstrip": false,
         | 
| 1488 | 
            +
                  "single_word": false,
         | 
| 1489 | 
            +
                  "special": true
         | 
| 1490 | 
            +
                },
         | 
| 1491 | 
            +
                "128186": {
         | 
| 1492 | 
            +
                  "content": "<|reserved_special_token_178|>",
         | 
| 1493 | 
            +
                  "lstrip": false,
         | 
| 1494 | 
            +
                  "normalized": false,
         | 
| 1495 | 
            +
                  "rstrip": false,
         | 
| 1496 | 
            +
                  "single_word": false,
         | 
| 1497 | 
            +
                  "special": true
         | 
| 1498 | 
            +
                },
         | 
| 1499 | 
            +
                "128187": {
         | 
| 1500 | 
            +
                  "content": "<|reserved_special_token_179|>",
         | 
| 1501 | 
            +
                  "lstrip": false,
         | 
| 1502 | 
            +
                  "normalized": false,
         | 
| 1503 | 
            +
                  "rstrip": false,
         | 
| 1504 | 
            +
                  "single_word": false,
         | 
| 1505 | 
            +
                  "special": true
         | 
| 1506 | 
            +
                },
         | 
| 1507 | 
            +
                "128188": {
         | 
| 1508 | 
            +
                  "content": "<|reserved_special_token_180|>",
         | 
| 1509 | 
            +
                  "lstrip": false,
         | 
| 1510 | 
            +
                  "normalized": false,
         | 
| 1511 | 
            +
                  "rstrip": false,
         | 
| 1512 | 
            +
                  "single_word": false,
         | 
| 1513 | 
            +
                  "special": true
         | 
| 1514 | 
            +
                },
         | 
| 1515 | 
            +
                "128189": {
         | 
| 1516 | 
            +
                  "content": "<|reserved_special_token_181|>",
         | 
| 1517 | 
            +
                  "lstrip": false,
         | 
| 1518 | 
            +
                  "normalized": false,
         | 
| 1519 | 
            +
                  "rstrip": false,
         | 
| 1520 | 
            +
                  "single_word": false,
         | 
| 1521 | 
            +
                  "special": true
         | 
| 1522 | 
            +
                },
         | 
| 1523 | 
            +
                "128190": {
         | 
| 1524 | 
            +
                  "content": "<|reserved_special_token_182|>",
         | 
| 1525 | 
            +
                  "lstrip": false,
         | 
| 1526 | 
            +
                  "normalized": false,
         | 
| 1527 | 
            +
                  "rstrip": false,
         | 
| 1528 | 
            +
                  "single_word": false,
         | 
| 1529 | 
            +
                  "special": true
         | 
| 1530 | 
            +
                },
         | 
| 1531 | 
            +
                "128191": {
         | 
| 1532 | 
            +
                  "content": "<|reserved_special_token_183|>",
         | 
| 1533 | 
            +
                  "lstrip": false,
         | 
| 1534 | 
            +
                  "normalized": false,
         | 
| 1535 | 
            +
                  "rstrip": false,
         | 
| 1536 | 
            +
                  "single_word": false,
         | 
| 1537 | 
            +
                  "special": true
         | 
| 1538 | 
            +
                },
         | 
| 1539 | 
            +
                "128192": {
         | 
| 1540 | 
            +
                  "content": "<|reserved_special_token_184|>",
         | 
| 1541 | 
            +
                  "lstrip": false,
         | 
| 1542 | 
            +
                  "normalized": false,
         | 
| 1543 | 
            +
                  "rstrip": false,
         | 
| 1544 | 
            +
                  "single_word": false,
         | 
| 1545 | 
            +
                  "special": true
         | 
| 1546 | 
            +
                },
         | 
| 1547 | 
            +
                "128193": {
         | 
| 1548 | 
            +
                  "content": "<|reserved_special_token_185|>",
         | 
| 1549 | 
            +
                  "lstrip": false,
         | 
| 1550 | 
            +
                  "normalized": false,
         | 
| 1551 | 
            +
                  "rstrip": false,
         | 
| 1552 | 
            +
                  "single_word": false,
         | 
| 1553 | 
            +
                  "special": true
         | 
| 1554 | 
            +
                },
         | 
| 1555 | 
            +
                "128194": {
         | 
| 1556 | 
            +
                  "content": "<|reserved_special_token_186|>",
         | 
| 1557 | 
            +
                  "lstrip": false,
         | 
| 1558 | 
            +
                  "normalized": false,
         | 
| 1559 | 
            +
                  "rstrip": false,
         | 
| 1560 | 
            +
                  "single_word": false,
         | 
| 1561 | 
            +
                  "special": true
         | 
| 1562 | 
            +
                },
         | 
| 1563 | 
            +
                "128195": {
         | 
| 1564 | 
            +
                  "content": "<|reserved_special_token_187|>",
         | 
| 1565 | 
            +
                  "lstrip": false,
         | 
| 1566 | 
            +
                  "normalized": false,
         | 
| 1567 | 
            +
                  "rstrip": false,
         | 
| 1568 | 
            +
                  "single_word": false,
         | 
| 1569 | 
            +
                  "special": true
         | 
| 1570 | 
            +
                },
         | 
| 1571 | 
            +
                "128196": {
         | 
| 1572 | 
            +
                  "content": "<|reserved_special_token_188|>",
         | 
| 1573 | 
            +
                  "lstrip": false,
         | 
| 1574 | 
            +
                  "normalized": false,
         | 
| 1575 | 
            +
                  "rstrip": false,
         | 
| 1576 | 
            +
                  "single_word": false,
         | 
| 1577 | 
            +
                  "special": true
         | 
| 1578 | 
            +
                },
         | 
| 1579 | 
            +
                "128197": {
         | 
| 1580 | 
            +
                  "content": "<|reserved_special_token_189|>",
         | 
| 1581 | 
            +
                  "lstrip": false,
         | 
| 1582 | 
            +
                  "normalized": false,
         | 
| 1583 | 
            +
                  "rstrip": false,
         | 
| 1584 | 
            +
                  "single_word": false,
         | 
| 1585 | 
            +
                  "special": true
         | 
| 1586 | 
            +
                },
         | 
| 1587 | 
            +
                "128198": {
         | 
| 1588 | 
            +
                  "content": "<|reserved_special_token_190|>",
         | 
| 1589 | 
            +
                  "lstrip": false,
         | 
| 1590 | 
            +
                  "normalized": false,
         | 
| 1591 | 
            +
                  "rstrip": false,
         | 
| 1592 | 
            +
                  "single_word": false,
         | 
| 1593 | 
            +
                  "special": true
         | 
| 1594 | 
            +
                },
         | 
| 1595 | 
            +
                "128199": {
         | 
| 1596 | 
            +
                  "content": "<|reserved_special_token_191|>",
         | 
| 1597 | 
            +
                  "lstrip": false,
         | 
| 1598 | 
            +
                  "normalized": false,
         | 
| 1599 | 
            +
                  "rstrip": false,
         | 
| 1600 | 
            +
                  "single_word": false,
         | 
| 1601 | 
            +
                  "special": true
         | 
| 1602 | 
            +
                },
         | 
| 1603 | 
            +
                "128200": {
         | 
| 1604 | 
            +
                  "content": "<|reserved_special_token_192|>",
         | 
| 1605 | 
            +
                  "lstrip": false,
         | 
| 1606 | 
            +
                  "normalized": false,
         | 
| 1607 | 
            +
                  "rstrip": false,
         | 
| 1608 | 
            +
                  "single_word": false,
         | 
| 1609 | 
            +
                  "special": true
         | 
| 1610 | 
            +
                },
         | 
| 1611 | 
            +
                "128201": {
         | 
| 1612 | 
            +
                  "content": "<|reserved_special_token_193|>",
         | 
| 1613 | 
            +
                  "lstrip": false,
         | 
| 1614 | 
            +
                  "normalized": false,
         | 
| 1615 | 
            +
                  "rstrip": false,
         | 
| 1616 | 
            +
                  "single_word": false,
         | 
| 1617 | 
            +
                  "special": true
         | 
| 1618 | 
            +
                },
         | 
| 1619 | 
            +
                "128202": {
         | 
| 1620 | 
            +
                  "content": "<|reserved_special_token_194|>",
         | 
| 1621 | 
            +
                  "lstrip": false,
         | 
| 1622 | 
            +
                  "normalized": false,
         | 
| 1623 | 
            +
                  "rstrip": false,
         | 
| 1624 | 
            +
                  "single_word": false,
         | 
| 1625 | 
            +
                  "special": true
         | 
| 1626 | 
            +
                },
         | 
| 1627 | 
            +
                "128203": {
         | 
| 1628 | 
            +
                  "content": "<|reserved_special_token_195|>",
         | 
| 1629 | 
            +
                  "lstrip": false,
         | 
| 1630 | 
            +
                  "normalized": false,
         | 
| 1631 | 
            +
                  "rstrip": false,
         | 
| 1632 | 
            +
                  "single_word": false,
         | 
| 1633 | 
            +
                  "special": true
         | 
| 1634 | 
            +
                },
         | 
| 1635 | 
            +
                "128204": {
         | 
| 1636 | 
            +
                  "content": "<|reserved_special_token_196|>",
         | 
| 1637 | 
            +
                  "lstrip": false,
         | 
| 1638 | 
            +
                  "normalized": false,
         | 
| 1639 | 
            +
                  "rstrip": false,
         | 
| 1640 | 
            +
                  "single_word": false,
         | 
| 1641 | 
            +
                  "special": true
         | 
| 1642 | 
            +
                },
         | 
| 1643 | 
            +
                "128205": {
         | 
| 1644 | 
            +
                  "content": "<|reserved_special_token_197|>",
         | 
| 1645 | 
            +
                  "lstrip": false,
         | 
| 1646 | 
            +
                  "normalized": false,
         | 
| 1647 | 
            +
                  "rstrip": false,
         | 
| 1648 | 
            +
                  "single_word": false,
         | 
| 1649 | 
            +
                  "special": true
         | 
| 1650 | 
            +
                },
         | 
| 1651 | 
            +
                "128206": {
         | 
| 1652 | 
            +
                  "content": "<|reserved_special_token_198|>",
         | 
| 1653 | 
            +
                  "lstrip": false,
         | 
| 1654 | 
            +
                  "normalized": false,
         | 
| 1655 | 
            +
                  "rstrip": false,
         | 
| 1656 | 
            +
                  "single_word": false,
         | 
| 1657 | 
            +
                  "special": true
         | 
| 1658 | 
            +
                },
         | 
| 1659 | 
            +
                "128207": {
         | 
| 1660 | 
            +
                  "content": "<|reserved_special_token_199|>",
         | 
| 1661 | 
            +
                  "lstrip": false,
         | 
| 1662 | 
            +
                  "normalized": false,
         | 
| 1663 | 
            +
                  "rstrip": false,
         | 
| 1664 | 
            +
                  "single_word": false,
         | 
| 1665 | 
            +
                  "special": true
         | 
| 1666 | 
            +
                },
         | 
| 1667 | 
            +
                "128208": {
         | 
| 1668 | 
            +
                  "content": "<|reserved_special_token_200|>",
         | 
| 1669 | 
            +
                  "lstrip": false,
         | 
| 1670 | 
            +
                  "normalized": false,
         | 
| 1671 | 
            +
                  "rstrip": false,
         | 
| 1672 | 
            +
                  "single_word": false,
         | 
| 1673 | 
            +
                  "special": true
         | 
| 1674 | 
            +
                },
         | 
| 1675 | 
            +
                "128209": {
         | 
| 1676 | 
            +
                  "content": "<|reserved_special_token_201|>",
         | 
| 1677 | 
            +
                  "lstrip": false,
         | 
| 1678 | 
            +
                  "normalized": false,
         | 
| 1679 | 
            +
                  "rstrip": false,
         | 
| 1680 | 
            +
                  "single_word": false,
         | 
| 1681 | 
            +
                  "special": true
         | 
| 1682 | 
            +
                },
         | 
| 1683 | 
            +
                "128210": {
         | 
| 1684 | 
            +
                  "content": "<|reserved_special_token_202|>",
         | 
| 1685 | 
            +
                  "lstrip": false,
         | 
| 1686 | 
            +
                  "normalized": false,
         | 
| 1687 | 
            +
                  "rstrip": false,
         | 
| 1688 | 
            +
                  "single_word": false,
         | 
| 1689 | 
            +
                  "special": true
         | 
| 1690 | 
            +
                },
         | 
| 1691 | 
            +
                "128211": {
         | 
| 1692 | 
            +
                  "content": "<|reserved_special_token_203|>",
         | 
| 1693 | 
            +
                  "lstrip": false,
         | 
| 1694 | 
            +
                  "normalized": false,
         | 
| 1695 | 
            +
                  "rstrip": false,
         | 
| 1696 | 
            +
                  "single_word": false,
         | 
| 1697 | 
            +
                  "special": true
         | 
| 1698 | 
            +
                },
         | 
| 1699 | 
            +
                "128212": {
         | 
| 1700 | 
            +
                  "content": "<|reserved_special_token_204|>",
         | 
| 1701 | 
            +
                  "lstrip": false,
         | 
| 1702 | 
            +
                  "normalized": false,
         | 
| 1703 | 
            +
                  "rstrip": false,
         | 
| 1704 | 
            +
                  "single_word": false,
         | 
| 1705 | 
            +
                  "special": true
         | 
| 1706 | 
            +
                },
         | 
| 1707 | 
            +
                "128213": {
         | 
| 1708 | 
            +
                  "content": "<|reserved_special_token_205|>",
         | 
| 1709 | 
            +
                  "lstrip": false,
         | 
| 1710 | 
            +
                  "normalized": false,
         | 
| 1711 | 
            +
                  "rstrip": false,
         | 
| 1712 | 
            +
                  "single_word": false,
         | 
| 1713 | 
            +
                  "special": true
         | 
| 1714 | 
            +
                },
         | 
| 1715 | 
            +
                "128214": {
         | 
| 1716 | 
            +
                  "content": "<|reserved_special_token_206|>",
         | 
| 1717 | 
            +
                  "lstrip": false,
         | 
| 1718 | 
            +
                  "normalized": false,
         | 
| 1719 | 
            +
                  "rstrip": false,
         | 
| 1720 | 
            +
                  "single_word": false,
         | 
| 1721 | 
            +
                  "special": true
         | 
| 1722 | 
            +
                },
         | 
| 1723 | 
            +
                "128215": {
         | 
| 1724 | 
            +
                  "content": "<|reserved_special_token_207|>",
         | 
| 1725 | 
            +
                  "lstrip": false,
         | 
| 1726 | 
            +
                  "normalized": false,
         | 
| 1727 | 
            +
                  "rstrip": false,
         | 
| 1728 | 
            +
                  "single_word": false,
         | 
| 1729 | 
            +
                  "special": true
         | 
| 1730 | 
            +
                },
         | 
| 1731 | 
            +
                "128216": {
         | 
| 1732 | 
            +
                  "content": "<|reserved_special_token_208|>",
         | 
| 1733 | 
            +
                  "lstrip": false,
         | 
| 1734 | 
            +
                  "normalized": false,
         | 
| 1735 | 
            +
                  "rstrip": false,
         | 
| 1736 | 
            +
                  "single_word": false,
         | 
| 1737 | 
            +
                  "special": true
         | 
| 1738 | 
            +
                },
         | 
| 1739 | 
            +
                "128217": {
         | 
| 1740 | 
            +
                  "content": "<|reserved_special_token_209|>",
         | 
| 1741 | 
            +
                  "lstrip": false,
         | 
| 1742 | 
            +
                  "normalized": false,
         | 
| 1743 | 
            +
                  "rstrip": false,
         | 
| 1744 | 
            +
                  "single_word": false,
         | 
| 1745 | 
            +
                  "special": true
         | 
| 1746 | 
            +
                },
         | 
| 1747 | 
            +
                "128218": {
         | 
| 1748 | 
            +
                  "content": "<|reserved_special_token_210|>",
         | 
| 1749 | 
            +
                  "lstrip": false,
         | 
| 1750 | 
            +
                  "normalized": false,
         | 
| 1751 | 
            +
                  "rstrip": false,
         | 
| 1752 | 
            +
                  "single_word": false,
         | 
| 1753 | 
            +
                  "special": true
         | 
| 1754 | 
            +
                },
         | 
| 1755 | 
            +
                "128219": {
         | 
| 1756 | 
            +
                  "content": "<|reserved_special_token_211|>",
         | 
| 1757 | 
            +
                  "lstrip": false,
         | 
| 1758 | 
            +
                  "normalized": false,
         | 
| 1759 | 
            +
                  "rstrip": false,
         | 
| 1760 | 
            +
                  "single_word": false,
         | 
| 1761 | 
            +
                  "special": true
         | 
| 1762 | 
            +
                },
         | 
| 1763 | 
            +
                "128220": {
         | 
| 1764 | 
            +
                  "content": "<|reserved_special_token_212|>",
         | 
| 1765 | 
            +
                  "lstrip": false,
         | 
| 1766 | 
            +
                  "normalized": false,
         | 
| 1767 | 
            +
                  "rstrip": false,
         | 
| 1768 | 
            +
                  "single_word": false,
         | 
| 1769 | 
            +
                  "special": true
         | 
| 1770 | 
            +
                },
         | 
| 1771 | 
            +
                "128221": {
         | 
| 1772 | 
            +
                  "content": "<|reserved_special_token_213|>",
         | 
| 1773 | 
            +
                  "lstrip": false,
         | 
| 1774 | 
            +
                  "normalized": false,
         | 
| 1775 | 
            +
                  "rstrip": false,
         | 
| 1776 | 
            +
                  "single_word": false,
         | 
| 1777 | 
            +
                  "special": true
         | 
| 1778 | 
            +
                },
         | 
| 1779 | 
            +
                "128222": {
         | 
| 1780 | 
            +
                  "content": "<|reserved_special_token_214|>",
         | 
| 1781 | 
            +
                  "lstrip": false,
         | 
| 1782 | 
            +
                  "normalized": false,
         | 
| 1783 | 
            +
                  "rstrip": false,
         | 
| 1784 | 
            +
                  "single_word": false,
         | 
| 1785 | 
            +
                  "special": true
         | 
| 1786 | 
            +
                },
         | 
| 1787 | 
            +
                "128223": {
         | 
| 1788 | 
            +
                  "content": "<|reserved_special_token_215|>",
         | 
| 1789 | 
            +
                  "lstrip": false,
         | 
| 1790 | 
            +
                  "normalized": false,
         | 
| 1791 | 
            +
                  "rstrip": false,
         | 
| 1792 | 
            +
                  "single_word": false,
         | 
| 1793 | 
            +
                  "special": true
         | 
| 1794 | 
            +
                },
         | 
| 1795 | 
            +
                "128224": {
         | 
| 1796 | 
            +
                  "content": "<|reserved_special_token_216|>",
         | 
| 1797 | 
            +
                  "lstrip": false,
         | 
| 1798 | 
            +
                  "normalized": false,
         | 
| 1799 | 
            +
                  "rstrip": false,
         | 
| 1800 | 
            +
                  "single_word": false,
         | 
| 1801 | 
            +
                  "special": true
         | 
| 1802 | 
            +
                },
         | 
| 1803 | 
            +
                "128225": {
         | 
| 1804 | 
            +
                  "content": "<|reserved_special_token_217|>",
         | 
| 1805 | 
            +
                  "lstrip": false,
         | 
| 1806 | 
            +
                  "normalized": false,
         | 
| 1807 | 
            +
                  "rstrip": false,
         | 
| 1808 | 
            +
                  "single_word": false,
         | 
| 1809 | 
            +
                  "special": true
         | 
| 1810 | 
            +
                },
         | 
| 1811 | 
            +
                "128226": {
         | 
| 1812 | 
            +
                  "content": "<|reserved_special_token_218|>",
         | 
| 1813 | 
            +
                  "lstrip": false,
         | 
| 1814 | 
            +
                  "normalized": false,
         | 
| 1815 | 
            +
                  "rstrip": false,
         | 
| 1816 | 
            +
                  "single_word": false,
         | 
| 1817 | 
            +
                  "special": true
         | 
| 1818 | 
            +
                },
         | 
| 1819 | 
            +
                "128227": {
         | 
| 1820 | 
            +
                  "content": "<|reserved_special_token_219|>",
         | 
| 1821 | 
            +
                  "lstrip": false,
         | 
| 1822 | 
            +
                  "normalized": false,
         | 
| 1823 | 
            +
                  "rstrip": false,
         | 
| 1824 | 
            +
                  "single_word": false,
         | 
| 1825 | 
            +
                  "special": true
         | 
| 1826 | 
            +
                },
         | 
| 1827 | 
            +
                "128228": {
         | 
| 1828 | 
            +
                  "content": "<|reserved_special_token_220|>",
         | 
| 1829 | 
            +
                  "lstrip": false,
         | 
| 1830 | 
            +
                  "normalized": false,
         | 
| 1831 | 
            +
                  "rstrip": false,
         | 
| 1832 | 
            +
                  "single_word": false,
         | 
| 1833 | 
            +
                  "special": true
         | 
| 1834 | 
            +
                },
         | 
| 1835 | 
            +
                "128229": {
         | 
| 1836 | 
            +
                  "content": "<|reserved_special_token_221|>",
         | 
| 1837 | 
            +
                  "lstrip": false,
         | 
| 1838 | 
            +
                  "normalized": false,
         | 
| 1839 | 
            +
                  "rstrip": false,
         | 
| 1840 | 
            +
                  "single_word": false,
         | 
| 1841 | 
            +
                  "special": true
         | 
| 1842 | 
            +
                },
         | 
| 1843 | 
            +
                "128230": {
         | 
| 1844 | 
            +
                  "content": "<|reserved_special_token_222|>",
         | 
| 1845 | 
            +
                  "lstrip": false,
         | 
| 1846 | 
            +
                  "normalized": false,
         | 
| 1847 | 
            +
                  "rstrip": false,
         | 
| 1848 | 
            +
                  "single_word": false,
         | 
| 1849 | 
            +
                  "special": true
         | 
| 1850 | 
            +
                },
         | 
| 1851 | 
            +
                "128231": {
         | 
| 1852 | 
            +
                  "content": "<|reserved_special_token_223|>",
         | 
| 1853 | 
            +
                  "lstrip": false,
         | 
| 1854 | 
            +
                  "normalized": false,
         | 
| 1855 | 
            +
                  "rstrip": false,
         | 
| 1856 | 
            +
                  "single_word": false,
         | 
| 1857 | 
            +
                  "special": true
         | 
| 1858 | 
            +
                },
         | 
| 1859 | 
            +
                "128232": {
         | 
| 1860 | 
            +
                  "content": "<|reserved_special_token_224|>",
         | 
| 1861 | 
            +
                  "lstrip": false,
         | 
| 1862 | 
            +
                  "normalized": false,
         | 
| 1863 | 
            +
                  "rstrip": false,
         | 
| 1864 | 
            +
                  "single_word": false,
         | 
| 1865 | 
            +
                  "special": true
         | 
| 1866 | 
            +
                },
         | 
| 1867 | 
            +
                "128233": {
         | 
| 1868 | 
            +
                  "content": "<|reserved_special_token_225|>",
         | 
| 1869 | 
            +
                  "lstrip": false,
         | 
| 1870 | 
            +
                  "normalized": false,
         | 
| 1871 | 
            +
                  "rstrip": false,
         | 
| 1872 | 
            +
                  "single_word": false,
         | 
| 1873 | 
            +
                  "special": true
         | 
| 1874 | 
            +
                },
         | 
| 1875 | 
            +
                "128234": {
         | 
| 1876 | 
            +
                  "content": "<|reserved_special_token_226|>",
         | 
| 1877 | 
            +
                  "lstrip": false,
         | 
| 1878 | 
            +
                  "normalized": false,
         | 
| 1879 | 
            +
                  "rstrip": false,
         | 
| 1880 | 
            +
                  "single_word": false,
         | 
| 1881 | 
            +
                  "special": true
         | 
| 1882 | 
            +
                },
         | 
| 1883 | 
            +
                "128235": {
         | 
| 1884 | 
            +
                  "content": "<|reserved_special_token_227|>",
         | 
| 1885 | 
            +
                  "lstrip": false,
         | 
| 1886 | 
            +
                  "normalized": false,
         | 
| 1887 | 
            +
                  "rstrip": false,
         | 
| 1888 | 
            +
                  "single_word": false,
         | 
| 1889 | 
            +
                  "special": true
         | 
| 1890 | 
            +
                },
         | 
| 1891 | 
            +
                "128236": {
         | 
| 1892 | 
            +
                  "content": "<|reserved_special_token_228|>",
         | 
| 1893 | 
            +
                  "lstrip": false,
         | 
| 1894 | 
            +
                  "normalized": false,
         | 
| 1895 | 
            +
                  "rstrip": false,
         | 
| 1896 | 
            +
                  "single_word": false,
         | 
| 1897 | 
            +
                  "special": true
         | 
| 1898 | 
            +
                },
         | 
| 1899 | 
            +
                "128237": {
         | 
| 1900 | 
            +
                  "content": "<|reserved_special_token_229|>",
         | 
| 1901 | 
            +
                  "lstrip": false,
         | 
| 1902 | 
            +
                  "normalized": false,
         | 
| 1903 | 
            +
                  "rstrip": false,
         | 
| 1904 | 
            +
                  "single_word": false,
         | 
| 1905 | 
            +
                  "special": true
         | 
| 1906 | 
            +
                },
         | 
| 1907 | 
            +
                "128238": {
         | 
| 1908 | 
            +
                  "content": "<|reserved_special_token_230|>",
         | 
| 1909 | 
            +
                  "lstrip": false,
         | 
| 1910 | 
            +
                  "normalized": false,
         | 
| 1911 | 
            +
                  "rstrip": false,
         | 
| 1912 | 
            +
                  "single_word": false,
         | 
| 1913 | 
            +
                  "special": true
         | 
| 1914 | 
            +
                },
         | 
| 1915 | 
            +
                "128239": {
         | 
| 1916 | 
            +
                  "content": "<|reserved_special_token_231|>",
         | 
| 1917 | 
            +
                  "lstrip": false,
         | 
| 1918 | 
            +
                  "normalized": false,
         | 
| 1919 | 
            +
                  "rstrip": false,
         | 
| 1920 | 
            +
                  "single_word": false,
         | 
| 1921 | 
            +
                  "special": true
         | 
| 1922 | 
            +
                },
         | 
| 1923 | 
            +
                "128240": {
         | 
| 1924 | 
            +
                  "content": "<|reserved_special_token_232|>",
         | 
| 1925 | 
            +
                  "lstrip": false,
         | 
| 1926 | 
            +
                  "normalized": false,
         | 
| 1927 | 
            +
                  "rstrip": false,
         | 
| 1928 | 
            +
                  "single_word": false,
         | 
| 1929 | 
            +
                  "special": true
         | 
| 1930 | 
            +
                },
         | 
| 1931 | 
            +
                "128241": {
         | 
| 1932 | 
            +
                  "content": "<|reserved_special_token_233|>",
         | 
| 1933 | 
            +
                  "lstrip": false,
         | 
| 1934 | 
            +
                  "normalized": false,
         | 
| 1935 | 
            +
                  "rstrip": false,
         | 
| 1936 | 
            +
                  "single_word": false,
         | 
| 1937 | 
            +
                  "special": true
         | 
| 1938 | 
            +
                },
         | 
| 1939 | 
            +
                "128242": {
         | 
| 1940 | 
            +
                  "content": "<|reserved_special_token_234|>",
         | 
| 1941 | 
            +
                  "lstrip": false,
         | 
| 1942 | 
            +
                  "normalized": false,
         | 
| 1943 | 
            +
                  "rstrip": false,
         | 
| 1944 | 
            +
                  "single_word": false,
         | 
| 1945 | 
            +
                  "special": true
         | 
| 1946 | 
            +
                },
         | 
| 1947 | 
            +
                "128243": {
         | 
| 1948 | 
            +
                  "content": "<|reserved_special_token_235|>",
         | 
| 1949 | 
            +
                  "lstrip": false,
         | 
| 1950 | 
            +
                  "normalized": false,
         | 
| 1951 | 
            +
                  "rstrip": false,
         | 
| 1952 | 
            +
                  "single_word": false,
         | 
| 1953 | 
            +
                  "special": true
         | 
| 1954 | 
            +
                },
         | 
| 1955 | 
            +
                "128244": {
         | 
| 1956 | 
            +
                  "content": "<|reserved_special_token_236|>",
         | 
| 1957 | 
            +
                  "lstrip": false,
         | 
| 1958 | 
            +
                  "normalized": false,
         | 
| 1959 | 
            +
                  "rstrip": false,
         | 
| 1960 | 
            +
                  "single_word": false,
         | 
| 1961 | 
            +
                  "special": true
         | 
| 1962 | 
            +
                },
         | 
| 1963 | 
            +
                "128245": {
         | 
| 1964 | 
            +
                  "content": "<|reserved_special_token_237|>",
         | 
| 1965 | 
            +
                  "lstrip": false,
         | 
| 1966 | 
            +
                  "normalized": false,
         | 
| 1967 | 
            +
                  "rstrip": false,
         | 
| 1968 | 
            +
                  "single_word": false,
         | 
| 1969 | 
            +
                  "special": true
         | 
| 1970 | 
            +
                },
         | 
| 1971 | 
            +
                "128246": {
         | 
| 1972 | 
            +
                  "content": "<|reserved_special_token_238|>",
         | 
| 1973 | 
            +
                  "lstrip": false,
         | 
| 1974 | 
            +
                  "normalized": false,
         | 
| 1975 | 
            +
                  "rstrip": false,
         | 
| 1976 | 
            +
                  "single_word": false,
         | 
| 1977 | 
            +
                  "special": true
         | 
| 1978 | 
            +
                },
         | 
| 1979 | 
            +
                "128247": {
         | 
| 1980 | 
            +
                  "content": "<|reserved_special_token_239|>",
         | 
| 1981 | 
            +
                  "lstrip": false,
         | 
| 1982 | 
            +
                  "normalized": false,
         | 
| 1983 | 
            +
                  "rstrip": false,
         | 
| 1984 | 
            +
                  "single_word": false,
         | 
| 1985 | 
            +
                  "special": true
         | 
| 1986 | 
            +
                },
         | 
| 1987 | 
            +
                "128248": {
         | 
| 1988 | 
            +
                  "content": "<|reserved_special_token_240|>",
         | 
| 1989 | 
            +
                  "lstrip": false,
         | 
| 1990 | 
            +
                  "normalized": false,
         | 
| 1991 | 
            +
                  "rstrip": false,
         | 
| 1992 | 
            +
                  "single_word": false,
         | 
| 1993 | 
            +
                  "special": true
         | 
| 1994 | 
            +
                },
         | 
| 1995 | 
            +
                "128249": {
         | 
| 1996 | 
            +
                  "content": "<|reserved_special_token_241|>",
         | 
| 1997 | 
            +
                  "lstrip": false,
         | 
| 1998 | 
            +
                  "normalized": false,
         | 
| 1999 | 
            +
                  "rstrip": false,
         | 
| 2000 | 
            +
                  "single_word": false,
         | 
| 2001 | 
            +
                  "special": true
         | 
| 2002 | 
            +
                },
         | 
| 2003 | 
            +
                "128250": {
         | 
| 2004 | 
            +
                  "content": "<|reserved_special_token_242|>",
         | 
| 2005 | 
            +
                  "lstrip": false,
         | 
| 2006 | 
            +
                  "normalized": false,
         | 
| 2007 | 
            +
                  "rstrip": false,
         | 
| 2008 | 
            +
                  "single_word": false,
         | 
| 2009 | 
            +
                  "special": true
         | 
| 2010 | 
            +
                },
         | 
| 2011 | 
            +
                "128251": {
         | 
| 2012 | 
            +
                  "content": "<|reserved_special_token_243|>",
         | 
| 2013 | 
            +
                  "lstrip": false,
         | 
| 2014 | 
            +
                  "normalized": false,
         | 
| 2015 | 
            +
                  "rstrip": false,
         | 
| 2016 | 
            +
                  "single_word": false,
         | 
| 2017 | 
            +
                  "special": true
         | 
| 2018 | 
            +
                },
         | 
| 2019 | 
            +
                "128252": {
         | 
| 2020 | 
            +
                  "content": "<|reserved_special_token_244|>",
         | 
| 2021 | 
            +
                  "lstrip": false,
         | 
| 2022 | 
            +
                  "normalized": false,
         | 
| 2023 | 
            +
                  "rstrip": false,
         | 
| 2024 | 
            +
                  "single_word": false,
         | 
| 2025 | 
            +
                  "special": true
         | 
| 2026 | 
            +
                },
         | 
| 2027 | 
            +
                "128253": {
         | 
| 2028 | 
            +
                  "content": "<|reserved_special_token_245|>",
         | 
| 2029 | 
            +
                  "lstrip": false,
         | 
| 2030 | 
            +
                  "normalized": false,
         | 
| 2031 | 
            +
                  "rstrip": false,
         | 
| 2032 | 
            +
                  "single_word": false,
         | 
| 2033 | 
            +
                  "special": true
         | 
| 2034 | 
            +
                },
         | 
| 2035 | 
            +
                "128254": {
         | 
| 2036 | 
            +
                  "content": "<|reserved_special_token_246|>",
         | 
| 2037 | 
            +
                  "lstrip": false,
         | 
| 2038 | 
            +
                  "normalized": false,
         | 
| 2039 | 
            +
                  "rstrip": false,
         | 
| 2040 | 
            +
                  "single_word": false,
         | 
| 2041 | 
            +
                  "special": true
         | 
| 2042 | 
            +
                },
         | 
| 2043 | 
            +
                "128255": {
         | 
| 2044 | 
            +
                  "content": "<|reserved_special_token_247|>",
         | 
| 2045 | 
            +
                  "lstrip": false,
         | 
| 2046 | 
            +
                  "normalized": false,
         | 
| 2047 | 
            +
                  "rstrip": false,
         | 
| 2048 | 
            +
                  "single_word": false,
         | 
| 2049 | 
            +
                  "special": true
         | 
| 2050 | 
            +
                }
         | 
| 2051 | 
            +
              },
         | 
| 2052 | 
            +
              "bos_token": "<|begin_of_text|>",
         | 
| 2053 | 
            +
              "chat_template": "{{- bos_token }}{%- if messages[0]['role'] == 'system' %}{%- set system_message = messages[0]['content']|trim %}{%- set messages = messages[1:] %}{%- else %}{%- set system_message = \"\" %}{%- endif %}{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}{{- system_message }}{{- \"<|eot_id|>\" }}{%- for message in messages %}{%- if message['role'] == 'assistant' and '</think>' in message['content'] %}{%- set content = message['content'].split('</think>')[-1].lstrip() %}{%- else %}{%- set content = message['content'] %}{%- endif %}{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' + content | trim + '<|eot_id|>' }}{%- endfor %}{%- if add_generation_prompt %}{{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}{%- endif %}",
         | 
| 2054 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 2055 | 
            +
              "eos_token": "<|eot_id|>",
         | 
| 2056 | 
            +
              "extra_special_tokens": {},
         | 
| 2057 | 
            +
              "model_input_names": [
         | 
| 2058 | 
            +
                "input_ids",
         | 
| 2059 | 
            +
                "attention_mask"
         | 
| 2060 | 
            +
              ],
         | 
| 2061 | 
            +
              "model_max_length": 131072,
         | 
| 2062 | 
            +
              "tokenizer_class": "PreTrainedTokenizerFast"
         | 
| 2063 | 
            +
            }
         | 
    	
        tokenizer_name.txt
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            meta-llama/Llama-3.1-405B-Instruct
         | 
    	
        training_flowchart.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        transformers_4_44_2__activations.py
    ADDED
    
    | @@ -0,0 +1,239 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2020 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import math
         | 
| 16 | 
            +
            from collections import OrderedDict
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import torch
         | 
| 19 | 
            +
            from packaging import version
         | 
| 20 | 
            +
            from torch import Tensor, nn
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformers.utils import logging
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            class PytorchGELUTanh(nn.Module):
         | 
| 29 | 
            +
                """
         | 
| 30 | 
            +
                A fast C implementation of the tanh approximation of the GeLU activation function. See
         | 
| 31 | 
            +
                https://arxiv.org/abs/1606.08415.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
         | 
| 34 | 
            +
                match due to rounding errors.
         | 
| 35 | 
            +
                """
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def __init__(self):
         | 
| 38 | 
            +
                    super().__init__()
         | 
| 39 | 
            +
                    if version.parse(torch.__version__) < version.parse("1.12.0"):
         | 
| 40 | 
            +
                        raise ImportError(
         | 
| 41 | 
            +
                            f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
         | 
| 42 | 
            +
                            "PytorchGELUTanh. Please upgrade torch."
         | 
| 43 | 
            +
                        )
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 46 | 
            +
                    return nn.functional.gelu(input, approximate="tanh")
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            class NewGELUActivation(nn.Module):
         | 
| 50 | 
            +
                """
         | 
| 51 | 
            +
                Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
         | 
| 52 | 
            +
                the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
         | 
| 53 | 
            +
                """
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 56 | 
            +
                    return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            class GELUActivation(nn.Module):
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
                Original Implementation of the GELU activation function in Google BERT repo when initially created. For
         | 
| 62 | 
            +
                information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
         | 
| 63 | 
            +
                torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
         | 
| 64 | 
            +
                Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
         | 
| 65 | 
            +
                """
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                def __init__(self, use_gelu_python: bool = False):
         | 
| 68 | 
            +
                    super().__init__()
         | 
| 69 | 
            +
                    if use_gelu_python:
         | 
| 70 | 
            +
                        self.act = self._gelu_python
         | 
| 71 | 
            +
                    else:
         | 
| 72 | 
            +
                        self.act = nn.functional.gelu
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                def _gelu_python(self, input: Tensor) -> Tensor:
         | 
| 75 | 
            +
                    return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 78 | 
            +
                    return self.act(input)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            class FastGELUActivation(nn.Module):
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
         | 
| 84 | 
            +
                """
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 87 | 
            +
                    return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
            class QuickGELUActivation(nn.Module):
         | 
| 91 | 
            +
                """
         | 
| 92 | 
            +
                Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
         | 
| 93 | 
            +
                """
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 96 | 
            +
                    return input * torch.sigmoid(1.702 * input)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
             | 
| 99 | 
            +
            class ClippedGELUActivation(nn.Module):
         | 
| 100 | 
            +
                """
         | 
| 101 | 
            +
                Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
         | 
| 102 | 
            +
                it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
         | 
| 103 | 
            +
                https://arxiv.org/abs/2004.09602.
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
         | 
| 106 | 
            +
                initially created.
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
         | 
| 109 | 
            +
                torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
         | 
| 110 | 
            +
                """
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                def __init__(self, min: float, max: float):
         | 
| 113 | 
            +
                    if min > max:
         | 
| 114 | 
            +
                        raise ValueError(f"min should be < max (got min: {min}, max: {max})")
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    super().__init__()
         | 
| 117 | 
            +
                    self.min = min
         | 
| 118 | 
            +
                    self.max = max
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def forward(self, x: Tensor) -> Tensor:
         | 
| 121 | 
            +
                    return torch.clip(gelu(x), self.min, self.max)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
             | 
| 124 | 
            +
            class AccurateGELUActivation(nn.Module):
         | 
| 125 | 
            +
                """
         | 
| 126 | 
            +
                Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
         | 
| 127 | 
            +
                https://github.com/hendrycks/GELUs
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                Implemented along with MEGA (Moving Average Equipped Gated Attention)
         | 
| 130 | 
            +
                """
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                def __init__(self):
         | 
| 133 | 
            +
                    super().__init__()
         | 
| 134 | 
            +
                    self.precomputed_constant = math.sqrt(2 / math.pi)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 137 | 
            +
                    return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            class MishActivation(nn.Module):
         | 
| 141 | 
            +
                """
         | 
| 142 | 
            +
                See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
         | 
| 143 | 
            +
                visit the official repository for the paper: https://github.com/digantamisra98/Mish
         | 
| 144 | 
            +
                """
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                def __init__(self):
         | 
| 147 | 
            +
                    super().__init__()
         | 
| 148 | 
            +
                    if version.parse(torch.__version__) < version.parse("1.9.0"):
         | 
| 149 | 
            +
                        self.act = self._mish_python
         | 
| 150 | 
            +
                    else:
         | 
| 151 | 
            +
                        self.act = nn.functional.mish
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                def _mish_python(self, input: Tensor) -> Tensor:
         | 
| 154 | 
            +
                    return input * torch.tanh(nn.functional.softplus(input))
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 157 | 
            +
                    return self.act(input)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
            class LinearActivation(nn.Module):
         | 
| 161 | 
            +
                """
         | 
| 162 | 
            +
                Applies the linear activation function, i.e. forwarding input directly to output.
         | 
| 163 | 
            +
                """
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                def forward(self, input: Tensor) -> Tensor:
         | 
| 166 | 
            +
                    return input
         | 
| 167 | 
            +
             | 
| 168 | 
            +
             | 
| 169 | 
            +
            class LaplaceActivation(nn.Module):
         | 
| 170 | 
            +
                """
         | 
| 171 | 
            +
                Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
         | 
| 172 | 
            +
                https://arxiv.org/abs/2209.10655
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                Inspired by squared relu, but with bounded range and gradient for better stability
         | 
| 175 | 
            +
                """
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def forward(self, input, mu=0.707107, sigma=0.282095):
         | 
| 178 | 
            +
                    input = (input - mu).div(sigma * math.sqrt(2.0))
         | 
| 179 | 
            +
                    return 0.5 * (1.0 + torch.erf(input))
         | 
| 180 | 
            +
             | 
| 181 | 
            +
             | 
| 182 | 
            +
            class ReLUSquaredActivation(nn.Module):
         | 
| 183 | 
            +
                """
         | 
| 184 | 
            +
                Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
         | 
| 185 | 
            +
                """
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                def forward(self, input):
         | 
| 188 | 
            +
                    relu_applied = nn.functional.relu(input)
         | 
| 189 | 
            +
                    squared = torch.square(relu_applied)
         | 
| 190 | 
            +
                    return squared
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            class ClassInstantier(OrderedDict):
         | 
| 194 | 
            +
                def __getitem__(self, key):
         | 
| 195 | 
            +
                    content = super().__getitem__(key)
         | 
| 196 | 
            +
                    cls, kwargs = content if isinstance(content, tuple) else (content, {})
         | 
| 197 | 
            +
                    return cls(**kwargs)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
             | 
| 200 | 
            +
            ACT2CLS = {
         | 
| 201 | 
            +
                "gelu": GELUActivation,
         | 
| 202 | 
            +
                "gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
         | 
| 203 | 
            +
                "gelu_fast": FastGELUActivation,
         | 
| 204 | 
            +
                "gelu_new": NewGELUActivation,
         | 
| 205 | 
            +
                "gelu_python": (GELUActivation, {"use_gelu_python": True}),
         | 
| 206 | 
            +
                "gelu_pytorch_tanh": PytorchGELUTanh,
         | 
| 207 | 
            +
                "gelu_accurate": AccurateGELUActivation,
         | 
| 208 | 
            +
                "laplace": LaplaceActivation,
         | 
| 209 | 
            +
                "leaky_relu": nn.LeakyReLU,
         | 
| 210 | 
            +
                "linear": LinearActivation,
         | 
| 211 | 
            +
                "mish": MishActivation,
         | 
| 212 | 
            +
                "quick_gelu": QuickGELUActivation,
         | 
| 213 | 
            +
                "relu": nn.ReLU,
         | 
| 214 | 
            +
                "relu2": ReLUSquaredActivation,
         | 
| 215 | 
            +
                "relu6": nn.ReLU6,
         | 
| 216 | 
            +
                "sigmoid": nn.Sigmoid,
         | 
| 217 | 
            +
                "silu": nn.SiLU,
         | 
| 218 | 
            +
                "swish": nn.SiLU,
         | 
| 219 | 
            +
                "tanh": nn.Tanh,
         | 
| 220 | 
            +
            }
         | 
| 221 | 
            +
            ACT2FN = ClassInstantier(ACT2CLS)
         | 
| 222 | 
            +
             | 
| 223 | 
            +
             | 
| 224 | 
            +
            def get_activation(activation_string):
         | 
| 225 | 
            +
                if activation_string in ACT2FN:
         | 
| 226 | 
            +
                    return ACT2FN[activation_string]
         | 
| 227 | 
            +
                else:
         | 
| 228 | 
            +
                    raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            # For backwards compatibility with: from activations import gelu_python
         | 
| 232 | 
            +
            gelu_python = get_activation("gelu_python")
         | 
| 233 | 
            +
            gelu_new = get_activation("gelu_new")
         | 
| 234 | 
            +
            gelu = get_activation("gelu")
         | 
| 235 | 
            +
            gelu_fast = get_activation("gelu_fast")
         | 
| 236 | 
            +
            quick_gelu = get_activation("quick_gelu")
         | 
| 237 | 
            +
            silu = get_activation("silu")
         | 
| 238 | 
            +
            mish = get_activation("mish")
         | 
| 239 | 
            +
            linear_act = get_activation("linear")
         | 
    	
        transformers_4_44_2__cache_utils.py
    ADDED
    
    | @@ -0,0 +1,1347 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import copy
         | 
| 2 | 
            +
            import importlib.metadata
         | 
| 3 | 
            +
            import json
         | 
| 4 | 
            +
            import os
         | 
| 5 | 
            +
            from dataclasses import dataclass
         | 
| 6 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            from packaging import version
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 12 | 
            +
            from transformers.utils import is_torchdynamo_compiling, logging
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            class Cache(torch.nn.Module):
         | 
| 19 | 
            +
                """
         | 
| 20 | 
            +
                Base, abstract class for all caches. The actual data structure is specific to each subclass.
         | 
| 21 | 
            +
                """
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                def __init__(self):
         | 
| 24 | 
            +
                    super().__init__()
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                def update(
         | 
| 27 | 
            +
                    self,
         | 
| 28 | 
            +
                    key_states: torch.Tensor,
         | 
| 29 | 
            +
                    value_states: torch.Tensor,
         | 
| 30 | 
            +
                    layer_idx: int,
         | 
| 31 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 32 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 33 | 
            +
                    """
         | 
| 34 | 
            +
                    Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                    Parameters:
         | 
| 37 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 38 | 
            +
                            The new key states to cache.
         | 
| 39 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 40 | 
            +
                            The new value states to cache.
         | 
| 41 | 
            +
                        layer_idx (`int`):
         | 
| 42 | 
            +
                            The index of the layer to cache the states for.
         | 
| 43 | 
            +
                        cache_kwargs (`Dict[str, Any]`, `optional`):
         | 
| 44 | 
            +
                            Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
         | 
| 45 | 
            +
                            cache to be created.
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    Return:
         | 
| 48 | 
            +
                        A tuple containing the updated key and value states.
         | 
| 49 | 
            +
                    """
         | 
| 50 | 
            +
                    raise NotImplementedError("Make sure to implement `update` in a subclass.")
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
         | 
| 53 | 
            +
                    """Returns the sequence length of the cached states. A layer index can be optionally passed."""
         | 
| 54 | 
            +
                    # TODO: deprecate this function in favor of `cache_position`
         | 
| 55 | 
            +
                    raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def get_max_length(self) -> Optional[int]:
         | 
| 58 | 
            +
                    """Returns the maximum sequence length of the cached states, if there is any."""
         | 
| 59 | 
            +
                    raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
         | 
| 62 | 
            +
                    """Given the sequence length of the new inputs, returns the usable length of the cache."""
         | 
| 63 | 
            +
                    # Cache without size limit -> all cache is usable
         | 
| 64 | 
            +
                    # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
         | 
| 65 | 
            +
                    #   length, we will need to evict part of the cache (and thus not all cache is usable)
         | 
| 66 | 
            +
                    max_length = self.get_max_length()
         | 
| 67 | 
            +
                    previous_seq_length = self.get_seq_length(layer_idx)
         | 
| 68 | 
            +
                    if max_length is not None and previous_seq_length + new_seq_length > max_length:
         | 
| 69 | 
            +
                        return max_length - new_seq_length
         | 
| 70 | 
            +
                    return previous_seq_length
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                def reorder_cache(self, beam_idx: torch.LongTensor):
         | 
| 73 | 
            +
                    """Reorders the cache for beam search, given the selected beam indices."""
         | 
| 74 | 
            +
                    for layer_idx in range(len(self.key_cache)):
         | 
| 75 | 
            +
                        device = self.key_cache[layer_idx].device
         | 
| 76 | 
            +
                        self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
         | 
| 77 | 
            +
                        device = self.value_cache[layer_idx].device
         | 
| 78 | 
            +
                        self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                @property
         | 
| 81 | 
            +
                def seen_tokens(self):
         | 
| 82 | 
            +
                    logger.warning_once(
         | 
| 83 | 
            +
                        "The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
         | 
| 84 | 
            +
                        "model input instead."
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
                    if hasattr(self, "_seen_tokens"):
         | 
| 87 | 
            +
                        return self._seen_tokens
         | 
| 88 | 
            +
                    else:
         | 
| 89 | 
            +
                        return None
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            @dataclass
         | 
| 93 | 
            +
            class CacheConfig:
         | 
| 94 | 
            +
                """
         | 
| 95 | 
            +
                Base class for cache configs
         | 
| 96 | 
            +
                """
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                cache_implementation: None
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                @classmethod
         | 
| 101 | 
            +
                def from_dict(cls, config_dict, **kwargs):
         | 
| 102 | 
            +
                    """
         | 
| 103 | 
            +
                    Constructs a CacheConfig instance from a dictionary of parameters.
         | 
| 104 | 
            +
                    Args:
         | 
| 105 | 
            +
                        config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
         | 
| 106 | 
            +
                        **kwargs: Additional keyword arguments to override dictionary values.
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    Returns:
         | 
| 109 | 
            +
                        CacheConfig: Instance of CacheConfig constructed from the dictionary.
         | 
| 110 | 
            +
                    """
         | 
| 111 | 
            +
                    config = cls(**config_dict)
         | 
| 112 | 
            +
                    to_remove = []
         | 
| 113 | 
            +
                    for key, value in kwargs.items():
         | 
| 114 | 
            +
                        if hasattr(config, key):
         | 
| 115 | 
            +
                            setattr(config, key, value)
         | 
| 116 | 
            +
                            to_remove.append(key)
         | 
| 117 | 
            +
                    for key in to_remove:
         | 
| 118 | 
            +
                        kwargs.pop(key, None)
         | 
| 119 | 
            +
                    return config
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_json_file
         | 
| 122 | 
            +
                def to_json_file(self, json_file_path: Union[str, os.PathLike]):
         | 
| 123 | 
            +
                    """
         | 
| 124 | 
            +
                    Save this instance to a JSON file.
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    Args:
         | 
| 127 | 
            +
                        json_file_path (`str` or `os.PathLike`):
         | 
| 128 | 
            +
                            Path to the JSON file in which this configuration instance's parameters will be saved.
         | 
| 129 | 
            +
                        use_diff (`bool`, *optional*, defaults to `True`):
         | 
| 130 | 
            +
                            If set to `True`, only the difference between the config instance and the default
         | 
| 131 | 
            +
                            `QuantizationConfig()` is serialized to JSON file.
         | 
| 132 | 
            +
                    """
         | 
| 133 | 
            +
                    with open(json_file_path, "w", encoding="utf-8") as writer:
         | 
| 134 | 
            +
                        config_dict = self.to_dict()
         | 
| 135 | 
            +
                        json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                        writer.write(json_string)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
         | 
| 140 | 
            +
                def to_dict(self) -> Dict[str, Any]:
         | 
| 141 | 
            +
                    """
         | 
| 142 | 
            +
                    Serializes this instance to a Python dictionary. Returns:
         | 
| 143 | 
            +
                        `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
         | 
| 144 | 
            +
                    """
         | 
| 145 | 
            +
                    return copy.deepcopy(self.__dict__)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__iter__
         | 
| 148 | 
            +
                def __iter__(self):
         | 
| 149 | 
            +
                    """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
         | 
| 150 | 
            +
                    for attr, value in copy.deepcopy(self.__dict__).items():
         | 
| 151 | 
            +
                        yield attr, value
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__repr__
         | 
| 154 | 
            +
                def __repr__(self):
         | 
| 155 | 
            +
                    return f"{self.__class__.__name__} {self.to_json_string()}"
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                def to_json_string(self):
         | 
| 158 | 
            +
                    """
         | 
| 159 | 
            +
                    Serializes this instance to a JSON formatted string.
         | 
| 160 | 
            +
                    Returns:
         | 
| 161 | 
            +
                        str: JSON formatted string representing the configuration instance.
         | 
| 162 | 
            +
                    """
         | 
| 163 | 
            +
                    return json.dumps(self.__dict__, indent=2) + "\n"
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.update
         | 
| 166 | 
            +
                def update(self, **kwargs):
         | 
| 167 | 
            +
                    """
         | 
| 168 | 
            +
                    Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
         | 
| 169 | 
            +
                    returning all the unused kwargs.
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    Args:
         | 
| 172 | 
            +
                        kwargs (`Dict[str, Any]`):
         | 
| 173 | 
            +
                            Dictionary of attributes to tentatively update this class.
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    Returns:
         | 
| 176 | 
            +
                        `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
         | 
| 177 | 
            +
                    """
         | 
| 178 | 
            +
                    to_remove = []
         | 
| 179 | 
            +
                    for key, value in kwargs.items():
         | 
| 180 | 
            +
                        if hasattr(self, key):
         | 
| 181 | 
            +
                            setattr(self, key, value)
         | 
| 182 | 
            +
                            to_remove.append(key)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    # Remove all the attributes that were updated, without modifying the input dict
         | 
| 185 | 
            +
                    unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
         | 
| 186 | 
            +
                    return unused_kwargs
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            class DynamicCache(Cache):
         | 
| 190 | 
            +
                """
         | 
| 191 | 
            +
                A cache that grows dynamically as more tokens are generated. This is the default for generative models.
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
         | 
| 194 | 
            +
                `[batch_size, num_heads, seq_len, head_dim]`.
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                Example:
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    ```python
         | 
| 199 | 
            +
                    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
         | 
| 202 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    >>> # Prepare a cache class and pass it to model's forward
         | 
| 207 | 
            +
                    >>> past_key_values = DynamicCache()
         | 
| 208 | 
            +
                    >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
         | 
| 209 | 
            +
                    >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
         | 
| 210 | 
            +
                    ```
         | 
| 211 | 
            +
                """
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                def __init__(self) -> None:
         | 
| 214 | 
            +
                    super().__init__()
         | 
| 215 | 
            +
                    self.key_cache: List[torch.Tensor] = []
         | 
| 216 | 
            +
                    self.value_cache: List[torch.Tensor] = []
         | 
| 217 | 
            +
                    self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
         | 
| 220 | 
            +
                    """
         | 
| 221 | 
            +
                    Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
         | 
| 222 | 
            +
                    sequence length.
         | 
| 223 | 
            +
                    """
         | 
| 224 | 
            +
                    if layer_idx < len(self):
         | 
| 225 | 
            +
                        return (self.key_cache[layer_idx], self.value_cache[layer_idx])
         | 
| 226 | 
            +
                    else:
         | 
| 227 | 
            +
                        raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                def __iter__(self):
         | 
| 230 | 
            +
                    """
         | 
| 231 | 
            +
                    Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
         | 
| 232 | 
            +
                    keys and values
         | 
| 233 | 
            +
                    """
         | 
| 234 | 
            +
                    for layer_idx in range(len(self)):
         | 
| 235 | 
            +
                        yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                def __len__(self):
         | 
| 238 | 
            +
                    """
         | 
| 239 | 
            +
                    Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
         | 
| 240 | 
            +
                    to the number of layers in the model.
         | 
| 241 | 
            +
                    """
         | 
| 242 | 
            +
                    return len(self.key_cache)
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                def update(
         | 
| 245 | 
            +
                    self,
         | 
| 246 | 
            +
                    key_states: torch.Tensor,
         | 
| 247 | 
            +
                    value_states: torch.Tensor,
         | 
| 248 | 
            +
                    layer_idx: int,
         | 
| 249 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 250 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 251 | 
            +
                    """
         | 
| 252 | 
            +
                    Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    Parameters:
         | 
| 255 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 256 | 
            +
                            The new key states to cache.
         | 
| 257 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 258 | 
            +
                            The new value states to cache.
         | 
| 259 | 
            +
                        layer_idx (`int`):
         | 
| 260 | 
            +
                            The index of the layer to cache the states for.
         | 
| 261 | 
            +
                        cache_kwargs (`Dict[str, Any]`, `optional`):
         | 
| 262 | 
            +
                            Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    Return:
         | 
| 265 | 
            +
                        A tuple containing the updated key and value states.
         | 
| 266 | 
            +
                    """
         | 
| 267 | 
            +
                    # Update the number of seen tokens
         | 
| 268 | 
            +
                    if layer_idx == 0:
         | 
| 269 | 
            +
                        self._seen_tokens += key_states.shape[-2]
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    # Update the cache
         | 
| 272 | 
            +
                    if len(self.key_cache) <= layer_idx:
         | 
| 273 | 
            +
                        self.key_cache.append(key_states)
         | 
| 274 | 
            +
                        self.value_cache.append(value_states)
         | 
| 275 | 
            +
                    else:
         | 
| 276 | 
            +
                        self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
         | 
| 277 | 
            +
                        self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    return self.key_cache[layer_idx], self.value_cache[layer_idx]
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
         | 
| 282 | 
            +
                    """Returns the sequence length of the cached states. A layer index can be optionally passed."""
         | 
| 283 | 
            +
                    # TODO: deprecate this function in favor of `cache_position`
         | 
| 284 | 
            +
                    if len(self.key_cache) <= layer_idx:
         | 
| 285 | 
            +
                        return 0
         | 
| 286 | 
            +
                    return self.key_cache[layer_idx].shape[-2]
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                def get_max_length(self) -> Optional[int]:
         | 
| 289 | 
            +
                    """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
         | 
| 290 | 
            +
                    return None
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
         | 
| 293 | 
            +
                    """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
         | 
| 294 | 
            +
                    backward compatibility."""
         | 
| 295 | 
            +
                    legacy_cache = ()
         | 
| 296 | 
            +
                    for layer_idx in range(len(self)):
         | 
| 297 | 
            +
                        legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
         | 
| 298 | 
            +
                    return legacy_cache
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                @classmethod
         | 
| 301 | 
            +
                def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
         | 
| 302 | 
            +
                    """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
         | 
| 303 | 
            +
                    backward compatibility."""
         | 
| 304 | 
            +
                    cache = cls()
         | 
| 305 | 
            +
                    if past_key_values is not None:
         | 
| 306 | 
            +
                        for layer_idx in range(len(past_key_values)):
         | 
| 307 | 
            +
                            key_states, value_states = past_key_values[layer_idx]
         | 
| 308 | 
            +
                            cache.update(key_states, value_states, layer_idx)
         | 
| 309 | 
            +
                    return cache
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                def crop(self, max_length: int):
         | 
| 312 | 
            +
                    """Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
         | 
| 313 | 
            +
                    negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search."""
         | 
| 314 | 
            +
                    # In case it is negative
         | 
| 315 | 
            +
                    if max_length < 0:
         | 
| 316 | 
            +
                        max_length = self.get_seq_length() - abs(max_length)
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    if self.get_seq_length() <= max_length:
         | 
| 319 | 
            +
                        return
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    self._seen_tokens = max_length
         | 
| 322 | 
            +
                    for idx in range(len(self.key_cache)):
         | 
| 323 | 
            +
                        self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
         | 
| 324 | 
            +
                        self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                def batch_split(self, full_batch_size: int, split_size: int) -> List["DynamicCache"]:
         | 
| 327 | 
            +
                    """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
         | 
| 328 | 
            +
                    `_split_model_inputs()` in `generation.utils`"""
         | 
| 329 | 
            +
                    out = []
         | 
| 330 | 
            +
                    for i in range(0, full_batch_size, split_size):
         | 
| 331 | 
            +
                        current_split = DynamicCache()
         | 
| 332 | 
            +
                        current_split._seen_tokens = self._seen_tokens
         | 
| 333 | 
            +
                        current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
         | 
| 334 | 
            +
                        current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
         | 
| 335 | 
            +
                        out.append(current_split)
         | 
| 336 | 
            +
                    return out
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                @classmethod
         | 
| 339 | 
            +
                def from_batch_splits(cls, splits: List["DynamicCache"]) -> "DynamicCache":
         | 
| 340 | 
            +
                    """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
         | 
| 341 | 
            +
                    `generation.utils`"""
         | 
| 342 | 
            +
                    cache = cls()
         | 
| 343 | 
            +
                    for idx in range(len(splits[0])):
         | 
| 344 | 
            +
                        layer_keys = torch.cat([current.key_cache[idx] for current in splits], dim=0)
         | 
| 345 | 
            +
                        layer_values = torch.cat([current.value_cache[idx] for current in splits], dim=0)
         | 
| 346 | 
            +
                        cache.update(layer_keys, layer_values, idx)
         | 
| 347 | 
            +
                    return cache
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                def batch_repeat_interleave(self, repeats: int):
         | 
| 350 | 
            +
                    """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
         | 
| 351 | 
            +
                    for layer_idx in range(len(self)):
         | 
| 352 | 
            +
                        self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
         | 
| 353 | 
            +
                        self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                def batch_select_indices(self, indices: torch.Tensor):
         | 
| 356 | 
            +
                    """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
         | 
| 357 | 
            +
                    for layer_idx in range(len(self)):
         | 
| 358 | 
            +
                        self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
         | 
| 359 | 
            +
                        self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
         | 
| 360 | 
            +
             | 
| 361 | 
            +
             | 
| 362 | 
            +
            class OffloadedCache(DynamicCache):
         | 
| 363 | 
            +
                """
         | 
| 364 | 
            +
                A drop-in replacement for DynamicCache that conserves GPU memory at the expense of more CPU memory.
         | 
| 365 | 
            +
                Useful for generating from models with very long context.
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                In addition to the default CUDA stream, where all forward() computations happen,
         | 
| 368 | 
            +
                this class uses another stream, the prefetch stream, which it creates itself.
         | 
| 369 | 
            +
                Since scheduling of operations on separate streams happens independently, this class uses
         | 
| 370 | 
            +
                the prefetch stream to asynchronously prefetch the KV cache of layer k+1 when layer k is executing.
         | 
| 371 | 
            +
                The movement of the layer k-1 cache to the CPU is handled by the default stream as a simple way to
         | 
| 372 | 
            +
                ensure the eviction is scheduled after all computations on that cache are finished.
         | 
| 373 | 
            +
                """
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                def __init__(self) -> None:
         | 
| 376 | 
            +
                    if not torch.cuda.is_available():
         | 
| 377 | 
            +
                        raise RuntimeError("OffloadedCache can only be used with a GPU")
         | 
| 378 | 
            +
                    super().__init__()
         | 
| 379 | 
            +
                    self.original_device = []
         | 
| 380 | 
            +
                    self.prefetch_stream = torch.cuda.Stream()
         | 
| 381 | 
            +
                    self.beam_idx = None  # used to delay beam search operations
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                def prefetch_layer(self, layer_idx: int):
         | 
| 384 | 
            +
                    "Starts prefetching the next layer cache"
         | 
| 385 | 
            +
                    if layer_idx < len(self):
         | 
| 386 | 
            +
                        with torch.cuda.stream(self.prefetch_stream):
         | 
| 387 | 
            +
                            # Prefetch next layer tensors to GPU
         | 
| 388 | 
            +
                            device = self.original_device[layer_idx]
         | 
| 389 | 
            +
                            self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
         | 
| 390 | 
            +
                            self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                def evict_previous_layer(self, layer_idx: int):
         | 
| 393 | 
            +
                    "Moves the previous layer cache to the CPU"
         | 
| 394 | 
            +
                    if len(self) > 2:
         | 
| 395 | 
            +
                        # We do it on the default stream so it occurs after all earlier computations on these tensors are done
         | 
| 396 | 
            +
                        prev_layer_idx = (layer_idx - 1) % len(self)
         | 
| 397 | 
            +
                        self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
         | 
| 398 | 
            +
                        self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
         | 
| 401 | 
            +
                    "Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
         | 
| 402 | 
            +
                    if layer_idx < len(self):
         | 
| 403 | 
            +
                        # Evict the previous layer if necessary
         | 
| 404 | 
            +
                        torch.cuda.current_stream().synchronize()
         | 
| 405 | 
            +
                        self.evict_previous_layer(layer_idx)
         | 
| 406 | 
            +
                        # Load current layer cache to its original device if not already there
         | 
| 407 | 
            +
                        original_device = self.original_device[layer_idx]
         | 
| 408 | 
            +
                        self.prefetch_stream.synchronize()
         | 
| 409 | 
            +
                        key_tensor = self.key_cache[layer_idx]
         | 
| 410 | 
            +
                        value_tensor = self.value_cache[layer_idx]
         | 
| 411 | 
            +
                        # Now deal with beam search ops which were delayed
         | 
| 412 | 
            +
                        if self.beam_idx is not None:
         | 
| 413 | 
            +
                            self.beam_idx = self.beam_idx.to(original_device)
         | 
| 414 | 
            +
                            key_tensor = key_tensor.index_select(0, self.beam_idx)
         | 
| 415 | 
            +
                            value_tensor = value_tensor.index_select(0, self.beam_idx)
         | 
| 416 | 
            +
                        # Prefetch the next layer
         | 
| 417 | 
            +
                        self.prefetch_layer((layer_idx + 1) % len(self))
         | 
| 418 | 
            +
                        return (key_tensor, value_tensor)
         | 
| 419 | 
            +
                    else:
         | 
| 420 | 
            +
                        raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                def reorder_cache(self, beam_idx: torch.LongTensor):
         | 
| 423 | 
            +
                    """Saves the beam indices and reorders the cache when the tensor is back to its device."""
         | 
| 424 | 
            +
                    # We delay this operation until the tensors are back to their original
         | 
| 425 | 
            +
                    # device because performing torch.index_select on the CPU is very slow
         | 
| 426 | 
            +
                    del self.beam_idx
         | 
| 427 | 
            +
                    self.beam_idx = beam_idx.clone()
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                def update(
         | 
| 430 | 
            +
                    self,
         | 
| 431 | 
            +
                    key_states: torch.Tensor,
         | 
| 432 | 
            +
                    value_states: torch.Tensor,
         | 
| 433 | 
            +
                    layer_idx: int,
         | 
| 434 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 435 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 436 | 
            +
                    """
         | 
| 437 | 
            +
                    Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
         | 
| 438 | 
            +
                    Parameters:
         | 
| 439 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 440 | 
            +
                            The new key states to cache.
         | 
| 441 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 442 | 
            +
                            The new value states to cache.
         | 
| 443 | 
            +
                        layer_idx (`int`):
         | 
| 444 | 
            +
                            The index of the layer to cache the states for.
         | 
| 445 | 
            +
                        cache_kwargs (`Dict[str, Any]`, `optional`):
         | 
| 446 | 
            +
                            Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
         | 
| 447 | 
            +
                    Return:
         | 
| 448 | 
            +
                        A tuple containing the updated key and value states.
         | 
| 449 | 
            +
                    """
         | 
| 450 | 
            +
                    # Update the number of seen tokens
         | 
| 451 | 
            +
                    if layer_idx == 0:
         | 
| 452 | 
            +
                        self._seen_tokens += key_states.shape[-2]
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    # Update the cache
         | 
| 455 | 
            +
                    if len(self.key_cache) <= layer_idx:
         | 
| 456 | 
            +
                        self.key_cache.append(key_states)
         | 
| 457 | 
            +
                        self.value_cache.append(value_states)
         | 
| 458 | 
            +
                        self.original_device.append(key_states.device)
         | 
| 459 | 
            +
                        self.evict_previous_layer(layer_idx)
         | 
| 460 | 
            +
                    else:
         | 
| 461 | 
            +
                        key_tensor, value_tensor = self[layer_idx]
         | 
| 462 | 
            +
                        self.key_cache[layer_idx] = torch.cat([key_tensor, key_states], dim=-2)
         | 
| 463 | 
            +
                        self.value_cache[layer_idx] = torch.cat([value_tensor, value_states], dim=-2)
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                    return self.key_cache[layer_idx], self.value_cache[layer_idx]
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                # According to https://docs.python.org/3/library/exceptions.html#NotImplementedError
         | 
| 468 | 
            +
                # if a method is not supposed to be supported in a subclass we should set it to None
         | 
| 469 | 
            +
                from_legacy_cache = None
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                to_legacy_cache = None
         | 
| 472 | 
            +
             | 
| 473 | 
            +
             | 
| 474 | 
            +
            class SinkCache(Cache):
         | 
| 475 | 
            +
                """
         | 
| 476 | 
            +
                A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
         | 
| 477 | 
            +
                generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
         | 
| 478 | 
            +
                tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
         | 
| 481 | 
            +
                `[batch_size, num_heads, seq_len, head_dim]`.
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                Parameters:
         | 
| 484 | 
            +
                    window_length (`int`):
         | 
| 485 | 
            +
                        The length of the context window.
         | 
| 486 | 
            +
                    num_sink_tokens (`int`):
         | 
| 487 | 
            +
                        The number of sink tokens. See the original paper for more information.
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                Example:
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    ```python
         | 
| 492 | 
            +
                    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                    >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
         | 
| 495 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    >>> # Prepare a cache class and pass it to model's forward
         | 
| 500 | 
            +
                    >>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
         | 
| 501 | 
            +
                    >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
         | 
| 502 | 
            +
                    >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
         | 
| 503 | 
            +
                    ```
         | 
| 504 | 
            +
                """
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                def __init__(self, window_length: int, num_sink_tokens: int) -> None:
         | 
| 507 | 
            +
                    super().__init__()
         | 
| 508 | 
            +
                    self.key_cache: List[torch.Tensor] = []
         | 
| 509 | 
            +
                    self.value_cache: List[torch.Tensor] = []
         | 
| 510 | 
            +
                    self.window_length = window_length
         | 
| 511 | 
            +
                    self.num_sink_tokens = num_sink_tokens
         | 
| 512 | 
            +
                    self.cos_sin_rerotation_cache = {}
         | 
| 513 | 
            +
                    self._cos_cache = None
         | 
| 514 | 
            +
                    self._sin_cache = None
         | 
| 515 | 
            +
                    self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen
         | 
| 516 | 
            +
             | 
| 517 | 
            +
                @staticmethod
         | 
| 518 | 
            +
                def _rotate_half(x):
         | 
| 519 | 
            +
                    x1 = x[..., : x.shape[-1] // 2]
         | 
| 520 | 
            +
                    x2 = x[..., x.shape[-1] // 2 :]
         | 
| 521 | 
            +
                    return torch.cat((-x2, x1), dim=-1)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                def _apply_key_rotary_pos_emb(
         | 
| 524 | 
            +
                    self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
         | 
| 525 | 
            +
                ) -> torch.Tensor:
         | 
| 526 | 
            +
                    rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
         | 
| 527 | 
            +
                    return rotated_key_states
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                def _get_rerotation_cos_sin(
         | 
| 530 | 
            +
                    self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
         | 
| 531 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 532 | 
            +
                    if key_states.shape[-2] not in self.cos_sin_rerotation_cache:
         | 
| 533 | 
            +
                        # Upcast to float32 temporarily for better accuracy
         | 
| 534 | 
            +
                        cos = cos.to(torch.float32)
         | 
| 535 | 
            +
                        sin = sin.to(torch.float32)
         | 
| 536 | 
            +
             | 
| 537 | 
            +
                        # Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
         | 
| 538 | 
            +
                        original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
         | 
| 539 | 
            +
                        shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
         | 
| 540 | 
            +
                        original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
         | 
| 541 | 
            +
                        shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
         | 
| 542 | 
            +
                        rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
         | 
| 543 | 
            +
                        rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                        self.cos_sin_rerotation_cache[key_states.shape[-2]] = (
         | 
| 546 | 
            +
                            rerotation_cos.to(key_states.dtype).unsqueeze(0),
         | 
| 547 | 
            +
                            rerotation_sin.to(key_states.dtype).unsqueeze(0),
         | 
| 548 | 
            +
                        )
         | 
| 549 | 
            +
                    return self.cos_sin_rerotation_cache[key_states.shape[-2]]
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
         | 
| 552 | 
            +
                    """Returns the sequence length of the cached states. A layer index can be optionally passed."""
         | 
| 553 | 
            +
                    # TODO: deprecate this function in favor of `cache_position`
         | 
| 554 | 
            +
                    # Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
         | 
| 555 | 
            +
                    if len(self.key_cache) <= layer_idx:
         | 
| 556 | 
            +
                        return 0
         | 
| 557 | 
            +
                    return self.key_cache[layer_idx].shape[-2]
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                def get_max_length(self) -> Optional[int]:
         | 
| 560 | 
            +
                    """Returns the maximum sequence length of the cached states."""
         | 
| 561 | 
            +
                    return self.window_length
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                def update(
         | 
| 564 | 
            +
                    self,
         | 
| 565 | 
            +
                    key_states: torch.Tensor,
         | 
| 566 | 
            +
                    value_states: torch.Tensor,
         | 
| 567 | 
            +
                    layer_idx: int,
         | 
| 568 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 569 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 570 | 
            +
                    """
         | 
| 571 | 
            +
                    Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                    Parameters:
         | 
| 574 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 575 | 
            +
                            The new key states to cache.
         | 
| 576 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 577 | 
            +
                            The new value states to cache.
         | 
| 578 | 
            +
                        layer_idx (`int`):
         | 
| 579 | 
            +
                            The index of the layer to cache the states for.
         | 
| 580 | 
            +
                        cache_kwargs (`Dict[str, Any]`, `optional`):
         | 
| 581 | 
            +
                            Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
         | 
| 582 | 
            +
                            `cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
         | 
| 583 | 
            +
                            rotation as the tokens are shifted.
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                    Return:
         | 
| 586 | 
            +
                        A tuple containing the updated key and value states.
         | 
| 587 | 
            +
                    """
         | 
| 588 | 
            +
                    # Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
         | 
| 589 | 
            +
                    # with partially rotated position embeddings, like Phi or Persimmon.
         | 
| 590 | 
            +
                    sin = cache_kwargs.get("sin")
         | 
| 591 | 
            +
                    cos = cache_kwargs.get("cos")
         | 
| 592 | 
            +
                    partial_rotation_size = cache_kwargs.get("partial_rotation_size")
         | 
| 593 | 
            +
                    using_rope = cos is not None and sin is not None
         | 
| 594 | 
            +
             | 
| 595 | 
            +
                    # Update the number of seen tokens
         | 
| 596 | 
            +
                    if layer_idx == 0:
         | 
| 597 | 
            +
                        self._seen_tokens += key_states.shape[-2]
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    # Update the sin/cos cache, which holds sin/cos values for all possible positions
         | 
| 600 | 
            +
                    if using_rope and layer_idx == 0:
         | 
| 601 | 
            +
                        # BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
         | 
| 602 | 
            +
                        # after all RoPE models have a llama-like cache utilization.
         | 
| 603 | 
            +
                        if cos.dim() == 2:
         | 
| 604 | 
            +
                            self._cos_cache = cos
         | 
| 605 | 
            +
                            self._sin_cache = sin
         | 
| 606 | 
            +
                        else:
         | 
| 607 | 
            +
                            if self._cos_cache is None:
         | 
| 608 | 
            +
                                self._cos_cache = cos[0, ...]
         | 
| 609 | 
            +
                                self._sin_cache = sin[0, ...]
         | 
| 610 | 
            +
                            elif self._cos_cache.shape[0] < self.window_length:
         | 
| 611 | 
            +
                                self._cos_cache = torch.cat([self._cos_cache, cos[0, ...]], dim=0)
         | 
| 612 | 
            +
                                self._sin_cache = torch.cat([self._sin_cache, sin[0, ...]], dim=0)
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                    # [bsz, num_heads, seq_len, head_dim]
         | 
| 615 | 
            +
                    if len(self.key_cache) <= layer_idx:
         | 
| 616 | 
            +
                        # Empty cache
         | 
| 617 | 
            +
                        self.key_cache.append(key_states)
         | 
| 618 | 
            +
                        self.value_cache.append(value_states)
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
         | 
| 621 | 
            +
                        # Growing cache
         | 
| 622 | 
            +
                        self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
         | 
| 623 | 
            +
                        self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                    else:
         | 
| 626 | 
            +
                        # Shifting cache
         | 
| 627 | 
            +
                        keys_to_keep = self.key_cache[layer_idx][
         | 
| 628 | 
            +
                            :, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
         | 
| 629 | 
            +
                        ]
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                        # On RoPE models, we need to recompute the Key rotation as the tokens are shifted
         | 
| 632 | 
            +
                        if using_rope:
         | 
| 633 | 
            +
                            rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
         | 
| 634 | 
            +
                                key_states, self._cos_cache[: self.window_length], self._sin_cache[: self.window_length]
         | 
| 635 | 
            +
                            )
         | 
| 636 | 
            +
                            if partial_rotation_size is not None:
         | 
| 637 | 
            +
                                keys_to_keep, keys_pass = (
         | 
| 638 | 
            +
                                    keys_to_keep[..., :partial_rotation_size],
         | 
| 639 | 
            +
                                    keys_to_keep[..., partial_rotation_size:],
         | 
| 640 | 
            +
                                )
         | 
| 641 | 
            +
                            keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
         | 
| 642 | 
            +
                            if partial_rotation_size is not None:
         | 
| 643 | 
            +
                                keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                        # Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
         | 
| 646 | 
            +
                        sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
         | 
| 647 | 
            +
                        self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                        sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
         | 
| 650 | 
            +
                        values_to_keep = self.value_cache[layer_idx][
         | 
| 651 | 
            +
                            :, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
         | 
| 652 | 
            +
                        ]
         | 
| 653 | 
            +
                        self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
         | 
| 654 | 
            +
             | 
| 655 | 
            +
                    return self.key_cache[layer_idx], self.value_cache[layer_idx]
         | 
| 656 | 
            +
             | 
| 657 | 
            +
             | 
| 658 | 
            +
            class StaticCache(Cache):
         | 
| 659 | 
            +
                """
         | 
| 660 | 
            +
                Static Cache class to be used with `torch.compile(model)` and `torch.export()`.
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                Parameters:
         | 
| 663 | 
            +
                    config (`PretrainedConfig`):
         | 
| 664 | 
            +
                        The configuration file defining the shape-related attributes required to initialize the static cache.
         | 
| 665 | 
            +
                    max_batch_size (`int`):
         | 
| 666 | 
            +
                        The maximum batch size with which the model will be used.
         | 
| 667 | 
            +
                    max_cache_len (`int`):
         | 
| 668 | 
            +
                        The maximum sequence length with which the model will be used.
         | 
| 669 | 
            +
                    device (`torch.device`):
         | 
| 670 | 
            +
                        The device on which the cache should be initialized. Should be the same as the layer.
         | 
| 671 | 
            +
                    dtype (*optional*, defaults to `torch.float32`):
         | 
| 672 | 
            +
                        The default `dtype` to use when initializing the layer.
         | 
| 673 | 
            +
             | 
| 674 | 
            +
                Example:
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                    ```python
         | 
| 677 | 
            +
                    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
         | 
| 678 | 
            +
             | 
| 679 | 
            +
                    >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
         | 
| 680 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                    >>> # Prepare a cache class and pass it to model's forward
         | 
| 685 | 
            +
                    >>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
         | 
| 686 | 
            +
                    >>> max_generated_length = inputs.input_ids.shape[1] + 10
         | 
| 687 | 
            +
                    >>> past_key_values = StaticCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
         | 
| 688 | 
            +
                    >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
         | 
| 689 | 
            +
                    >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
         | 
| 690 | 
            +
                    ```
         | 
| 691 | 
            +
                """
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
         | 
| 694 | 
            +
                    super().__init__()
         | 
| 695 | 
            +
                    self.max_batch_size = max_batch_size
         | 
| 696 | 
            +
                    self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
         | 
| 697 | 
            +
                    # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
         | 
| 698 | 
            +
                    self.head_dim = (
         | 
| 699 | 
            +
                        config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
         | 
| 700 | 
            +
                    )
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                    self.dtype = dtype if dtype is not None else torch.float32
         | 
| 703 | 
            +
                    self.num_key_value_heads = (
         | 
| 704 | 
            +
                        config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
         | 
| 705 | 
            +
                    )
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                    self.key_cache: List[torch.Tensor] = []
         | 
| 708 | 
            +
                    self.value_cache: List[torch.Tensor] = []
         | 
| 709 | 
            +
                    # Note: There will be significant perf decrease if switching to use 5D tensors instead.
         | 
| 710 | 
            +
                    cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
         | 
| 711 | 
            +
                    for idx in range(config.num_hidden_layers):
         | 
| 712 | 
            +
                        new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
         | 
| 713 | 
            +
                        new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
         | 
| 714 | 
            +
                        # Notes:
         | 
| 715 | 
            +
                        # 1. `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
         | 
| 716 | 
            +
                        #     breaks when updating the cache. It can't be used if the cache code is being compiled (but in that case
         | 
| 717 | 
            +
                        #     it is not needed anyway)
         | 
| 718 | 
            +
                        # 2. `torch.export()` requires mutations to be registered as buffers.
         | 
| 719 | 
            +
                        if not is_torchdynamo_compiling():
         | 
| 720 | 
            +
                            self.register_buffer(f"key_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
         | 
| 721 | 
            +
                            self.register_buffer(f"value_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
         | 
| 722 | 
            +
                            new_layer_key_cache = getattr(self, f"key_cache_{idx}")
         | 
| 723 | 
            +
                            new_layer_value_cache = getattr(self, f"value_cache_{idx}")
         | 
| 724 | 
            +
                            torch._dynamo.mark_static_address(new_layer_key_cache)
         | 
| 725 | 
            +
                            torch._dynamo.mark_static_address(new_layer_value_cache)
         | 
| 726 | 
            +
                        self.key_cache.append(new_layer_key_cache)
         | 
| 727 | 
            +
                        self.value_cache.append(new_layer_value_cache)
         | 
| 728 | 
            +
                    self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen
         | 
| 729 | 
            +
             | 
| 730 | 
            +
                def update(
         | 
| 731 | 
            +
                    self,
         | 
| 732 | 
            +
                    key_states: torch.Tensor,
         | 
| 733 | 
            +
                    value_states: torch.Tensor,
         | 
| 734 | 
            +
                    layer_idx: int,
         | 
| 735 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 736 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 737 | 
            +
                    """
         | 
| 738 | 
            +
                    Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
         | 
| 739 | 
            +
                    It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
         | 
| 740 | 
            +
             | 
| 741 | 
            +
                    Parameters:
         | 
| 742 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 743 | 
            +
                            The new key states to cache.
         | 
| 744 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 745 | 
            +
                            The new value states to cache.
         | 
| 746 | 
            +
                        layer_idx (`int`):
         | 
| 747 | 
            +
                            The index of the layer to cache the states for.
         | 
| 748 | 
            +
                        cache_kwargs (`Dict[str, Any]`, `optional`):
         | 
| 749 | 
            +
                            Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
         | 
| 750 | 
            +
                            to know how where to write in the cache.
         | 
| 751 | 
            +
             | 
| 752 | 
            +
                    Return:
         | 
| 753 | 
            +
                        A tuple containing the updated key and value states.
         | 
| 754 | 
            +
                    """
         | 
| 755 | 
            +
                    # Update the number of seen tokens
         | 
| 756 | 
            +
                    if layer_idx == 0:
         | 
| 757 | 
            +
                        self._seen_tokens += key_states.shape[-2]
         | 
| 758 | 
            +
                    
         | 
| 759 | 
            +
                    cache_position = cache_kwargs.get("cache_position")
         | 
| 760 | 
            +
                    self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
         | 
| 761 | 
            +
                    self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
         | 
| 762 | 
            +
                    k_out = self.key_cache[layer_idx]
         | 
| 763 | 
            +
                    v_out = self.value_cache[layer_idx]
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                    if cache_position is None:
         | 
| 766 | 
            +
                        k_out.copy_(key_states)
         | 
| 767 | 
            +
                        v_out.copy_(value_states)
         | 
| 768 | 
            +
                    else:
         | 
| 769 | 
            +
                        # Note: here we use `tensor.index_copy_(dim, index, tensor)` that is equivalent to
         | 
| 770 | 
            +
                        # `tensor[:, :, index] = tensor`, but the first one is compile-friendly and it does explicitly an in-place
         | 
| 771 | 
            +
                        # operation, that avoids copies and uses less memory.
         | 
| 772 | 
            +
                        try:
         | 
| 773 | 
            +
                            k_out.index_copy_(2, cache_position, key_states)
         | 
| 774 | 
            +
                            v_out.index_copy_(2, cache_position, value_states)
         | 
| 775 | 
            +
                        except NotImplementedError:
         | 
| 776 | 
            +
                            # The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
         | 
| 777 | 
            +
                            k_out[:, :, cache_position] = key_states
         | 
| 778 | 
            +
                            v_out[:, :, cache_position] = value_states
         | 
| 779 | 
            +
             | 
| 780 | 
            +
                    return k_out, v_out
         | 
| 781 | 
            +
             | 
| 782 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
         | 
| 783 | 
            +
                    """Returns the sequence length of the cached states that were seen by the model."""
         | 
| 784 | 
            +
                    # Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
         | 
| 785 | 
            +
                    # limit the check to the first batch member and head dimension.
         | 
| 786 | 
            +
                    # TODO: deprecate this function in favor of `cache_position`
         | 
| 787 | 
            +
                    # return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
         | 
| 788 | 
            +
                    return self._seen_tokens
         | 
| 789 | 
            +
             | 
| 790 | 
            +
                def get_max_length(self) -> Optional[int]:
         | 
| 791 | 
            +
                    """Returns the maximum sequence length of the cached states."""
         | 
| 792 | 
            +
                    return self.max_cache_len
         | 
| 793 | 
            +
             | 
| 794 | 
            +
                def reset(self):
         | 
| 795 | 
            +
                    self._seen_tokens = 0
         | 
| 796 | 
            +
                    """Resets the cache values while preserving the objects"""
         | 
| 797 | 
            +
                    for layer_idx in range(len(self.key_cache)):
         | 
| 798 | 
            +
                        # In-place ops prevent breaking the static address
         | 
| 799 | 
            +
                        self.key_cache[layer_idx].zero_()
         | 
| 800 | 
            +
                        self.value_cache[layer_idx].zero_()
         | 
| 801 | 
            +
             | 
| 802 | 
            +
             | 
| 803 | 
            +
            class SlidingWindowCache(StaticCache):
         | 
| 804 | 
            +
                """
         | 
| 805 | 
            +
                Sliding Window Cache class to be used with `torch.compile` for models like Mistral that support sliding window attention.
         | 
| 806 | 
            +
                Every time when we try to update the cache, we compute the `indices` based on `cache_position >= self.config.sliding_window - 1`,
         | 
| 807 | 
            +
                if true(which means the cache can not hold all the old key value states and new states together because of the sliding window constraint),
         | 
| 808 | 
            +
                we need to do a cycle shift based on `indices` to replace the oldest states by the new key value states passed in.
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                The `to_shift` is only true once we are above sliding_window. Thus with `sliding_window==64`:
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                indices = (slicing + to_shift[-1].int()-1) % self.config.sliding_window
         | 
| 813 | 
            +
                tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
         | 
| 814 | 
            +
                    19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
         | 
| 815 | 
            +
                    37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
         | 
| 816 | 
            +
                    55, 56, 57, 58, 59, 60, 61, 62, 63,  0])
         | 
| 817 | 
            +
             | 
| 818 | 
            +
                We overwrite the cache using these, then we always write at cache_position (clamped to `sliding_window`)
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                Parameters:
         | 
| 821 | 
            +
                    config (`PretrainedConfig`):
         | 
| 822 | 
            +
                        The configuration file defining the shape-related attributes required to initialize the static cache.
         | 
| 823 | 
            +
                    max_batch_size (`int`):
         | 
| 824 | 
            +
                        The maximum batch size with which the model will be used.
         | 
| 825 | 
            +
                    max_cache_len (`int`):
         | 
| 826 | 
            +
                        The maximum sequence length with which the model will be used.
         | 
| 827 | 
            +
                    device (`torch.device`):
         | 
| 828 | 
            +
                        The device on which the cache should be initialized. Should be the same as the layer.
         | 
| 829 | 
            +
                    dtype (*optional*, defaults to `torch.float32`):
         | 
| 830 | 
            +
                        The default `dtype` to use when initializing the layer.
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                Example:
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                    ```python
         | 
| 835 | 
            +
                    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SlidingWindowCache
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
         | 
| 838 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
         | 
| 839 | 
            +
             | 
| 840 | 
            +
                    >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                    >>> # Prepare a cache class and pass it to model's forward
         | 
| 843 | 
            +
                    >>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
         | 
| 844 | 
            +
                    >>> max_generated_length = inputs.input_ids.shape[1] + 10
         | 
| 845 | 
            +
                    >>> past_key_values = SlidingWindowCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
         | 
| 846 | 
            +
                    >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
         | 
| 847 | 
            +
                    >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
         | 
| 848 | 
            +
                    ```
         | 
| 849 | 
            +
                """
         | 
| 850 | 
            +
             | 
| 851 | 
            +
                def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
         | 
| 852 | 
            +
                    super().__init__(config, max_batch_size, max_cache_len, device, dtype)
         | 
| 853 | 
            +
                    if not hasattr(config, "sliding_window") or config.sliding_window is None:
         | 
| 854 | 
            +
                        raise ValueError(
         | 
| 855 | 
            +
                            "Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
         | 
| 856 | 
            +
                            "sliding window attention, please check if there is a `sliding_window` field in the model "
         | 
| 857 | 
            +
                            "config and it's not set to None."
         | 
| 858 | 
            +
                        )
         | 
| 859 | 
            +
                    max_cache_len = min(config.sliding_window, max_cache_len)
         | 
| 860 | 
            +
                    super().__init__(
         | 
| 861 | 
            +
                        config=config, max_batch_size=max_batch_size, max_cache_len=max_cache_len, device=device, dtype=dtype
         | 
| 862 | 
            +
                    )
         | 
| 863 | 
            +
             | 
| 864 | 
            +
                def update(
         | 
| 865 | 
            +
                    self,
         | 
| 866 | 
            +
                    key_states: torch.Tensor,
         | 
| 867 | 
            +
                    value_states: torch.Tensor,
         | 
| 868 | 
            +
                    layer_idx: int,
         | 
| 869 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 870 | 
            +
                ) -> Tuple[torch.Tensor]:
         | 
| 871 | 
            +
                    cache_position = cache_kwargs.get("cache_position")
         | 
| 872 | 
            +
                    k_out = self.key_cache[layer_idx]
         | 
| 873 | 
            +
                    v_out = self.value_cache[layer_idx]
         | 
| 874 | 
            +
             | 
| 875 | 
            +
                    # assume this only happens in prefill phase when prompt length > sliding_window_size (= max_cache_len)
         | 
| 876 | 
            +
                    if cache_position.shape[0] > self.max_cache_len:
         | 
| 877 | 
            +
                        k_out = key_states[:, :, -self.max_cache_len :, :]
         | 
| 878 | 
            +
                        v_out = value_states[:, :, -self.max_cache_len :, :]
         | 
| 879 | 
            +
                        # Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
         | 
| 880 | 
            +
                        self.key_cache[layer_idx] += k_out
         | 
| 881 | 
            +
                        self.value_cache[layer_idx] += v_out
         | 
| 882 | 
            +
                        # we should return the whole states instead of k_out, v_out to take the whole prompt
         | 
| 883 | 
            +
                        # into consideration when building kv cache instead of just throwing away tokens outside of the window
         | 
| 884 | 
            +
                        return key_states, value_states
         | 
| 885 | 
            +
             | 
| 886 | 
            +
                    slicing = torch.ones(self.max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
         | 
| 887 | 
            +
                    cache_position = cache_position.clamp(0, self.max_cache_len - 1)
         | 
| 888 | 
            +
                    to_shift = cache_position >= self.max_cache_len - 1
         | 
| 889 | 
            +
                    indices = (slicing + to_shift[-1].int() - 1) % self.max_cache_len
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                    k_out = k_out[:, :, indices]
         | 
| 892 | 
            +
                    v_out = v_out[:, :, indices]
         | 
| 893 | 
            +
             | 
| 894 | 
            +
                    try:
         | 
| 895 | 
            +
                        cache_position.to(device=k_out.device)
         | 
| 896 | 
            +
                        k_out.index_copy_(2, cache_position, key_states)
         | 
| 897 | 
            +
                        v_out.index_copy_(2, cache_position, value_states)
         | 
| 898 | 
            +
                    except NotImplementedError:
         | 
| 899 | 
            +
                        # The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
         | 
| 900 | 
            +
                        k_out[:, :, cache_position] = key_states
         | 
| 901 | 
            +
                        v_out[:, :, cache_position] = value_states
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    # `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
         | 
| 904 | 
            +
                    self.key_cache[layer_idx].zero_()
         | 
| 905 | 
            +
                    self.value_cache[layer_idx].zero_()
         | 
| 906 | 
            +
             | 
| 907 | 
            +
                    self.key_cache[layer_idx] += k_out
         | 
| 908 | 
            +
                    self.value_cache[layer_idx] += v_out
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                    return k_out, v_out
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                def get_max_length(self) -> Optional[int]:
         | 
| 913 | 
            +
                    # in theory there is no limit because the sliding window size is fixed no matter how long the sentence is
         | 
| 914 | 
            +
                    return None
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                def reset(self):
         | 
| 917 | 
            +
                    for layer_idx in range(len(self.key_cache)):
         | 
| 918 | 
            +
                        # In-place ops prevent breaking the static address
         | 
| 919 | 
            +
                        self.key_cache[layer_idx].zero_()
         | 
| 920 | 
            +
                        self.value_cache[layer_idx].zero_()
         | 
| 921 | 
            +
             | 
| 922 | 
            +
             | 
| 923 | 
            +
            class EncoderDecoderCache(Cache):
         | 
| 924 | 
            +
                """
         | 
| 925 | 
            +
                Base, abstract class for all encoder-decoder caches. Can be used to hold combinations of self-attention and
         | 
| 926 | 
            +
                cross-attention caches.
         | 
| 927 | 
            +
             | 
| 928 | 
            +
                Example:
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                    ```python
         | 
| 931 | 
            +
                    >>> from transformers import AutoProcessor, AutoModelForCausalLM, DynamicCache, EncoderDecoderCache
         | 
| 932 | 
            +
             | 
| 933 | 
            +
                    >>> model = AutoModelForCausalLM.from_pretrained("openai/whisper-small")
         | 
| 934 | 
            +
                    >>> processor = AutoProcessor.from_pretrained("openai/whisper-small")
         | 
| 935 | 
            +
             | 
| 936 | 
            +
                    >>> inputs = processor(audio=YOUR-AUDIO, return_tensors="pt")
         | 
| 937 | 
            +
             | 
| 938 | 
            +
                    >>> # Prepare cache classes for encoder and decoder and pass it to model's forward
         | 
| 939 | 
            +
                    >>> self_attention_cache = DynamicCache()
         | 
| 940 | 
            +
                    >>> cross_attention_cache = DynamicCache()
         | 
| 941 | 
            +
                    >>> past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
         | 
| 942 | 
            +
                    >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
         | 
| 943 | 
            +
                    >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
         | 
| 944 | 
            +
                    ```
         | 
| 945 | 
            +
             | 
| 946 | 
            +
                """
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                def __init__(self, self_attention_cache: Cache, cross_attention_cache: Cache):
         | 
| 949 | 
            +
                    super().__init__()
         | 
| 950 | 
            +
                    self.self_attention_cache = self_attention_cache
         | 
| 951 | 
            +
                    self.cross_attention_cache = cross_attention_cache
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                    self.is_updated = {}
         | 
| 954 | 
            +
                    for layer_idx in range(len(cross_attention_cache.key_cache)):
         | 
| 955 | 
            +
                        self.is_updated[layer_idx] = bool(cross_attention_cache.get_seq_length(layer_idx) > 0)
         | 
| 956 | 
            +
             | 
| 957 | 
            +
                def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
         | 
| 958 | 
            +
                    """
         | 
| 959 | 
            +
                    Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
         | 
| 960 | 
            +
                    sequence length.
         | 
| 961 | 
            +
                    """
         | 
| 962 | 
            +
                    if layer_idx < len(self):
         | 
| 963 | 
            +
                        return (
         | 
| 964 | 
            +
                            self.self_attention_cache.key_cache[layer_idx],
         | 
| 965 | 
            +
                            self.self_attention_cache.value_cache[layer_idx],
         | 
| 966 | 
            +
                            self.cross_attention_cache.key_cache[layer_idx],
         | 
| 967 | 
            +
                            self.cross_attention_cache.value_cache[layer_idx],
         | 
| 968 | 
            +
                        )
         | 
| 969 | 
            +
                    else:
         | 
| 970 | 
            +
                        raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                def __len__(self):
         | 
| 973 | 
            +
                    """
         | 
| 974 | 
            +
                    Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
         | 
| 975 | 
            +
                    to the number of layers in the model.
         | 
| 976 | 
            +
                    """
         | 
| 977 | 
            +
                    return len(self.self_attention_cache)
         | 
| 978 | 
            +
             | 
| 979 | 
            +
                def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
         | 
| 980 | 
            +
                    """Converts the `EncoderDecoderCache` instance into  its equivalent in the legacy cache format."""
         | 
| 981 | 
            +
                    legacy_cache = ()
         | 
| 982 | 
            +
                    if len(self.cross_attention_cache) > 0:
         | 
| 983 | 
            +
                        for self_attn, cross_attn in zip(
         | 
| 984 | 
            +
                            self.self_attention_cache.to_legacy_cache(), self.cross_attention_cache.to_legacy_cache()
         | 
| 985 | 
            +
                        ):
         | 
| 986 | 
            +
                            legacy_cache += (self_attn + cross_attn,)
         | 
| 987 | 
            +
                    else:
         | 
| 988 | 
            +
                        legacy_cache = self.self_attention_cache.to_legacy_cache()
         | 
| 989 | 
            +
                    return legacy_cache
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                @classmethod
         | 
| 992 | 
            +
                def from_legacy_cache(
         | 
| 993 | 
            +
                    cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
         | 
| 994 | 
            +
                ) -> "EncoderDecoderCache":
         | 
| 995 | 
            +
                    """Converts a cache in the legacy cache format into an equivalent `EncoderDecoderCache`."""
         | 
| 996 | 
            +
                    cache = cls(self_attention_cache=DynamicCache(), cross_attention_cache=DynamicCache())
         | 
| 997 | 
            +
                    if past_key_values is not None:
         | 
| 998 | 
            +
                        for layer_idx in range(len(past_key_values)):
         | 
| 999 | 
            +
                            key_states, value_states = past_key_values[layer_idx][:2]
         | 
| 1000 | 
            +
                            cache.self_attention_cache.update(key_states, value_states, layer_idx)
         | 
| 1001 | 
            +
                            if len(past_key_values[layer_idx]) > 2:
         | 
| 1002 | 
            +
                                key_states, value_states = past_key_values[layer_idx][2:]
         | 
| 1003 | 
            +
                                cache.cross_attention_cache.update(key_states, value_states, layer_idx)
         | 
| 1004 | 
            +
                                cache.is_updated[layer_idx] = True
         | 
| 1005 | 
            +
                    return cache
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
         | 
| 1008 | 
            +
                    """Returns the sequence length of the cached states. A layer index can be optionally passed."""
         | 
| 1009 | 
            +
                    if len(self.self_attention_cache.key_cache) <= layer_idx:
         | 
| 1010 | 
            +
                        return 0
         | 
| 1011 | 
            +
                    return (self.self_attention_cache.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
         | 
| 1012 | 
            +
             | 
| 1013 | 
            +
                def reset(self):
         | 
| 1014 | 
            +
                    if hasattr(self.self_attention_cache, "reset"):
         | 
| 1015 | 
            +
                        self.self_attention_cache.reset()
         | 
| 1016 | 
            +
                    if hasattr(self.cross_attention_cache, "reset"):
         | 
| 1017 | 
            +
                        self.cross_attention_cache.reset()
         | 
| 1018 | 
            +
                    elif not hasattr(self.self_attention_cache, "reset") and not hasattr(self.cross_attention_cache, "reset"):
         | 
| 1019 | 
            +
                        raise ValueError(
         | 
| 1020 | 
            +
                            "Neither self nor cross-attention cache have valid `.reset()` methods. `.reset()` should "
         | 
| 1021 | 
            +
                            "only be called on compatible cache classes, such as `StaticCache` or `SlidingWindowCache`. "
         | 
| 1022 | 
            +
                            f"Got {self.self_attention_cache.__str__()} for the self attention cache and "
         | 
| 1023 | 
            +
                            f"{self.cross_attention_cache.__str__()} for the cross attention cache."
         | 
| 1024 | 
            +
                        )
         | 
| 1025 | 
            +
                    for layer_idx in self.is_updated:
         | 
| 1026 | 
            +
                        self.is_updated[layer_idx] = False
         | 
| 1027 | 
            +
             | 
| 1028 | 
            +
                def reorder_cache(self, beam_idx: torch.LongTensor):
         | 
| 1029 | 
            +
                    """Reorders the cache for beam search, given the selected beam indices."""
         | 
| 1030 | 
            +
                    self.self_attention_cache.reorder_cache(beam_idx)
         | 
| 1031 | 
            +
                    self.cross_attention_cache.reorder_cache(beam_idx)
         | 
| 1032 | 
            +
             | 
| 1033 | 
            +
                def check_dynamic_cache(self, method: str):
         | 
| 1034 | 
            +
                    if not (
         | 
| 1035 | 
            +
                        isinstance(self.self_attention_cache, DynamicCache)
         | 
| 1036 | 
            +
                        and isinstance(self.cross_attention_cache, DynamicCache)
         | 
| 1037 | 
            +
                    ):
         | 
| 1038 | 
            +
                        raise ValueError(
         | 
| 1039 | 
            +
                            f"`{method}` is only defined for dynamic cache, got {self.self_attention_cache.__str__()} for the self "
         | 
| 1040 | 
            +
                            f"attention cache and {self.cross_attention_cache.__str__()} for the cross attention cache."
         | 
| 1041 | 
            +
                        )
         | 
| 1042 | 
            +
             | 
| 1043 | 
            +
                # TODO(gante, sanchit-gandhi): move following functionality into `.generate`
         | 
| 1044 | 
            +
                def crop(self, maximum_length: int):
         | 
| 1045 | 
            +
                    """Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be
         | 
| 1046 | 
            +
                    negative to remove `maximum_length` tokens. This is used in assisted decoding and contrastive search."""
         | 
| 1047 | 
            +
                    self.check_dynamic_cache(self.crop.__name__)
         | 
| 1048 | 
            +
                    self.self_attention_cache.crop(maximum_length)
         | 
| 1049 | 
            +
             | 
| 1050 | 
            +
                def batch_split(self, full_batch_size: int, split_size: int) -> "List[EncoderDecoderCache]":
         | 
| 1051 | 
            +
                    """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
         | 
| 1052 | 
            +
                    `_split_model_inputs()` in `generation.utils`"""
         | 
| 1053 | 
            +
                    self.check_dynamic_cache(self.batch_split.__name__)
         | 
| 1054 | 
            +
                    self_attention_cache = self.self_attention_cache.batch_split(full_batch_size, split_size)
         | 
| 1055 | 
            +
                    cross_attention_cache = self.cross_attention_cache.batch_split(full_batch_size, split_size)
         | 
| 1056 | 
            +
             | 
| 1057 | 
            +
                    out = []
         | 
| 1058 | 
            +
                    for self_attn, cross_attn in zip(self_attention_cache, cross_attention_cache):
         | 
| 1059 | 
            +
                        out.append(EncoderDecoderCache(self_attn, cross_attn))
         | 
| 1060 | 
            +
                    return out
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                @classmethod
         | 
| 1063 | 
            +
                def from_batch_splits(cls, splits: List["EncoderDecoderCache"]) -> "EncoderDecoderCache":
         | 
| 1064 | 
            +
                    """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
         | 
| 1065 | 
            +
                    `generation.utils`"""
         | 
| 1066 | 
            +
                    self_attention_cache = DynamicCache()
         | 
| 1067 | 
            +
                    cross_attention_cache = DynamicCache()
         | 
| 1068 | 
            +
                    for idx in range(len(splits[0])):
         | 
| 1069 | 
            +
                        layer_keys = torch.cat([current.self_attention_cache.key_cache[idx] for current in splits], dim=0)
         | 
| 1070 | 
            +
                        layer_values = torch.cat([current.self_attention_cache.value_cache[idx] for current in splits], dim=0)
         | 
| 1071 | 
            +
                        self_attention_cache.update(layer_keys, layer_values, idx)
         | 
| 1072 | 
            +
             | 
| 1073 | 
            +
                        layer_keys = torch.cat([current.cross_attention_cache.key_cache[idx] for current in splits], dim=0)
         | 
| 1074 | 
            +
                        layer_values = torch.cat([current.cross_attention_cache.value_cache[idx] for current in splits], dim=0)
         | 
| 1075 | 
            +
                        cross_attention_cache.update(layer_keys, layer_values, idx)
         | 
| 1076 | 
            +
                    return cls(self_attention_cache, cross_attention_cache)
         | 
| 1077 | 
            +
             | 
| 1078 | 
            +
                def batch_repeat_interleave(self, repeats: int):
         | 
| 1079 | 
            +
                    """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
         | 
| 1080 | 
            +
                    self.check_dynamic_cache(self.batch_repeat_interleave.__name__)
         | 
| 1081 | 
            +
                    self.self_attention_cache.batch_repeat_interleave(repeats)
         | 
| 1082 | 
            +
                    self.cross_attention_cache.batch_repeat_interleave(repeats)
         | 
| 1083 | 
            +
             | 
| 1084 | 
            +
                def batch_select_indices(self, indices: torch.Tensor):
         | 
| 1085 | 
            +
                    """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
         | 
| 1086 | 
            +
                    self.check_dynamic_cache(self.batch_select_indices.__name__)
         | 
| 1087 | 
            +
                    self.self_attention_cache.batch_select_indices(indices)
         | 
| 1088 | 
            +
                    self.cross_attention_cache.batch_select_indices(indices)
         | 
| 1089 | 
            +
             | 
| 1090 | 
            +
             | 
| 1091 | 
            +
            class HybridCache(Cache):
         | 
| 1092 | 
            +
                """
         | 
| 1093 | 
            +
                Hybrid Cache class to be used with `torch.compile` for Gemma2 models that alternate between a local sliding window attention
         | 
| 1094 | 
            +
                and global attention in every other layer. Under the hood, Hybrid Cache leverages ["SlidingWindowCache"] for sliding window attention
         | 
| 1095 | 
            +
                and ["StaticCache"] for global attention. For more information, see the documentation of each subcomponeent cache class.
         | 
| 1096 | 
            +
             | 
| 1097 | 
            +
                Parameters:
         | 
| 1098 | 
            +
                    config (`PretrainedConfig):
         | 
| 1099 | 
            +
                        The configuration file defining the shape-related attributes required to initialize the static cache.
         | 
| 1100 | 
            +
                    max_batch_size (`int`):
         | 
| 1101 | 
            +
                        The maximum batch size with which the model will be used.
         | 
| 1102 | 
            +
                    max_cache_len (`int`):
         | 
| 1103 | 
            +
                        The maximum sequence length with which the model will be used.
         | 
| 1104 | 
            +
                    device (`torch.device`, *optional*, defaults to `"cpu"`):
         | 
| 1105 | 
            +
                        The device on which the cache should be initialized. Should be the same as the layer.
         | 
| 1106 | 
            +
                    dtype (*optional*, defaults to `torch.float32`):
         | 
| 1107 | 
            +
                        The default `dtype` to use when initializing the layer.
         | 
| 1108 | 
            +
             | 
| 1109 | 
            +
                Example:
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
                    ```python
         | 
| 1112 | 
            +
                    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
         | 
| 1113 | 
            +
             | 
| 1114 | 
            +
                    >>> model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b")
         | 
| 1115 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
                    >>> inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
         | 
| 1118 | 
            +
             | 
| 1119 | 
            +
                    >>> # Prepare a cache class and pass it to model's forward
         | 
| 1120 | 
            +
                    >>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
         | 
| 1121 | 
            +
                    >>> max_generated_length = inputs.input_ids.shape[1] + 10
         | 
| 1122 | 
            +
                    >>> past_key_values = HybridCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
         | 
| 1123 | 
            +
                    >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
         | 
| 1124 | 
            +
                    >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
         | 
| 1125 | 
            +
                    ```
         | 
| 1126 | 
            +
                """
         | 
| 1127 | 
            +
             | 
| 1128 | 
            +
                def __init__(self, config: PretrainedConfig, max_batch_size, max_cache_len, device="cpu", dtype=None) -> None:
         | 
| 1129 | 
            +
                    super().__init__()
         | 
| 1130 | 
            +
                    if not hasattr(config, "sliding_window") or config.sliding_window is None:
         | 
| 1131 | 
            +
                        raise ValueError(
         | 
| 1132 | 
            +
                            "Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
         | 
| 1133 | 
            +
                            "sliding window attention, please check if there is a `sliding_window` field in the model "
         | 
| 1134 | 
            +
                            "config and it's not set to None."
         | 
| 1135 | 
            +
                        )
         | 
| 1136 | 
            +
                    self.max_cache_len = max_cache_len
         | 
| 1137 | 
            +
                    self.max_batch_size = max_batch_size
         | 
| 1138 | 
            +
                    # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
         | 
| 1139 | 
            +
                    self.head_dim = (
         | 
| 1140 | 
            +
                        config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
         | 
| 1141 | 
            +
                    )
         | 
| 1142 | 
            +
             | 
| 1143 | 
            +
                    self.dtype = dtype if dtype is not None else torch.float32
         | 
| 1144 | 
            +
                    self.num_key_value_heads = (
         | 
| 1145 | 
            +
                        config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
         | 
| 1146 | 
            +
                    )
         | 
| 1147 | 
            +
                    self.is_sliding = torch.tensor(
         | 
| 1148 | 
            +
                        [not bool(i % 2) for i in range(config.num_hidden_layers)], dtype=torch.bool, device=device
         | 
| 1149 | 
            +
                    )
         | 
| 1150 | 
            +
                    self.key_cache: List[torch.Tensor] = []
         | 
| 1151 | 
            +
                    self.value_cache: List[torch.Tensor] = []
         | 
| 1152 | 
            +
                    global_cache_shape = (max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
         | 
| 1153 | 
            +
                    sliding_cache_shape = (
         | 
| 1154 | 
            +
                        max_batch_size,
         | 
| 1155 | 
            +
                        self.num_key_value_heads,
         | 
| 1156 | 
            +
                        min(config.sliding_window, max_cache_len),
         | 
| 1157 | 
            +
                        self.head_dim,
         | 
| 1158 | 
            +
                    )
         | 
| 1159 | 
            +
                    for i in range(config.num_hidden_layers):
         | 
| 1160 | 
            +
                        # Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
         | 
| 1161 | 
            +
                        # breaks when updating the cache.
         | 
| 1162 | 
            +
                        cache_shape = global_cache_shape if not self.is_sliding[i] else sliding_cache_shape
         | 
| 1163 | 
            +
                        new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
         | 
| 1164 | 
            +
                        new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
         | 
| 1165 | 
            +
                        torch._dynamo.mark_static_address(new_layer_key_cache)
         | 
| 1166 | 
            +
                        torch._dynamo.mark_static_address(new_layer_value_cache)
         | 
| 1167 | 
            +
                        self.key_cache.append(new_layer_key_cache)
         | 
| 1168 | 
            +
                        self.value_cache.append(new_layer_value_cache)
         | 
| 1169 | 
            +
             | 
| 1170 | 
            +
                def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
         | 
| 1171 | 
            +
                    if cache_position.shape[0] > max_cache_len:
         | 
| 1172 | 
            +
                        k_out = key_states[:, :, -max_cache_len:, :]
         | 
| 1173 | 
            +
                        v_out = value_states[:, :, -max_cache_len:, :]
         | 
| 1174 | 
            +
                        # Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
         | 
| 1175 | 
            +
                        self.key_cache[layer_idx] += k_out
         | 
| 1176 | 
            +
                        self.value_cache[layer_idx] += v_out
         | 
| 1177 | 
            +
                        # we should return the whole states instead of k_out, v_out to take the whole prompt
         | 
| 1178 | 
            +
                        # into consideration when building kv cache instead of just throwing away tokens outside of the window
         | 
| 1179 | 
            +
                        return key_states, value_states
         | 
| 1180 | 
            +
             | 
| 1181 | 
            +
                    slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
         | 
| 1182 | 
            +
                    cache_position = cache_position.clamp(0, max_cache_len - 1)
         | 
| 1183 | 
            +
                    to_shift = cache_position >= max_cache_len - 1
         | 
| 1184 | 
            +
                    indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
         | 
| 1185 | 
            +
                    k_out = k_out[:, :, indices]
         | 
| 1186 | 
            +
                    v_out = v_out[:, :, indices]
         | 
| 1187 | 
            +
             | 
| 1188 | 
            +
                    k_out[:, :, cache_position] = key_states
         | 
| 1189 | 
            +
                    v_out[:, :, cache_position] = value_states
         | 
| 1190 | 
            +
                    # `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
         | 
| 1191 | 
            +
                    self.key_cache[layer_idx].zero_()
         | 
| 1192 | 
            +
                    self.value_cache[layer_idx].zero_()
         | 
| 1193 | 
            +
             | 
| 1194 | 
            +
                    self.key_cache[layer_idx] += k_out
         | 
| 1195 | 
            +
                    self.value_cache[layer_idx] += v_out
         | 
| 1196 | 
            +
                    return k_out, v_out
         | 
| 1197 | 
            +
             | 
| 1198 | 
            +
                def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
         | 
| 1199 | 
            +
                    k_out[:, :, cache_position] = key_states
         | 
| 1200 | 
            +
                    v_out[:, :, cache_position] = value_states
         | 
| 1201 | 
            +
             | 
| 1202 | 
            +
                    self.key_cache[layer_idx] = k_out
         | 
| 1203 | 
            +
                    self.value_cache[layer_idx] = v_out
         | 
| 1204 | 
            +
                    return k_out, v_out
         | 
| 1205 | 
            +
             | 
| 1206 | 
            +
                def update(
         | 
| 1207 | 
            +
                    self,
         | 
| 1208 | 
            +
                    key_states: torch.Tensor,
         | 
| 1209 | 
            +
                    value_states: torch.Tensor,
         | 
| 1210 | 
            +
                    layer_idx: int,
         | 
| 1211 | 
            +
                    cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 1212 | 
            +
                ) -> Tuple[torch.Tensor]:
         | 
| 1213 | 
            +
                    cache_position = cache_kwargs.get("cache_position")
         | 
| 1214 | 
            +
                    sliding_window = cache_kwargs.get("sliding_window")
         | 
| 1215 | 
            +
                    self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
         | 
| 1216 | 
            +
                    self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
         | 
| 1217 | 
            +
                    k_out = self.key_cache[layer_idx]
         | 
| 1218 | 
            +
                    v_out = self.value_cache[layer_idx]
         | 
| 1219 | 
            +
                    if sliding_window:
         | 
| 1220 | 
            +
                        update_fn = self._sliding_update
         | 
| 1221 | 
            +
                    else:
         | 
| 1222 | 
            +
                        update_fn = self._static_update
         | 
| 1223 | 
            +
             | 
| 1224 | 
            +
                    return update_fn(
         | 
| 1225 | 
            +
                        cache_position,
         | 
| 1226 | 
            +
                        layer_idx,
         | 
| 1227 | 
            +
                        key_states,
         | 
| 1228 | 
            +
                        value_states,
         | 
| 1229 | 
            +
                        k_out,
         | 
| 1230 | 
            +
                        v_out,
         | 
| 1231 | 
            +
                        k_out.shape[2],
         | 
| 1232 | 
            +
                    )
         | 
| 1233 | 
            +
             | 
| 1234 | 
            +
                def get_max_length(self) -> Optional[int]:
         | 
| 1235 | 
            +
                    # in theory there is no limit because the sliding window size is fixed
         | 
| 1236 | 
            +
                    # no matter how long the sentence is
         | 
| 1237 | 
            +
                    return self.max_cache_len
         | 
| 1238 | 
            +
             | 
| 1239 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0):
         | 
| 1240 | 
            +
                    return None
         | 
| 1241 | 
            +
             | 
| 1242 | 
            +
                def reset(self):
         | 
| 1243 | 
            +
                    """Resets the cache values while preserving the objects"""
         | 
| 1244 | 
            +
                    for layer_idx in range(len(self.key_cache)):
         | 
| 1245 | 
            +
                        # In-place ops prevent breaking the static address
         | 
| 1246 | 
            +
                        self.key_cache[layer_idx].zero_()
         | 
| 1247 | 
            +
                        self.value_cache[layer_idx].zero_()
         | 
| 1248 | 
            +
             | 
| 1249 | 
            +
             | 
| 1250 | 
            +
            class MambaCache:
         | 
| 1251 | 
            +
                """
         | 
| 1252 | 
            +
                Cache for mamba model which does not have attention mechanism and key value states.
         | 
| 1253 | 
            +
             | 
| 1254 | 
            +
                Arguments:
         | 
| 1255 | 
            +
                    config (`PretrainedConfig):
         | 
| 1256 | 
            +
                        The configuration file defining the shape-related attributes required to initialize the static cache.
         | 
| 1257 | 
            +
                    max_batch_size (`int`):
         | 
| 1258 | 
            +
                        The maximum batch size with which the model will be used.
         | 
| 1259 | 
            +
                    dtype (*optional*, defaults to `torch.float16`):
         | 
| 1260 | 
            +
                        The default `dtype` to use when initializing the layer.
         | 
| 1261 | 
            +
                    device (`torch.device`, *optional*):
         | 
| 1262 | 
            +
                        The device on which the cache should be initialized. Should be the same as the layer.
         | 
| 1263 | 
            +
             | 
| 1264 | 
            +
                Attributes:
         | 
| 1265 | 
            +
                    dtype: (`torch.dtype`):
         | 
| 1266 | 
            +
                        The default `dtype` used to initializing the cache.
         | 
| 1267 | 
            +
                    intermediate_size: (`int`):
         | 
| 1268 | 
            +
                        Model's intermediate_size taken from config.
         | 
| 1269 | 
            +
                    ssm_state_size: (`int`):
         | 
| 1270 | 
            +
                        Model's state_size taken from config.
         | 
| 1271 | 
            +
                    conv_kernel_size: (`int`):
         | 
| 1272 | 
            +
                        Model's convolution kernel size taken from config
         | 
| 1273 | 
            +
                    conv_states: (`torch.Tensor`):
         | 
| 1274 | 
            +
                        A tensor of shape `[layer_idx, batch_size, intermediate_size, conv_kernel_size]` that holds convolutional states.
         | 
| 1275 | 
            +
                    ssm_states: (`torch.Tensor`):
         | 
| 1276 | 
            +
                        A tensor of shape `[layer_idx, batch_size, intermediate_size, ssm_state_size]` that holds ssm states
         | 
| 1277 | 
            +
             | 
| 1278 | 
            +
                Example:
         | 
| 1279 | 
            +
             | 
| 1280 | 
            +
                    ```python
         | 
| 1281 | 
            +
                    >>> from transformers import AutoTokenizer, MambaForCausalLM, MambaCache
         | 
| 1282 | 
            +
             | 
| 1283 | 
            +
                    >>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
         | 
| 1284 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
         | 
| 1285 | 
            +
             | 
| 1286 | 
            +
                    >>> inputs = tokenizer(text="My name is Mamba", return_tensors="pt")
         | 
| 1287 | 
            +
             | 
| 1288 | 
            +
                    >>> # Prepare a cache class and pass it to model's forward
         | 
| 1289 | 
            +
                    >>> past_key_values = MambaCache(config=model.config, max_batch_size=1, device=model.device, dtype=model.dtype)
         | 
| 1290 | 
            +
                    >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
         | 
| 1291 | 
            +
                    >>> past_kv = outputs.past_key_values
         | 
| 1292 | 
            +
                    ```
         | 
| 1293 | 
            +
                """
         | 
| 1294 | 
            +
             | 
| 1295 | 
            +
                def __init__(
         | 
| 1296 | 
            +
                    self,
         | 
| 1297 | 
            +
                    config: PretrainedConfig,
         | 
| 1298 | 
            +
                    max_batch_size: int,
         | 
| 1299 | 
            +
                    dtype: torch.dtype = torch.float16,
         | 
| 1300 | 
            +
                    device: Optional[str] = None,
         | 
| 1301 | 
            +
                    **kwargs,
         | 
| 1302 | 
            +
                ):
         | 
| 1303 | 
            +
                    self.dtype = dtype
         | 
| 1304 | 
            +
                    self.max_batch_size = max_batch_size
         | 
| 1305 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 1306 | 
            +
                    self.ssm_state_size = config.state_size
         | 
| 1307 | 
            +
                    self.conv_kernel_size = config.conv_kernel
         | 
| 1308 | 
            +
             | 
| 1309 | 
            +
                    self.conv_states: torch.Tensor = torch.zeros(
         | 
| 1310 | 
            +
                        config.num_hidden_layers,
         | 
| 1311 | 
            +
                        self.max_batch_size,
         | 
| 1312 | 
            +
                        self.intermediate_size,
         | 
| 1313 | 
            +
                        self.conv_kernel_size,
         | 
| 1314 | 
            +
                        device=device,
         | 
| 1315 | 
            +
                        dtype=dtype,
         | 
| 1316 | 
            +
                    )
         | 
| 1317 | 
            +
                    self.ssm_states: torch.Tensor = torch.zeros(
         | 
| 1318 | 
            +
                        config.num_hidden_layers,
         | 
| 1319 | 
            +
                        self.max_batch_size,
         | 
| 1320 | 
            +
                        self.intermediate_size,
         | 
| 1321 | 
            +
                        self.ssm_state_size,
         | 
| 1322 | 
            +
                        device=device,
         | 
| 1323 | 
            +
                        dtype=dtype,
         | 
| 1324 | 
            +
                    )
         | 
| 1325 | 
            +
             | 
| 1326 | 
            +
                    torch._dynamo.mark_static_address(self.conv_states)
         | 
| 1327 | 
            +
                    torch._dynamo.mark_static_address(self.ssm_states)
         | 
| 1328 | 
            +
             | 
| 1329 | 
            +
                def update_conv_state(
         | 
| 1330 | 
            +
                    self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
         | 
| 1331 | 
            +
                ) -> torch.Tensor:
         | 
| 1332 | 
            +
                    conv_state = self.conv_states[layer_idx]
         | 
| 1333 | 
            +
                    cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
         | 
| 1334 | 
            +
             | 
| 1335 | 
            +
                    conv_state = conv_state.roll(shifts=-1, dims=-1)
         | 
| 1336 | 
            +
                    conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
         | 
| 1337 | 
            +
                    self.conv_states[layer_idx].zero_()
         | 
| 1338 | 
            +
                    self.conv_states[layer_idx] += conv_state
         | 
| 1339 | 
            +
                    return self.conv_states[layer_idx]
         | 
| 1340 | 
            +
             | 
| 1341 | 
            +
                def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
         | 
| 1342 | 
            +
                    self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
         | 
| 1343 | 
            +
                    return self.ssm_states[layer_idx]
         | 
| 1344 | 
            +
             | 
| 1345 | 
            +
                def reset(self):
         | 
| 1346 | 
            +
                    self.conv_states.zero_()
         | 
| 1347 | 
            +
                    self.ssm_states.zero_()
         | 
    	
        transformers_4_44_2__configuration_llama.py
    ADDED
    
    | @@ -0,0 +1,203 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """LLaMA model configuration"""
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 23 | 
            +
            from .transformers_4_44_2__modeling_rope_utils import rope_config_validation
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class LlamaConfig(PretrainedConfig):
         | 
| 27 | 
            +
                r"""
         | 
| 28 | 
            +
                This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
         | 
| 29 | 
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         | 
| 30 | 
            +
                defaults will yield a similar configuration to that of the LLaMA-7B.
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 33 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
                Args:
         | 
| 37 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 38 | 
            +
                        Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
         | 
| 39 | 
            +
                        `inputs_ids` passed when calling [`LlamaModel`]
         | 
| 40 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 41 | 
            +
                        Dimension of the hidden representations.
         | 
| 42 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 43 | 
            +
                        Dimension of the MLP representations.
         | 
| 44 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 45 | 
            +
                        Number of hidden layers in the Transformer decoder.
         | 
| 46 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 47 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 48 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 49 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 50 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 51 | 
            +
                        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 52 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 53 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 54 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 55 | 
            +
                        `num_attention_heads`.
         | 
| 56 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 57 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 58 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 59 | 
            +
                        The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
         | 
| 60 | 
            +
                        Llama 2 up to 4096, CodeLlama up to 16384.
         | 
| 61 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 62 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 63 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         | 
| 64 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 65 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 66 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 67 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 68 | 
            +
                    pad_token_id (`int`, *optional*):
         | 
| 69 | 
            +
                        Padding token id.
         | 
| 70 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 71 | 
            +
                        Beginning of stream token id.
         | 
| 72 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 73 | 
            +
                        End of stream token id.
         | 
| 74 | 
            +
                    pretraining_tp (`int`, *optional*, defaults to 1):
         | 
| 75 | 
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         | 
| 76 | 
            +
                        document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
         | 
| 77 | 
            +
                        understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
         | 
| 78 | 
            +
                        results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
         | 
| 79 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 80 | 
            +
                        Whether to tie weight embeddings
         | 
| 81 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 82 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 83 | 
            +
                    rope_scaling (`Dict`, *optional*):
         | 
| 84 | 
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
         | 
| 85 | 
            +
                        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
         | 
| 86 | 
            +
                        accordingly.
         | 
| 87 | 
            +
                        Expected contents:
         | 
| 88 | 
            +
                            `rope_type` (`str`):
         | 
| 89 | 
            +
                                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
         | 
| 90 | 
            +
                                'llama3'], with 'default' being the original RoPE implementation.
         | 
| 91 | 
            +
                            `factor` (`float`, *optional*):
         | 
| 92 | 
            +
                                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
         | 
| 93 | 
            +
                                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
         | 
| 94 | 
            +
                                original maximum pre-trained length.
         | 
| 95 | 
            +
                            `original_max_position_embeddings` (`int`, *optional*):
         | 
| 96 | 
            +
                                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
         | 
| 97 | 
            +
                                pretraining.
         | 
| 98 | 
            +
                            `attention_factor` (`float`, *optional*):
         | 
| 99 | 
            +
                                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
         | 
| 100 | 
            +
                                computation. If unspecified, it defaults to value recommended by the implementation, using the
         | 
| 101 | 
            +
                                `factor` field to infer the suggested value.
         | 
| 102 | 
            +
                            `beta_fast` (`float`, *optional*):
         | 
| 103 | 
            +
                                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
         | 
| 104 | 
            +
                                ramp function. If unspecified, it defaults to 32.
         | 
| 105 | 
            +
                            `beta_slow` (`float`, *optional*):
         | 
| 106 | 
            +
                                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
         | 
| 107 | 
            +
                                ramp function. If unspecified, it defaults to 1.
         | 
| 108 | 
            +
                            `short_factor` (`List[float]`, *optional*):
         | 
| 109 | 
            +
                                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
         | 
| 110 | 
            +
                                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
         | 
| 111 | 
            +
                                size divided by the number of attention heads divided by 2
         | 
| 112 | 
            +
                            `long_factor` (`List[float]`, *optional*):
         | 
| 113 | 
            +
                                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
         | 
| 114 | 
            +
                                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
         | 
| 115 | 
            +
                                size divided by the number of attention heads divided by 2
         | 
| 116 | 
            +
                            `low_freq_factor` (`float`, *optional*):
         | 
| 117 | 
            +
                                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
         | 
| 118 | 
            +
                            `high_freq_factor` (`float`, *optional*):
         | 
| 119 | 
            +
                                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
         | 
| 120 | 
            +
                    attention_bias (`bool`, *optional*, defaults to `False`):
         | 
| 121 | 
            +
                        Whether to use a bias in the query, key, value and output projection layers during self-attention.
         | 
| 122 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 123 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 124 | 
            +
                    mlp_bias (`bool`, *optional*, defaults to `False`):
         | 
| 125 | 
            +
                        Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                ```python
         | 
| 128 | 
            +
                >>> from transformers import LlamaModel, LlamaConfig
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                >>> # Initializing a LLaMA llama-7b style configuration
         | 
| 131 | 
            +
                >>> configuration = LlamaConfig()
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                >>> # Initializing a model from the llama-7b style configuration
         | 
| 134 | 
            +
                >>> model = LlamaModel(configuration)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                >>> # Accessing the model configuration
         | 
| 137 | 
            +
                >>> configuration = model.config
         | 
| 138 | 
            +
                ```"""
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                model_type = "llama"
         | 
| 141 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                def __init__(
         | 
| 144 | 
            +
                    self,
         | 
| 145 | 
            +
                    vocab_size=32000,
         | 
| 146 | 
            +
                    hidden_size=4096,
         | 
| 147 | 
            +
                    intermediate_size=11008,
         | 
| 148 | 
            +
                    num_hidden_layers=32,
         | 
| 149 | 
            +
                    num_attention_heads=32,
         | 
| 150 | 
            +
                    num_key_value_heads=None,
         | 
| 151 | 
            +
                    hidden_act="silu",
         | 
| 152 | 
            +
                    max_position_embeddings=2048,
         | 
| 153 | 
            +
                    initializer_range=0.02,
         | 
| 154 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 155 | 
            +
                    use_cache=True,
         | 
| 156 | 
            +
                    pad_token_id=None,
         | 
| 157 | 
            +
                    bos_token_id=1,
         | 
| 158 | 
            +
                    eos_token_id=2,
         | 
| 159 | 
            +
                    pretraining_tp=1,
         | 
| 160 | 
            +
                    tie_word_embeddings=False,
         | 
| 161 | 
            +
                    rope_theta=10000.0,
         | 
| 162 | 
            +
                    rope_scaling=None,
         | 
| 163 | 
            +
                    attention_bias=False,
         | 
| 164 | 
            +
                    attention_dropout=0.0,
         | 
| 165 | 
            +
                    mlp_bias=False,
         | 
| 166 | 
            +
                    **kwargs,
         | 
| 167 | 
            +
                ):
         | 
| 168 | 
            +
                    self.vocab_size = vocab_size
         | 
| 169 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 170 | 
            +
                    self.hidden_size = hidden_size
         | 
| 171 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 172 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 173 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    # for backward compatibility
         | 
| 176 | 
            +
                    if num_key_value_heads is None:
         | 
| 177 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 180 | 
            +
                    self.hidden_act = hidden_act
         | 
| 181 | 
            +
                    self.initializer_range = initializer_range
         | 
| 182 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 183 | 
            +
                    self.pretraining_tp = pretraining_tp
         | 
| 184 | 
            +
                    self.use_cache = use_cache
         | 
| 185 | 
            +
                    self.rope_theta = rope_theta
         | 
| 186 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 187 | 
            +
                    self.attention_bias = attention_bias
         | 
| 188 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 189 | 
            +
                    self.mlp_bias = mlp_bias
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    # Validate the correctness of rotary position embeddings parameters
         | 
| 192 | 
            +
                    # BC: if there is a 'type' field, move it to 'rope_type'.
         | 
| 193 | 
            +
                    if self.rope_scaling is not None and "type" in self.rope_scaling:
         | 
| 194 | 
            +
                        self.rope_scaling["rope_type"] = self.rope_scaling["type"]
         | 
| 195 | 
            +
                    rope_config_validation(self)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    super().__init__(
         | 
| 198 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 199 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 200 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 201 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 202 | 
            +
                        **kwargs,
         | 
| 203 | 
            +
                    )
         | 
    	
        transformers_4_44_2__modeling_attn_mask_utils.py
    ADDED
    
    | @@ -0,0 +1,482 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from dataclasses import dataclass
         | 
| 15 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            @dataclass
         | 
| 21 | 
            +
            class AttentionMaskConverter:
         | 
| 22 | 
            +
                """
         | 
| 23 | 
            +
                A utility attention mask class that allows one to:
         | 
| 24 | 
            +
                    - Create a causal 4d mask
         | 
| 25 | 
            +
                    - Create a causal 4d mask with slided window
         | 
| 26 | 
            +
                    - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
         | 
| 27 | 
            +
                      key_value_length) that can be multiplied with attention scores
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                Examples:
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                ```python
         | 
| 32 | 
            +
                >>> import torch
         | 
| 33 | 
            +
                >>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                >>> converter = AttentionMaskConverter(True)
         | 
| 36 | 
            +
                >>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
         | 
| 37 | 
            +
                tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
         | 
| 38 | 
            +
                        [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
         | 
| 39 | 
            +
                        [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
         | 
| 40 | 
            +
                        [-3.4028e+38, -3.4028e+38, -3.4028e+38,  0.0000e+00, -3.4028e+38],
         | 
| 41 | 
            +
                        [-3.4028e+38, -3.4028e+38, -3.4028e+38,  0.0000e+00,  0.0000e+00]]]])
         | 
| 42 | 
            +
                ```
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                Parameters:
         | 
| 45 | 
            +
                    is_causal (`bool`):
         | 
| 46 | 
            +
                        Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    sliding_window (`int`, *optional*):
         | 
| 49 | 
            +
                        Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
         | 
| 50 | 
            +
                """
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                is_causal: bool
         | 
| 53 | 
            +
                sliding_window: int
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
         | 
| 56 | 
            +
                    self.is_causal = is_causal
         | 
| 57 | 
            +
                    self.sliding_window = sliding_window
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    if self.sliding_window is not None and self.sliding_window <= 0:
         | 
| 60 | 
            +
                        raise ValueError(
         | 
| 61 | 
            +
                            f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
         | 
| 62 | 
            +
                        )
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                def to_causal_4d(
         | 
| 65 | 
            +
                    self,
         | 
| 66 | 
            +
                    batch_size: int,
         | 
| 67 | 
            +
                    query_length: int,
         | 
| 68 | 
            +
                    key_value_length: int,
         | 
| 69 | 
            +
                    dtype: torch.dtype,
         | 
| 70 | 
            +
                    device: Union[torch.device, "str"] = "cpu",
         | 
| 71 | 
            +
                ) -> Optional[torch.Tensor]:
         | 
| 72 | 
            +
                    """
         | 
| 73 | 
            +
                    Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
         | 
| 74 | 
            +
                    bias to upper right hand triangular matrix (causal mask).
         | 
| 75 | 
            +
                    """
         | 
| 76 | 
            +
                    if not self.is_causal:
         | 
| 77 | 
            +
                        raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    # If shape is not cached, create a new causal mask and cache it
         | 
| 80 | 
            +
                    input_shape = (batch_size, query_length)
         | 
| 81 | 
            +
                    past_key_values_length = key_value_length - query_length
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    # create causal mask
         | 
| 84 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 85 | 
            +
                    causal_4d_mask = None
         | 
| 86 | 
            +
                    if input_shape[-1] > 1 or self.sliding_window is not None:
         | 
| 87 | 
            +
                        causal_4d_mask = self._make_causal_mask(
         | 
| 88 | 
            +
                            input_shape,
         | 
| 89 | 
            +
                            dtype,
         | 
| 90 | 
            +
                            device=device,
         | 
| 91 | 
            +
                            past_key_values_length=past_key_values_length,
         | 
| 92 | 
            +
                            sliding_window=self.sliding_window,
         | 
| 93 | 
            +
                        )
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    return causal_4d_mask
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                def to_4d(
         | 
| 98 | 
            +
                    self,
         | 
| 99 | 
            +
                    attention_mask_2d: torch.Tensor,
         | 
| 100 | 
            +
                    query_length: int,
         | 
| 101 | 
            +
                    dtype: torch.dtype,
         | 
| 102 | 
            +
                    key_value_length: Optional[int] = None,
         | 
| 103 | 
            +
                ) -> torch.Tensor:
         | 
| 104 | 
            +
                    """
         | 
| 105 | 
            +
                    Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
         | 
| 106 | 
            +
                    key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
         | 
| 107 | 
            +
                    causal, a causal mask will be added.
         | 
| 108 | 
            +
                    """
         | 
| 109 | 
            +
                    input_shape = (attention_mask_2d.shape[0], query_length)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    # create causal mask
         | 
| 112 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 113 | 
            +
                    causal_4d_mask = None
         | 
| 114 | 
            +
                    if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
         | 
| 115 | 
            +
                        if key_value_length is None:
         | 
| 116 | 
            +
                            raise ValueError(
         | 
| 117 | 
            +
                                "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
         | 
| 118 | 
            +
                            )
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                        past_key_values_length = key_value_length - query_length
         | 
| 121 | 
            +
                        causal_4d_mask = self._make_causal_mask(
         | 
| 122 | 
            +
                            input_shape,
         | 
| 123 | 
            +
                            dtype,
         | 
| 124 | 
            +
                            device=attention_mask_2d.device,
         | 
| 125 | 
            +
                            past_key_values_length=past_key_values_length,
         | 
| 126 | 
            +
                            sliding_window=self.sliding_window,
         | 
| 127 | 
            +
                        )
         | 
| 128 | 
            +
                    elif self.sliding_window is not None:
         | 
| 129 | 
            +
                        raise NotImplementedError("Sliding window is currently only implemented for causal masking")
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 132 | 
            +
                    expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
         | 
| 133 | 
            +
                        attention_mask_2d.device
         | 
| 134 | 
            +
                    )
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    if causal_4d_mask is not None:
         | 
| 137 | 
            +
                        expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    # expanded_attn_mask + causal_4d_mask can cause some overflow
         | 
| 140 | 
            +
                    expanded_4d_mask = expanded_attn_mask
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    return expanded_4d_mask
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                @staticmethod
         | 
| 145 | 
            +
                def _make_causal_mask(
         | 
| 146 | 
            +
                    input_ids_shape: torch.Size,
         | 
| 147 | 
            +
                    dtype: torch.dtype,
         | 
| 148 | 
            +
                    device: torch.device,
         | 
| 149 | 
            +
                    past_key_values_length: int = 0,
         | 
| 150 | 
            +
                    sliding_window: Optional[int] = None,
         | 
| 151 | 
            +
                ):
         | 
| 152 | 
            +
                    """
         | 
| 153 | 
            +
                    Make causal mask used for bi-directional self-attention.
         | 
| 154 | 
            +
                    """
         | 
| 155 | 
            +
                    bsz, tgt_len = input_ids_shape
         | 
| 156 | 
            +
                    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
         | 
| 157 | 
            +
                    mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 158 | 
            +
                    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    mask = mask.to(dtype)
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                    if past_key_values_length > 0:
         | 
| 163 | 
            +
                        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    # add lower triangular sliding window mask if necessary
         | 
| 166 | 
            +
                    if sliding_window is not None:
         | 
| 167 | 
            +
                        diagonal = past_key_values_length - sliding_window - 1
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                        context_mask = torch.tril(torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal)
         | 
| 170 | 
            +
                        mask.masked_fill_(context_mask, torch.finfo(dtype).min)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                @staticmethod
         | 
| 175 | 
            +
                def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 176 | 
            +
                    """
         | 
| 177 | 
            +
                    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 178 | 
            +
                    """
         | 
| 179 | 
            +
                    bsz, src_len = mask.size()
         | 
| 180 | 
            +
                    tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    inverted_mask = 1.0 - expanded_mask
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                @staticmethod
         | 
| 189 | 
            +
                def _unmask_unattended(
         | 
| 190 | 
            +
                    expanded_mask: torch.FloatTensor,
         | 
| 191 | 
            +
                    min_dtype: float,
         | 
| 192 | 
            +
                ):
         | 
| 193 | 
            +
                    # fmt: off
         | 
| 194 | 
            +
                    """
         | 
| 195 | 
            +
                    Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
         | 
| 196 | 
            +
                    using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 197 | 
            +
                    Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    `expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
         | 
| 200 | 
            +
                    `attention_mask` is [bsz, src_seq_len].
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    For example, if `expanded_mask` is (e.g. here left-padding case)
         | 
| 205 | 
            +
                    ```
         | 
| 206 | 
            +
                    [[[[0, 0, 0],
         | 
| 207 | 
            +
                       [0, 0, 0],
         | 
| 208 | 
            +
                       [0, 0, 1]]],
         | 
| 209 | 
            +
                     [[[1, 0, 0],
         | 
| 210 | 
            +
                       [1, 1, 0],
         | 
| 211 | 
            +
                       [1, 1, 1]]],
         | 
| 212 | 
            +
                     [[[0, 0, 0],
         | 
| 213 | 
            +
                       [0, 1, 0],
         | 
| 214 | 
            +
                       [0, 1, 1]]]]
         | 
| 215 | 
            +
                    ```
         | 
| 216 | 
            +
                    then the modified `expanded_mask` will be
         | 
| 217 | 
            +
                    ```
         | 
| 218 | 
            +
                    [[[[1, 1, 1],   <-- modified
         | 
| 219 | 
            +
                       [1, 1, 1],   <-- modified
         | 
| 220 | 
            +
                       [0, 0, 1]]],
         | 
| 221 | 
            +
                     [[[1, 0, 0],
         | 
| 222 | 
            +
                       [1, 1, 0],
         | 
| 223 | 
            +
                       [1, 1, 1]]],
         | 
| 224 | 
            +
                     [[[1, 1, 1],   <-- modified
         | 
| 225 | 
            +
                       [0, 1, 0],
         | 
| 226 | 
            +
                       [0, 1, 1]]]]
         | 
| 227 | 
            +
                    ```
         | 
| 228 | 
            +
                    """
         | 
| 229 | 
            +
                    # fmt: on
         | 
| 230 | 
            +
                    if expanded_mask.dtype == torch.bool:
         | 
| 231 | 
            +
                        raise ValueError(
         | 
| 232 | 
            +
                            "AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor."
         | 
| 233 | 
            +
                        )
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    return expanded_mask.mul(~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True))
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                @staticmethod
         | 
| 238 | 
            +
                def _ignore_causal_mask_sdpa(
         | 
| 239 | 
            +
                    attention_mask: Optional[torch.Tensor],
         | 
| 240 | 
            +
                    inputs_embeds: torch.Tensor,
         | 
| 241 | 
            +
                    past_key_values_length: int,
         | 
| 242 | 
            +
                    sliding_window: Optional[int] = None,
         | 
| 243 | 
            +
                    is_training: bool = False,
         | 
| 244 | 
            +
                ) -> bool:
         | 
| 245 | 
            +
                    """
         | 
| 246 | 
            +
                    Detects whether the optional user-specified attention_mask & the automatically created causal mask can be ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument.
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    In case no token is masked in the `attention_mask` argument, if `query_length == 1` or
         | 
| 249 | 
            +
                    `key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks,
         | 
| 250 | 
            +
                    allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
         | 
| 251 | 
            +
                    """
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    _, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1]
         | 
| 254 | 
            +
                    key_value_length = query_length + past_key_values_length
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    is_tracing = (
         | 
| 257 | 
            +
                        torch.jit.is_tracing()
         | 
| 258 | 
            +
                        or isinstance(inputs_embeds, torch.fx.Proxy)
         | 
| 259 | 
            +
                        or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
         | 
| 260 | 
            +
                    )
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    ignore_causal_mask = False
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    if attention_mask is None:
         | 
| 265 | 
            +
                        # TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input shape, thus SDPA's `is_causal` argument is rightfully updated (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using `torch.export` or
         | 
| 266 | 
            +
                        # or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108).
         | 
| 267 | 
            +
                        # Thus, we only set `ignore_causal_mask = True` if the model is set to training.
         | 
| 268 | 
            +
                        #
         | 
| 269 | 
            +
                        # Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` ("TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor").
         | 
| 270 | 
            +
                        if (
         | 
| 271 | 
            +
                            (is_training or not is_tracing)
         | 
| 272 | 
            +
                            and (query_length == 1 or key_value_length == query_length)
         | 
| 273 | 
            +
                            and (sliding_window is None or key_value_length < sliding_window)
         | 
| 274 | 
            +
                        ):
         | 
| 275 | 
            +
                            ignore_causal_mask = True
         | 
| 276 | 
            +
                    elif sliding_window is None or key_value_length < sliding_window:
         | 
| 277 | 
            +
                        if len(attention_mask.shape) == 4:
         | 
| 278 | 
            +
                            return False
         | 
| 279 | 
            +
                        elif (is_training or not is_tracing) and torch.all(attention_mask == 1):
         | 
| 280 | 
            +
                            if query_length == 1 or key_value_length == query_length:
         | 
| 281 | 
            +
                                # For query_length == 1, causal attention and bi-directional attention are the same.
         | 
| 282 | 
            +
                                ignore_causal_mask = True
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                            # Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
         | 
| 285 | 
            +
                            # may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
         | 
| 286 | 
            +
                            # Reference: https://github.com/pytorch/pytorch/issues/108108
         | 
| 287 | 
            +
                            # TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3.
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    return ignore_causal_mask
         | 
| 290 | 
            +
             | 
| 291 | 
            +
             | 
| 292 | 
            +
            def _prepare_4d_causal_attention_mask(
         | 
| 293 | 
            +
                attention_mask: Optional[torch.Tensor],
         | 
| 294 | 
            +
                input_shape: Union[torch.Size, Tuple, List],
         | 
| 295 | 
            +
                inputs_embeds: torch.Tensor,
         | 
| 296 | 
            +
                past_key_values_length: int,
         | 
| 297 | 
            +
                sliding_window: Optional[int] = None,
         | 
| 298 | 
            +
            ):
         | 
| 299 | 
            +
                """
         | 
| 300 | 
            +
                Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
         | 
| 301 | 
            +
                `(batch_size, key_value_length)`
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                Args:
         | 
| 304 | 
            +
                    attention_mask (`torch.Tensor` or `None`):
         | 
| 305 | 
            +
                        A 2D attention mask of shape `(batch_size, key_value_length)`
         | 
| 306 | 
            +
                    input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
         | 
| 307 | 
            +
                        The input shape should be a tuple that defines `(batch_size, query_length)`.
         | 
| 308 | 
            +
                    inputs_embeds (`torch.Tensor`):
         | 
| 309 | 
            +
                        The embedded inputs as a torch Tensor.
         | 
| 310 | 
            +
                    past_key_values_length (`int`):
         | 
| 311 | 
            +
                        The length of the key value cache.
         | 
| 312 | 
            +
                    sliding_window (`int`, *optional*):
         | 
| 313 | 
            +
                        If the model uses windowed attention, a sliding window should be passed.
         | 
| 314 | 
            +
                """
         | 
| 315 | 
            +
                attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                key_value_length = input_shape[-1] + past_key_values_length
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                # 4d mask is passed through the layers
         | 
| 320 | 
            +
                if attention_mask is not None and len(attention_mask.shape) == 2:
         | 
| 321 | 
            +
                    attention_mask = attn_mask_converter.to_4d(
         | 
| 322 | 
            +
                        attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
         | 
| 323 | 
            +
                    )
         | 
| 324 | 
            +
                elif attention_mask is not None and len(attention_mask.shape) == 4:
         | 
| 325 | 
            +
                    expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
         | 
| 326 | 
            +
                    if tuple(attention_mask.shape) != expected_shape:
         | 
| 327 | 
            +
                        raise ValueError(
         | 
| 328 | 
            +
                            f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
         | 
| 329 | 
            +
                        )
         | 
| 330 | 
            +
                    else:
         | 
| 331 | 
            +
                        # if the 4D mask has correct shape - invert it and fill with negative infinity
         | 
| 332 | 
            +
                        inverted_mask = 1.0 - attention_mask
         | 
| 333 | 
            +
                        attention_mask = inverted_mask.masked_fill(
         | 
| 334 | 
            +
                            inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
         | 
| 335 | 
            +
                        )
         | 
| 336 | 
            +
                else:
         | 
| 337 | 
            +
                    attention_mask = attn_mask_converter.to_causal_4d(
         | 
| 338 | 
            +
                        input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
         | 
| 339 | 
            +
                    )
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                return attention_mask
         | 
| 342 | 
            +
             | 
| 343 | 
            +
             | 
| 344 | 
            +
            # Adapted from _prepare_4d_causal_attention_mask
         | 
| 345 | 
            +
            def _prepare_4d_causal_attention_mask_for_sdpa(
         | 
| 346 | 
            +
                attention_mask: Optional[torch.Tensor],
         | 
| 347 | 
            +
                input_shape: Union[torch.Size, Tuple, List],
         | 
| 348 | 
            +
                inputs_embeds: torch.Tensor,
         | 
| 349 | 
            +
                past_key_values_length: int,
         | 
| 350 | 
            +
                sliding_window: Optional[int] = None,
         | 
| 351 | 
            +
            ):
         | 
| 352 | 
            +
                """
         | 
| 353 | 
            +
                Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
         | 
| 356 | 
            +
                `key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
         | 
| 357 | 
            +
                allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
         | 
| 358 | 
            +
                """
         | 
| 359 | 
            +
                attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                key_value_length = input_shape[-1] + past_key_values_length
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                # torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
         | 
| 364 | 
            +
                # used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
         | 
| 365 | 
            +
                # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
         | 
| 366 | 
            +
                is_tracing = (
         | 
| 367 | 
            +
                    torch.jit.is_tracing()
         | 
| 368 | 
            +
                    or isinstance(inputs_embeds, torch.fx.Proxy)
         | 
| 369 | 
            +
                    or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
         | 
| 370 | 
            +
                )
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                ignore_causal_mask = AttentionMaskConverter._ignore_causal_mask_sdpa(
         | 
| 373 | 
            +
                    attention_mask=attention_mask,
         | 
| 374 | 
            +
                    inputs_embeds=inputs_embeds,
         | 
| 375 | 
            +
                    past_key_values_length=past_key_values_length,
         | 
| 376 | 
            +
                    sliding_window=sliding_window,
         | 
| 377 | 
            +
                )
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                if ignore_causal_mask:
         | 
| 380 | 
            +
                    expanded_4d_mask = None
         | 
| 381 | 
            +
                elif attention_mask is None:
         | 
| 382 | 
            +
                    expanded_4d_mask = attn_mask_converter.to_causal_4d(
         | 
| 383 | 
            +
                        input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
         | 
| 384 | 
            +
                    )
         | 
| 385 | 
            +
                else:
         | 
| 386 | 
            +
                    if attention_mask.dim() == 4:
         | 
| 387 | 
            +
                        # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
         | 
| 388 | 
            +
                        if attention_mask.max() != 0:
         | 
| 389 | 
            +
                            raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
         | 
| 390 | 
            +
                        expanded_4d_mask = attention_mask
         | 
| 391 | 
            +
                    else:
         | 
| 392 | 
            +
                        expanded_4d_mask = attn_mask_converter.to_4d(
         | 
| 393 | 
            +
                            attention_mask,
         | 
| 394 | 
            +
                            input_shape[-1],
         | 
| 395 | 
            +
                            dtype=inputs_embeds.dtype,
         | 
| 396 | 
            +
                            key_value_length=key_value_length,
         | 
| 397 | 
            +
                        )
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    # Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
         | 
| 400 | 
            +
                    # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 401 | 
            +
                    # Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 402 | 
            +
                    if not is_tracing and expanded_4d_mask.device.type == "cuda":
         | 
| 403 | 
            +
                        expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
         | 
| 404 | 
            +
                            expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min
         | 
| 405 | 
            +
                        )
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                return expanded_4d_mask
         | 
| 408 | 
            +
             | 
| 409 | 
            +
             | 
| 410 | 
            +
            def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 411 | 
            +
                """
         | 
| 412 | 
            +
                Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
         | 
| 413 | 
            +
                `(batch_size, key_value_length)`
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                Args:
         | 
| 416 | 
            +
                    mask (`torch.Tensor`):
         | 
| 417 | 
            +
                        A 2D attention mask of shape `(batch_size, key_value_length)`
         | 
| 418 | 
            +
                    dtype (`torch.dtype`):
         | 
| 419 | 
            +
                        The torch dtype the created mask shall have.
         | 
| 420 | 
            +
                    tgt_len (`int`):
         | 
| 421 | 
            +
                        The target length or query length the created mask shall have.
         | 
| 422 | 
            +
                """
         | 
| 423 | 
            +
                return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
             | 
| 426 | 
            +
            def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 427 | 
            +
                """
         | 
| 428 | 
            +
                Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
         | 
| 429 | 
            +
                `(batch_size, key_value_length)`
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                Args:
         | 
| 432 | 
            +
                    mask (`torch.Tensor`):
         | 
| 433 | 
            +
                        A 2D attention mask of shape `(batch_size, key_value_length)`
         | 
| 434 | 
            +
                    dtype (`torch.dtype`):
         | 
| 435 | 
            +
                        The torch dtype the created mask shall have.
         | 
| 436 | 
            +
                    tgt_len (`int`):
         | 
| 437 | 
            +
                        The target length or query length the created mask shall have.
         | 
| 438 | 
            +
                """
         | 
| 439 | 
            +
                _, key_value_length = mask.shape
         | 
| 440 | 
            +
                tgt_len = tgt_len if tgt_len is not None else key_value_length
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                is_tracing = (
         | 
| 443 | 
            +
                    torch.jit.is_tracing()
         | 
| 444 | 
            +
                    or isinstance(mask, torch.fx.Proxy)
         | 
| 445 | 
            +
                    or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
         | 
| 446 | 
            +
                )
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                # torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture data-dependent controlflows.
         | 
| 449 | 
            +
                if not is_tracing and torch.all(mask == 1):
         | 
| 450 | 
            +
                    return None
         | 
| 451 | 
            +
                else:
         | 
| 452 | 
            +
                    return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
             | 
| 455 | 
            +
            def _create_4d_causal_attention_mask(
         | 
| 456 | 
            +
                input_shape: Union[torch.Size, Tuple, List],
         | 
| 457 | 
            +
                dtype: torch.dtype,
         | 
| 458 | 
            +
                device: torch.device,
         | 
| 459 | 
            +
                past_key_values_length: int = 0,
         | 
| 460 | 
            +
                sliding_window: Optional[int] = None,
         | 
| 461 | 
            +
            ) -> Optional[torch.Tensor]:
         | 
| 462 | 
            +
                """
         | 
| 463 | 
            +
                Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                Args:
         | 
| 466 | 
            +
                    input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
         | 
| 467 | 
            +
                        The input shape should be a tuple that defines `(batch_size, query_length)`.
         | 
| 468 | 
            +
                    dtype (`torch.dtype`):
         | 
| 469 | 
            +
                        The torch dtype the created mask shall have.
         | 
| 470 | 
            +
                    device (`int`):
         | 
| 471 | 
            +
                        The torch device the created mask shall have.
         | 
| 472 | 
            +
                    sliding_window (`int`, *optional*):
         | 
| 473 | 
            +
                        If the model uses windowed attention, a sliding window should be passed.
         | 
| 474 | 
            +
                """
         | 
| 475 | 
            +
                attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                key_value_length = past_key_values_length + input_shape[-1]
         | 
| 478 | 
            +
                attention_mask = attn_mask_converter.to_causal_4d(
         | 
| 479 | 
            +
                    input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
         | 
| 480 | 
            +
                )
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                return attention_mask
         | 
    	
        transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py
    ADDED
    
    | @@ -0,0 +1,348 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import inspect
         | 
| 17 | 
            +
            import os
         | 
| 18 | 
            +
            from typing import Optional, Tuple, Union
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            import torch
         | 
| 22 | 
            +
            import torch.nn.functional as F
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            from functools import lru_cache
         | 
| 25 | 
            +
            import importlib.metadata
         | 
| 26 | 
            +
            import importlib.util
         | 
| 27 | 
            +
            from packaging import version
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from transformers.utils import is_flash_attn_2_available
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            if is_flash_attn_2_available():
         | 
| 33 | 
            +
                try:
         | 
| 34 | 
            +
                    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         | 
| 35 | 
            +
                    from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 36 | 
            +
                    _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
         | 
| 37 | 
            +
                except ImportError:
         | 
| 38 | 
            +
                    raise "Unable to import flash_attn"
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
         | 
| 42 | 
            +
                # Check if the package spec exists and grab its version to avoid importing a local directory
         | 
| 43 | 
            +
                package_exists = importlib.util.find_spec(pkg_name) is not None
         | 
| 44 | 
            +
                package_version = "N/A"
         | 
| 45 | 
            +
                if package_exists:
         | 
| 46 | 
            +
                    try:
         | 
| 47 | 
            +
                        # Primary method to get the package version
         | 
| 48 | 
            +
                        package_version = importlib.metadata.version(pkg_name)
         | 
| 49 | 
            +
                    except importlib.metadata.PackageNotFoundError:
         | 
| 50 | 
            +
                        # Fallback method: Only for "torch" and versions containing "dev"
         | 
| 51 | 
            +
                        if pkg_name == "torch":
         | 
| 52 | 
            +
                            try:
         | 
| 53 | 
            +
                                package = importlib.import_module(pkg_name)
         | 
| 54 | 
            +
                                temp_version = getattr(package, "__version__", "N/A")
         | 
| 55 | 
            +
                                # Check if the version contains "dev"
         | 
| 56 | 
            +
                                if "dev" in temp_version:
         | 
| 57 | 
            +
                                    package_version = temp_version
         | 
| 58 | 
            +
                                    package_exists = True
         | 
| 59 | 
            +
                                else:
         | 
| 60 | 
            +
                                    package_exists = False
         | 
| 61 | 
            +
                            except ImportError:
         | 
| 62 | 
            +
                                # If the package can't be imported, it's not available
         | 
| 63 | 
            +
                                package_exists = False
         | 
| 64 | 
            +
                        else:
         | 
| 65 | 
            +
                            # For packages other than "torch", don't attempt the fallback and set as not available
         | 
| 66 | 
            +
                            package_exists = False
         | 
| 67 | 
            +
                if return_version:
         | 
| 68 | 
            +
                    return package_exists, package_version
         | 
| 69 | 
            +
                else:
         | 
| 70 | 
            +
                    return package_exists
         | 
| 71 | 
            +
                
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            @lru_cache()
         | 
| 74 | 
            +
            def is_flash_attn_greater_or_equal(library_version: str):
         | 
| 75 | 
            +
                if not _is_package_available("flash_attn"):
         | 
| 76 | 
            +
                    return False
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(library_version)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                Retrieves indexing data required to repad unpadded (ragged) tensors.
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                Arguments:
         | 
| 86 | 
            +
                    attention_mask (`torch.Tensor`):
         | 
| 87 | 
            +
                        Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                Return:
         | 
| 90 | 
            +
                    indices (`torch.Tensor`):
         | 
| 91 | 
            +
                        The indices of non-masked tokens from the flattened input sequence.
         | 
| 92 | 
            +
                    cu_seqlens (`torch.Tensor`):
         | 
| 93 | 
            +
                        The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
         | 
| 94 | 
            +
                    max_seqlen_in_batch (`int`):
         | 
| 95 | 
            +
                        Maximum sequence length in batch.
         | 
| 96 | 
            +
                """
         | 
| 97 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 98 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 99 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 100 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
         | 
| 101 | 
            +
                return (
         | 
| 102 | 
            +
                    indices,
         | 
| 103 | 
            +
                    cu_seqlens,
         | 
| 104 | 
            +
                    max_seqlen_in_batch,
         | 
| 105 | 
            +
                )
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            def _upad_input(
         | 
| 109 | 
            +
                query_layer: torch.Tensor,
         | 
| 110 | 
            +
                key_layer: torch.Tensor,
         | 
| 111 | 
            +
                value_layer: torch.Tensor,
         | 
| 112 | 
            +
                attention_mask: torch.Tensor,
         | 
| 113 | 
            +
                query_length: int,
         | 
| 114 | 
            +
            ):
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary
         | 
| 119 | 
            +
                tensors for query, key, value tensors.
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                Arguments:
         | 
| 122 | 
            +
                    query_layer (`torch.Tensor`):
         | 
| 123 | 
            +
                        Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
         | 
| 124 | 
            +
                    key_layer (`torch.Tensor`):
         | 
| 125 | 
            +
                        Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
         | 
| 126 | 
            +
                    value_layer (`torch.Tensor`):
         | 
| 127 | 
            +
                        Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
         | 
| 128 | 
            +
                    attention_mask (`torch.Tensor`):
         | 
| 129 | 
            +
                        Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
         | 
| 130 | 
            +
                    query_length (`int`):
         | 
| 131 | 
            +
                        Target length.
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                Return:
         | 
| 134 | 
            +
                    query_layer (`torch.Tensor`):
         | 
| 135 | 
            +
                        Query state without padding. Shape: (total_target_length, num_heads, head_dim).
         | 
| 136 | 
            +
                    key_layer (`torch.Tensor`):
         | 
| 137 | 
            +
                        Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
         | 
| 138 | 
            +
                    value_layer (`torch.Tensor`):
         | 
| 139 | 
            +
                        Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
         | 
| 140 | 
            +
                    indices_q (`torch.Tensor`):
         | 
| 141 | 
            +
                        The indices of non-masked tokens from the flattened input target sequence.
         | 
| 142 | 
            +
                    (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
         | 
| 143 | 
            +
                        The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
         | 
| 144 | 
            +
                    (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
         | 
| 145 | 
            +
                        Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
         | 
| 146 | 
            +
                """
         | 
| 147 | 
            +
                indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 148 | 
            +
                batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
         | 
| 151 | 
            +
                value_layer = index_first_axis(
         | 
| 152 | 
            +
                    value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 153 | 
            +
                )
         | 
| 154 | 
            +
                if query_length == kv_seq_len:
         | 
| 155 | 
            +
                    query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
         | 
| 156 | 
            +
                    cu_seqlens_q = cu_seqlens_k
         | 
| 157 | 
            +
                    max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 158 | 
            +
                    indices_q = indices_k
         | 
| 159 | 
            +
                elif query_length == 1:
         | 
| 160 | 
            +
                    max_seqlen_in_batch_q = 1
         | 
| 161 | 
            +
                    cu_seqlens_q = torch.arange(
         | 
| 162 | 
            +
                        batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 163 | 
            +
                    )  # There is a memcpy here, that is very bad.
         | 
| 164 | 
            +
                    indices_q = cu_seqlens_q[:-1]
         | 
| 165 | 
            +
                    query_layer = query_layer.squeeze(1)
         | 
| 166 | 
            +
                else:
         | 
| 167 | 
            +
                    # The -q_len: slice assumes left padding.
         | 
| 168 | 
            +
                    attention_mask = attention_mask[:, -query_length:]
         | 
| 169 | 
            +
                    query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                return (
         | 
| 172 | 
            +
                    query_layer,
         | 
| 173 | 
            +
                    key_layer,
         | 
| 174 | 
            +
                    value_layer,
         | 
| 175 | 
            +
                    indices_q,
         | 
| 176 | 
            +
                    (cu_seqlens_q, cu_seqlens_k),
         | 
| 177 | 
            +
                    (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 178 | 
            +
                )
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            def prepare_fa2_from_position_ids(query, key, value, position_ids):
         | 
| 182 | 
            +
                """
         | 
| 183 | 
            +
                This function returns necessary arguments to call `flash_attn_varlen_func`.
         | 
| 184 | 
            +
                All three query, key, value states will be flattened.
         | 
| 185 | 
            +
                Cummulative lengths of each examples in the batch will be extracted from position_ids.
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                NOTE: ideally cummulative lengths should be prepared at the data collator stage
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                Arguments:
         | 
| 190 | 
            +
                    query (`torch.Tensor`):
         | 
| 191 | 
            +
                        Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
         | 
| 192 | 
            +
                    key (`torch.Tensor`):
         | 
| 193 | 
            +
                        Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
         | 
| 194 | 
            +
                    value (`torch.Tensor`):
         | 
| 195 | 
            +
                        Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
         | 
| 196 | 
            +
                    position_ids (`torch.Tensor`):
         | 
| 197 | 
            +
                        Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                Return:
         | 
| 200 | 
            +
                    query (`torch.Tensor`):
         | 
| 201 | 
            +
                        Query state without padding. Shape: (total_target_length, num_heads, head_dim).
         | 
| 202 | 
            +
                    key (`torch.Tensor`):
         | 
| 203 | 
            +
                        Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
         | 
| 204 | 
            +
                    value (`torch.Tensor`):
         | 
| 205 | 
            +
                        Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
         | 
| 206 | 
            +
                    indices_q (`torch.Tensor`):
         | 
| 207 | 
            +
                        The indices of non-masked tokens from the flattened input target sequence.
         | 
| 208 | 
            +
                    (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
         | 
| 209 | 
            +
                        The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
         | 
| 210 | 
            +
                    (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
         | 
| 211 | 
            +
                        Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
         | 
| 212 | 
            +
                """
         | 
| 213 | 
            +
                query = query.view(-1, query.size(-2), query.size(-1))
         | 
| 214 | 
            +
                key = key.view(-1, key.size(-2), key.size(-1))
         | 
| 215 | 
            +
                value = value.view(-1, value.size(-2), value.size(-1))
         | 
| 216 | 
            +
                position_ids = position_ids.flatten()
         | 
| 217 | 
            +
                indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                cu_seq_lens = torch.cat(
         | 
| 220 | 
            +
                    (
         | 
| 221 | 
            +
                        indices_q[position_ids == 0],
         | 
| 222 | 
            +
                        torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32),
         | 
| 223 | 
            +
                    )
         | 
| 224 | 
            +
                )
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                max_length = position_ids.max() + 1
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length))
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            def _flash_attention_forward(
         | 
| 232 | 
            +
                query_states: torch.Tensor,
         | 
| 233 | 
            +
                key_states: torch.Tensor,
         | 
| 234 | 
            +
                value_states: torch.Tensor,
         | 
| 235 | 
            +
                attention_mask: torch.Tensor,
         | 
| 236 | 
            +
                query_length: int,
         | 
| 237 | 
            +
                is_causal: bool,
         | 
| 238 | 
            +
                dropout: float = 0.0,
         | 
| 239 | 
            +
                position_ids: Optional[torch.Tensor] = None,
         | 
| 240 | 
            +
                softmax_scale: Optional[float] = None,
         | 
| 241 | 
            +
                sliding_window: Optional[int] = None,
         | 
| 242 | 
            +
                use_top_left_mask: bool = False,
         | 
| 243 | 
            +
                softcap: Optional[float] = None,
         | 
| 244 | 
            +
                deterministic: bool = None,
         | 
| 245 | 
            +
            ):
         | 
| 246 | 
            +
                """
         | 
| 247 | 
            +
                Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 248 | 
            +
                first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                Args:
         | 
| 251 | 
            +
                    query_states (`torch.Tensor`):
         | 
| 252 | 
            +
                        Input query states to be passed to Flash Attention API
         | 
| 253 | 
            +
                    key_states (`torch.Tensor`):
         | 
| 254 | 
            +
                        Input key states to be passed to Flash Attention API
         | 
| 255 | 
            +
                    value_states (`torch.Tensor`):
         | 
| 256 | 
            +
                        Input value states to be passed to Flash Attention API
         | 
| 257 | 
            +
                    attention_mask (`torch.Tensor`):
         | 
| 258 | 
            +
                        The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 259 | 
            +
                        position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 260 | 
            +
                    dropout (`float`):
         | 
| 261 | 
            +
                        Attention dropout
         | 
| 262 | 
            +
                    softmax_scale (`float`, *optional*):
         | 
| 263 | 
            +
                        The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 264 | 
            +
                    use_top_left_mask (`bool`, defaults to `False`):
         | 
| 265 | 
            +
                        flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
         | 
| 266 | 
            +
                    softcap (`float`, *optional*):
         | 
| 267 | 
            +
                        Softcap for the attention logits, used e.g. in gemma2.
         | 
| 268 | 
            +
                    deterministic (`bool`, *optional*):
         | 
| 269 | 
            +
                        Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
         | 
| 270 | 
            +
                """
         | 
| 271 | 
            +
                if not use_top_left_mask:
         | 
| 272 | 
            +
                    causal = is_causal
         | 
| 273 | 
            +
                else:
         | 
| 274 | 
            +
                    # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
         | 
| 275 | 
            +
                    causal = is_causal and query_length != 1
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
         | 
| 278 | 
            +
                use_sliding_windows = (
         | 
| 279 | 
            +
                    _flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
         | 
| 280 | 
            +
                )
         | 
| 281 | 
            +
                flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                if is_flash_attn_greater_or_equal("2.4.1"):
         | 
| 284 | 
            +
                    if deterministic is None:
         | 
| 285 | 
            +
                        deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
         | 
| 286 | 
            +
                    flash_kwargs["deterministic"] = deterministic
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                if softcap is not None:
         | 
| 289 | 
            +
                    flash_kwargs["softcap"] = softcap
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                # Contains at least one padding token in the sequence
         | 
| 292 | 
            +
                if attention_mask is not None:
         | 
| 293 | 
            +
                    batch_size = query_states.shape[0]
         | 
| 294 | 
            +
                    query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
         | 
| 295 | 
            +
                        query_states, key_states, value_states, attention_mask, query_length
         | 
| 296 | 
            +
                    )
         | 
| 297 | 
            +
                    cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 298 | 
            +
                    max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    attn_output_unpad = flash_attn_varlen_func(
         | 
| 301 | 
            +
                        query_states,
         | 
| 302 | 
            +
                        key_states,
         | 
| 303 | 
            +
                        value_states,
         | 
| 304 | 
            +
                        cu_seqlens_q=cu_seqlens_q,
         | 
| 305 | 
            +
                        cu_seqlens_k=cu_seqlens_k,
         | 
| 306 | 
            +
                        max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 307 | 
            +
                        max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 308 | 
            +
                        dropout_p=dropout,
         | 
| 309 | 
            +
                        softmax_scale=softmax_scale,
         | 
| 310 | 
            +
                        causal=causal,
         | 
| 311 | 
            +
                        **flash_kwargs,
         | 
| 312 | 
            +
                    )
         | 
| 313 | 
            +
                    attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                # If position_ids is provided and check all examples do not contain only 1 sequence, If tensor in increasing
         | 
| 316 | 
            +
                # then we probably have one sequence, otherwise it is packed. Additionally check we are in pre-fill/training stage.
         | 
| 317 | 
            +
                # Use `flash_attn_varlen_func` to prevent cross-example attention and also allow padding free approach
         | 
| 318 | 
            +
                elif position_ids is not None and query_length != 1 and not (torch.diff(position_ids, dim=-1) >= 0).all():
         | 
| 319 | 
            +
                    batch_size = query_states.size(0)
         | 
| 320 | 
            +
                    query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids(
         | 
| 321 | 
            +
                        query_states, key_states, value_states, position_ids
         | 
| 322 | 
            +
                    )
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 325 | 
            +
                    max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    attn_output = flash_attn_varlen_func(
         | 
| 328 | 
            +
                        query_states,
         | 
| 329 | 
            +
                        key_states,
         | 
| 330 | 
            +
                        value_states,
         | 
| 331 | 
            +
                        cu_seqlens_q=cu_seqlens_q,
         | 
| 332 | 
            +
                        cu_seqlens_k=cu_seqlens_k,
         | 
| 333 | 
            +
                        max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 334 | 
            +
                        max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 335 | 
            +
                        dropout_p=dropout,
         | 
| 336 | 
            +
                        softmax_scale=softmax_scale,
         | 
| 337 | 
            +
                        causal=causal,
         | 
| 338 | 
            +
                        **flash_kwargs,
         | 
| 339 | 
            +
                    )
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                else:
         | 
| 344 | 
            +
                    attn_output = flash_attn_func(
         | 
| 345 | 
            +
                        query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
         | 
| 346 | 
            +
                    )
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                return attn_output
         | 
    	
        transformers_4_44_2__modeling_outputs.py
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        transformers_4_44_2__modeling_rope_utils.py
    ADDED
    
    | @@ -0,0 +1,559 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import math
         | 
| 16 | 
            +
            from typing import Optional, Tuple
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 19 | 
            +
            from transformers.utils import is_torch_available, logging
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            if is_torch_available():
         | 
| 26 | 
            +
                import torch
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            def _compute_default_rope_parameters(
         | 
| 30 | 
            +
                config: Optional[PretrainedConfig] = None,
         | 
| 31 | 
            +
                device: Optional["torch.device"] = None,
         | 
| 32 | 
            +
                seq_len: Optional[int] = None,
         | 
| 33 | 
            +
                **rope_kwargs,
         | 
| 34 | 
            +
            ) -> Tuple["torch.Tensor", float]:
         | 
| 35 | 
            +
                """
         | 
| 36 | 
            +
                Computes the inverse frequencies according to the original RoPE implementation
         | 
| 37 | 
            +
                Args:
         | 
| 38 | 
            +
                    config ([`~transformers.PretrainedConfig`]):
         | 
| 39 | 
            +
                        The model configuration.
         | 
| 40 | 
            +
                    device (`torch.device`):
         | 
| 41 | 
            +
                        The device to use for initialization of the inverse frequencies.
         | 
| 42 | 
            +
                    seq_len (`int`, *optional*):
         | 
| 43 | 
            +
                        The current sequence length. Unused for this type of RoPE.
         | 
| 44 | 
            +
                    rope_kwargs (`Dict`, *optional*):
         | 
| 45 | 
            +
                        BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
         | 
| 46 | 
            +
                Returns:
         | 
| 47 | 
            +
                    Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
         | 
| 48 | 
            +
                    post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
         | 
| 49 | 
            +
                """
         | 
| 50 | 
            +
                if config is not None and len(rope_kwargs) > 0:
         | 
| 51 | 
            +
                    raise ValueError(
         | 
| 52 | 
            +
                        "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
         | 
| 53 | 
            +
                        f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
         | 
| 54 | 
            +
                    )
         | 
| 55 | 
            +
                if len(rope_kwargs) > 0:
         | 
| 56 | 
            +
                    base = rope_kwargs["base"]
         | 
| 57 | 
            +
                    dim = rope_kwargs["dim"]
         | 
| 58 | 
            +
                elif config is not None:
         | 
| 59 | 
            +
                    base = config.rope_theta
         | 
| 60 | 
            +
                    partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
         | 
| 61 | 
            +
                    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
         | 
| 62 | 
            +
                    dim = int(head_dim * partial_rotary_factor)
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                attention_factor = 1.0  # Unused in this type of RoPE
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                # Compute the inverse frequencies
         | 
| 67 | 
            +
                inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
         | 
| 68 | 
            +
                return inv_freq, attention_factor
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            def _compute_linear_scaling_rope_parameters(
         | 
| 72 | 
            +
                config: Optional[PretrainedConfig] = None,
         | 
| 73 | 
            +
                device: Optional["torch.device"] = None,
         | 
| 74 | 
            +
                seq_len: Optional[int] = None,
         | 
| 75 | 
            +
                **rope_kwargs,
         | 
| 76 | 
            +
            ) -> Tuple["torch.Tensor", float]:
         | 
| 77 | 
            +
                """
         | 
| 78 | 
            +
                Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
         | 
| 79 | 
            +
                Args:
         | 
| 80 | 
            +
                    config ([`~transformers.PretrainedConfig`]):
         | 
| 81 | 
            +
                        The model configuration.
         | 
| 82 | 
            +
                    device (`torch.device`):
         | 
| 83 | 
            +
                        The device to use for initialization of the inverse frequencies.
         | 
| 84 | 
            +
                    seq_len (`int`, *optional*):
         | 
| 85 | 
            +
                        The current sequence length. Unused for this type of RoPE.
         | 
| 86 | 
            +
                    rope_kwargs (`Dict`, *optional*):
         | 
| 87 | 
            +
                        BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
         | 
| 88 | 
            +
                Returns:
         | 
| 89 | 
            +
                    Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
         | 
| 90 | 
            +
                    post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
         | 
| 91 | 
            +
                """
         | 
| 92 | 
            +
                if config is not None and len(rope_kwargs) > 0:
         | 
| 93 | 
            +
                    raise ValueError(
         | 
| 94 | 
            +
                        "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
         | 
| 95 | 
            +
                        f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
         | 
| 96 | 
            +
                    )
         | 
| 97 | 
            +
                if len(rope_kwargs) > 0:
         | 
| 98 | 
            +
                    factor = rope_kwargs["factor"]
         | 
| 99 | 
            +
                elif config is not None:
         | 
| 100 | 
            +
                    factor = config.rope_scaling["factor"]
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                # Gets the default RoPE parameters
         | 
| 103 | 
            +
                inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                # Then applies linear scaling to the frequencies.
         | 
| 106 | 
            +
                # NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
         | 
| 107 | 
            +
                # applying scaling to the inverse frequencies is equivalent.
         | 
| 108 | 
            +
                inv_freq /= factor
         | 
| 109 | 
            +
                return inv_freq, attention_factor
         | 
| 110 | 
            +
             | 
| 111 | 
            +
             | 
| 112 | 
            +
            def _compute_dynamic_ntk_parameters(
         | 
| 113 | 
            +
                config: Optional[PretrainedConfig] = None,
         | 
| 114 | 
            +
                device: Optional["torch.device"] = None,
         | 
| 115 | 
            +
                seq_len: Optional[int] = None,
         | 
| 116 | 
            +
                **rope_kwargs,
         | 
| 117 | 
            +
            ) -> Tuple["torch.Tensor", float]:
         | 
| 118 | 
            +
                """
         | 
| 119 | 
            +
                Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
         | 
| 120 | 
            +
                Args:
         | 
| 121 | 
            +
                    config ([`~transformers.PretrainedConfig`]):
         | 
| 122 | 
            +
                        The model configuration.
         | 
| 123 | 
            +
                    device (`torch.device`):
         | 
| 124 | 
            +
                        The device to use for initialization of the inverse frequencies.
         | 
| 125 | 
            +
                    seq_len (`int`, *optional*):
         | 
| 126 | 
            +
                        The current sequence length, used to update the dynamic RoPE at inference time.
         | 
| 127 | 
            +
                    rope_kwargs (`Dict`, *optional*):
         | 
| 128 | 
            +
                        BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
         | 
| 129 | 
            +
                Returns:
         | 
| 130 | 
            +
                    Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
         | 
| 131 | 
            +
                    post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
         | 
| 132 | 
            +
                """
         | 
| 133 | 
            +
                # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
         | 
| 134 | 
            +
                if config is not None and len(rope_kwargs) > 0:
         | 
| 135 | 
            +
                    raise ValueError(
         | 
| 136 | 
            +
                        "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
         | 
| 137 | 
            +
                        f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
         | 
| 138 | 
            +
                    )
         | 
| 139 | 
            +
                if len(rope_kwargs) > 0:
         | 
| 140 | 
            +
                    base = rope_kwargs["base"]
         | 
| 141 | 
            +
                    dim = rope_kwargs["dim"]
         | 
| 142 | 
            +
                    max_position_embeddings = rope_kwargs["max_position_embeddings"]
         | 
| 143 | 
            +
                    factor = rope_kwargs["factor"]
         | 
| 144 | 
            +
                elif config is not None:
         | 
| 145 | 
            +
                    base = config.rope_theta
         | 
| 146 | 
            +
                    partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
         | 
| 147 | 
            +
                    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
         | 
| 148 | 
            +
                    dim = int(head_dim * partial_rotary_factor)
         | 
| 149 | 
            +
                    max_position_embeddings = config.max_position_embeddings
         | 
| 150 | 
            +
                    factor = config.rope_scaling["factor"]
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                attention_factor = 1.0  # Unused in this type of RoPE
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                # seq_len: default to max_position_embeddings, e.g. at init time
         | 
| 155 | 
            +
                seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                # Compute the inverse frequencies
         | 
| 158 | 
            +
                base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
         | 
| 159 | 
            +
                inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
         | 
| 160 | 
            +
                return inv_freq, attention_factor
         | 
| 161 | 
            +
             | 
| 162 | 
            +
             | 
| 163 | 
            +
            def _compute_yarn_parameters(
         | 
| 164 | 
            +
                config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
         | 
| 165 | 
            +
            ) -> Tuple["torch.Tensor", float]:
         | 
| 166 | 
            +
                """
         | 
| 167 | 
            +
                Computes the inverse frequencies with NTK scaling. Please refer to the
         | 
| 168 | 
            +
                [original paper](https://arxiv.org/abs/2309.00071)
         | 
| 169 | 
            +
                Args:
         | 
| 170 | 
            +
                    config ([`~transformers.PretrainedConfig`]):
         | 
| 171 | 
            +
                        The model configuration.
         | 
| 172 | 
            +
                    device (`torch.device`):
         | 
| 173 | 
            +
                        The device to use for initialization of the inverse frequencies.
         | 
| 174 | 
            +
                    seq_len (`int`, *optional*):
         | 
| 175 | 
            +
                        The current sequence length. Unused for this type of RoPE.
         | 
| 176 | 
            +
                    rope_kwargs (`Dict`, *optional*):
         | 
| 177 | 
            +
                        BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
         | 
| 178 | 
            +
                Returns:
         | 
| 179 | 
            +
                    Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
         | 
| 180 | 
            +
                    post-processing scaling factor applied to the computed cos/sin.
         | 
| 181 | 
            +
                """
         | 
| 182 | 
            +
                # No need to keep BC with yarn, unreleased when this new pattern was created.
         | 
| 183 | 
            +
                if len(rope_kwargs) > 0:
         | 
| 184 | 
            +
                    raise ValueError(
         | 
| 185 | 
            +
                        f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
         | 
| 186 | 
            +
                    )
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                base = config.rope_theta
         | 
| 189 | 
            +
                partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
         | 
| 190 | 
            +
                head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
         | 
| 191 | 
            +
                dim = int(head_dim * partial_rotary_factor)
         | 
| 192 | 
            +
                max_position_embeddings = config.max_position_embeddings
         | 
| 193 | 
            +
                factor = config.rope_scaling["factor"]
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                # Sets the attention factor as suggested in the paper
         | 
| 196 | 
            +
                attention_factor = config.rope_scaling.get("attention_factor")
         | 
| 197 | 
            +
                if attention_factor is None:
         | 
| 198 | 
            +
                    attention_factor = 0.1 * math.log(factor) + 1.0
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                # Optional config options
         | 
| 201 | 
            +
                # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
         | 
| 202 | 
            +
                beta_fast = config.rope_scaling.get("beta_fast") or 32
         | 
| 203 | 
            +
                beta_slow = config.rope_scaling.get("beta_slow") or 1
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                # Compute the inverse frequencies
         | 
| 206 | 
            +
                def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
         | 
| 207 | 
            +
                    """Inverse dimension formula to find the dimension based on the number of rotations"""
         | 
| 208 | 
            +
                    return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
         | 
| 211 | 
            +
                    """Find dimension range bounds based on rotations"""
         | 
| 212 | 
            +
                    low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
         | 
| 213 | 
            +
                    high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
         | 
| 214 | 
            +
                    return max(low, 0), min(high, dim - 1)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                def linear_ramp_factor(min, max, dim):
         | 
| 217 | 
            +
                    if min == max:
         | 
| 218 | 
            +
                        max += 0.001  # Prevent singularity
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
         | 
| 221 | 
            +
                    ramp_func = torch.clamp(linear_func, 0, 1)
         | 
| 222 | 
            +
                    return ramp_func
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                # Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
         | 
| 225 | 
            +
                # to expand the possible context length. In other words, interpolation = apply scaling factor.
         | 
| 226 | 
            +
                pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
         | 
| 227 | 
            +
                inv_freq_extrapolation = 1.0 / pos_freqs
         | 
| 228 | 
            +
                inv_freq_interpolation = 1.0 / (factor * pos_freqs)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                # Get n-dimensional rotational scaling corrected for extrapolation
         | 
| 233 | 
            +
                inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
         | 
| 234 | 
            +
                inv_freq = (
         | 
| 235 | 
            +
                    inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
         | 
| 236 | 
            +
                    + inv_freq_extrapolation * inv_freq_extrapolation_factor
         | 
| 237 | 
            +
                )
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                return inv_freq, attention_factor
         | 
| 240 | 
            +
             | 
| 241 | 
            +
             | 
| 242 | 
            +
            def _compute_longrope_parameters(
         | 
| 243 | 
            +
                config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
         | 
| 244 | 
            +
            ) -> Tuple["torch.Tensor", float]:
         | 
| 245 | 
            +
                """
         | 
| 246 | 
            +
                Computes the inverse frequencies with LongRoPE scaling. Please refer to the
         | 
| 247 | 
            +
                [original implementation](https://github.com/microsoft/LongRoPE)
         | 
| 248 | 
            +
                Args:
         | 
| 249 | 
            +
                    config ([`~transformers.PretrainedConfig`]):
         | 
| 250 | 
            +
                        The model configuration.
         | 
| 251 | 
            +
                    device (`torch.device`):
         | 
| 252 | 
            +
                        The device to use for initialization of the inverse frequencies.
         | 
| 253 | 
            +
                    seq_len (`int`, *optional*):
         | 
| 254 | 
            +
                        The current sequence length. Unused for this type of RoPE.
         | 
| 255 | 
            +
                    rope_kwargs (`Dict`, *optional*):
         | 
| 256 | 
            +
                        BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
         | 
| 257 | 
            +
                Returns:
         | 
| 258 | 
            +
                    Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
         | 
| 259 | 
            +
                    post-processing scaling factor applied to the computed cos/sin.
         | 
| 260 | 
            +
                """
         | 
| 261 | 
            +
                # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
         | 
| 262 | 
            +
                # No need to keep BC with longrope, unreleased when this new pattern was created.
         | 
| 263 | 
            +
                if len(rope_kwargs) > 0:
         | 
| 264 | 
            +
                    raise ValueError(
         | 
| 265 | 
            +
                        "Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
         | 
| 266 | 
            +
                        f"{rope_kwargs}"
         | 
| 267 | 
            +
                    )
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                base = config.rope_theta
         | 
| 270 | 
            +
                partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
         | 
| 271 | 
            +
                head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
         | 
| 272 | 
            +
                dim = int(head_dim * partial_rotary_factor)
         | 
| 273 | 
            +
                long_factor = config.rope_scaling["long_factor"]
         | 
| 274 | 
            +
                short_factor = config.rope_scaling["short_factor"]
         | 
| 275 | 
            +
                factor = config.rope_scaling.get("factor")
         | 
| 276 | 
            +
                attention_factor = config.rope_scaling.get("attention_factor")
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                # NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
         | 
| 279 | 
            +
                # `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
         | 
| 280 | 
            +
                # values to compute the default attention scaling factor, instead of using `factor`.
         | 
| 281 | 
            +
                if hasattr(config, "original_max_position_embeddings"):
         | 
| 282 | 
            +
                    max_position_embeddings = config.original_max_position_embeddings
         | 
| 283 | 
            +
                    expanded_max_position_embeddings = config.max_position_embeddings
         | 
| 284 | 
            +
                    factor = expanded_max_position_embeddings / max_position_embeddings
         | 
| 285 | 
            +
                else:
         | 
| 286 | 
            +
                    max_position_embeddings = config.max_position_embeddings
         | 
| 287 | 
            +
                    expanded_max_position_embeddings = max_position_embeddings * factor
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                # Sets the attention factor as suggested in the paper
         | 
| 290 | 
            +
                if attention_factor is None:
         | 
| 291 | 
            +
                    if factor <= 1.0:
         | 
| 292 | 
            +
                        attention_factor = 1.0
         | 
| 293 | 
            +
                    else:
         | 
| 294 | 
            +
                        attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                # Compute the inverse frequencies -- scaled based on the target sequence length
         | 
| 297 | 
            +
                if expanded_max_position_embeddings > max_position_embeddings:
         | 
| 298 | 
            +
                    ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
         | 
| 299 | 
            +
                else:
         | 
| 300 | 
            +
                    ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
         | 
| 301 | 
            +
                inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
         | 
| 302 | 
            +
                inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                return inv_freq, attention_factor
         | 
| 305 | 
            +
             | 
| 306 | 
            +
             | 
| 307 | 
            +
            def _compute_llama3_parameters(
         | 
| 308 | 
            +
                config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
         | 
| 309 | 
            +
            ) -> Tuple["torch.Tensor", float]:
         | 
| 310 | 
            +
                """
         | 
| 311 | 
            +
                Computes the inverse frequencies for llama 3.1.
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                Args:
         | 
| 314 | 
            +
                    config ([`~transformers.PretrainedConfig`]):
         | 
| 315 | 
            +
                        The model configuration.
         | 
| 316 | 
            +
                    device (`torch.device`):
         | 
| 317 | 
            +
                        The device to use for initialization of the inverse frequencies.
         | 
| 318 | 
            +
                    seq_len (`int`, *optional*):
         | 
| 319 | 
            +
                        The current sequence length. Unused for this type of RoPE.
         | 
| 320 | 
            +
                    rope_kwargs (`Dict`, *optional*):
         | 
| 321 | 
            +
                        BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
         | 
| 322 | 
            +
                Returns:
         | 
| 323 | 
            +
                    Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
         | 
| 324 | 
            +
                    post-processing scaling factor applied to the computed cos/sin.
         | 
| 325 | 
            +
                """
         | 
| 326 | 
            +
                # Gets the default RoPE parameters
         | 
| 327 | 
            +
                inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                factor = config.rope_scaling["factor"]  # `8` in the original implementation
         | 
| 330 | 
            +
                low_freq_factor = config.rope_scaling["low_freq_factor"]  # `1` in the original implementation
         | 
| 331 | 
            +
                high_freq_factor = config.rope_scaling["high_freq_factor"]  # `4` in the original implementation
         | 
| 332 | 
            +
                old_context_len = config.rope_scaling["original_max_position_embeddings"]  # `8192` in the original implementation
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                low_freq_wavelen = old_context_len / low_freq_factor
         | 
| 335 | 
            +
                high_freq_wavelen = old_context_len / high_freq_factor
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                wavelen = 2 * math.pi / inv_freq
         | 
| 338 | 
            +
                # wavelen < high_freq_wavelen: do nothing
         | 
| 339 | 
            +
                # wavelen > low_freq_wavelen: divide by factor
         | 
| 340 | 
            +
                inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
         | 
| 341 | 
            +
                # otherwise: interpolate between the two, using a smooth factor
         | 
| 342 | 
            +
                smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
         | 
| 343 | 
            +
                smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
         | 
| 344 | 
            +
                is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
         | 
| 345 | 
            +
                inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                return inv_freq_llama, attention_factor
         | 
| 348 | 
            +
             | 
| 349 | 
            +
             | 
| 350 | 
            +
            # This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
         | 
| 351 | 
            +
            # from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
         | 
| 352 | 
            +
            # parameterizations, as long as the callable has the same signature.
         | 
| 353 | 
            +
            ROPE_INIT_FUNCTIONS = {
         | 
| 354 | 
            +
                "default": _compute_default_rope_parameters,
         | 
| 355 | 
            +
                "linear": _compute_linear_scaling_rope_parameters,
         | 
| 356 | 
            +
                "dynamic": _compute_dynamic_ntk_parameters,
         | 
| 357 | 
            +
                "yarn": _compute_yarn_parameters,
         | 
| 358 | 
            +
                "longrope": _compute_longrope_parameters,
         | 
| 359 | 
            +
                "llama3": _compute_llama3_parameters,
         | 
| 360 | 
            +
            }
         | 
| 361 | 
            +
             | 
| 362 | 
            +
             | 
| 363 | 
            +
            def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None):
         | 
| 364 | 
            +
                """Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
         | 
| 365 | 
            +
                # BC: "rope_type" was originally "type" -- let's gracefully handle it
         | 
| 366 | 
            +
                if "rope_type" not in received_keys and "type" in received_keys:
         | 
| 367 | 
            +
                    received_keys -= {"type"}
         | 
| 368 | 
            +
                    received_keys.add("rope_type")
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                missing_keys = required_keys - received_keys
         | 
| 371 | 
            +
                if missing_keys:
         | 
| 372 | 
            +
                    raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                if optional_keys is not None:
         | 
| 375 | 
            +
                    unused_keys = received_keys - required_keys - optional_keys
         | 
| 376 | 
            +
                else:
         | 
| 377 | 
            +
                    unused_keys = received_keys - required_keys
         | 
| 378 | 
            +
                if unused_keys:
         | 
| 379 | 
            +
                    logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
         | 
| 380 | 
            +
             | 
| 381 | 
            +
             | 
| 382 | 
            +
            def _validate_default_rope_parameters(config: PretrainedConfig):
         | 
| 383 | 
            +
                rope_scaling = config.rope_scaling
         | 
| 384 | 
            +
                rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
         | 
| 385 | 
            +
                required_keys = {"rope_type"}
         | 
| 386 | 
            +
                received_keys = set(rope_scaling.keys())
         | 
| 387 | 
            +
                _check_received_keys(rope_type, received_keys, required_keys)
         | 
| 388 | 
            +
             | 
| 389 | 
            +
             | 
| 390 | 
            +
            def _validate_linear_scaling_rope_parameters(config: PretrainedConfig):
         | 
| 391 | 
            +
                rope_scaling = config.rope_scaling
         | 
| 392 | 
            +
                rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
         | 
| 393 | 
            +
                required_keys = {"rope_type", "factor"}
         | 
| 394 | 
            +
                received_keys = set(rope_scaling.keys())
         | 
| 395 | 
            +
                _check_received_keys(rope_type, received_keys, required_keys)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                factor = rope_scaling["factor"]
         | 
| 398 | 
            +
                if factor is None or not isinstance(factor, float) or factor < 1.0:
         | 
| 399 | 
            +
                    logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
         | 
| 400 | 
            +
             | 
| 401 | 
            +
             | 
| 402 | 
            +
            def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig):
         | 
| 403 | 
            +
                rope_scaling = config.rope_scaling
         | 
| 404 | 
            +
                rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
         | 
| 405 | 
            +
                required_keys = {"rope_type", "factor"}
         | 
| 406 | 
            +
                # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
         | 
| 407 | 
            +
                optional_keys = {"original_max_position_embeddings"}
         | 
| 408 | 
            +
                received_keys = set(rope_scaling.keys())
         | 
| 409 | 
            +
                _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                factor = rope_scaling["factor"]
         | 
| 412 | 
            +
                if factor is None or not isinstance(factor, float) or factor < 1.0:
         | 
| 413 | 
            +
                    logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
         | 
| 414 | 
            +
             | 
| 415 | 
            +
             | 
| 416 | 
            +
            def _validate_yarn_parameters(config: PretrainedConfig):
         | 
| 417 | 
            +
                rope_scaling = config.rope_scaling
         | 
| 418 | 
            +
                rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
         | 
| 419 | 
            +
                required_keys = {"rope_type", "factor"}
         | 
| 420 | 
            +
                optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
         | 
| 421 | 
            +
                received_keys = set(rope_scaling.keys())
         | 
| 422 | 
            +
                _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                factor = rope_scaling["factor"]
         | 
| 425 | 
            +
                if factor is None or not isinstance(factor, float) or factor < 1.0:
         | 
| 426 | 
            +
                    logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                attention_factor = rope_scaling.get("attention_factor")
         | 
| 429 | 
            +
                if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
         | 
| 430 | 
            +
                    logger.warning(
         | 
| 431 | 
            +
                        f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
         | 
| 432 | 
            +
                    )
         | 
| 433 | 
            +
                beta_fast = rope_scaling.get("beta_fast")
         | 
| 434 | 
            +
                if beta_fast is not None and not isinstance(beta_fast, float):
         | 
| 435 | 
            +
                    logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
         | 
| 436 | 
            +
                beta_slow = rope_scaling.get("beta_slow")
         | 
| 437 | 
            +
                if beta_slow is not None and not isinstance(beta_slow, float):
         | 
| 438 | 
            +
                    logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                if (beta_fast or 32) < (beta_slow or 1):
         | 
| 441 | 
            +
                    logger.warning(
         | 
| 442 | 
            +
                        f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
         | 
| 443 | 
            +
                        f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
         | 
| 444 | 
            +
                    )
         | 
| 445 | 
            +
             | 
| 446 | 
            +
             | 
| 447 | 
            +
            def _validate_longrope_parameters(config: PretrainedConfig):
         | 
| 448 | 
            +
                rope_scaling = config.rope_scaling
         | 
| 449 | 
            +
                rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
         | 
| 450 | 
            +
                required_keys = {"rope_type", "short_factor", "long_factor"}
         | 
| 451 | 
            +
                # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
         | 
| 452 | 
            +
                optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
         | 
| 453 | 
            +
                received_keys = set(rope_scaling.keys())
         | 
| 454 | 
            +
                _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
         | 
| 457 | 
            +
                head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
         | 
| 458 | 
            +
                dim = int(head_dim * partial_rotary_factor)
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                short_factor = rope_scaling.get("short_factor")
         | 
| 461 | 
            +
                if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
         | 
| 462 | 
            +
                    logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
         | 
| 463 | 
            +
                if not len(short_factor) == dim // 2:
         | 
| 464 | 
            +
                    logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                long_factor = rope_scaling.get("long_factor")
         | 
| 467 | 
            +
                if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
         | 
| 468 | 
            +
                    logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
         | 
| 469 | 
            +
                if not len(long_factor) == dim // 2:
         | 
| 470 | 
            +
                    logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                # Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
         | 
| 473 | 
            +
                # `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
         | 
| 474 | 
            +
                # unique to longrope (= undesirable)
         | 
| 475 | 
            +
                if hasattr(config, "original_max_position_embeddings"):
         | 
| 476 | 
            +
                    logger.warning_once(
         | 
| 477 | 
            +
                        "This model has set a `original_max_position_embeddings` field, to be used together with "
         | 
| 478 | 
            +
                        "`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
         | 
| 479 | 
            +
                        "with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
         | 
| 480 | 
            +
                        "as it is compatible with most model architectures."
         | 
| 481 | 
            +
                    )
         | 
| 482 | 
            +
                else:
         | 
| 483 | 
            +
                    factor = rope_scaling.get("factor")
         | 
| 484 | 
            +
                    if factor is None:
         | 
| 485 | 
            +
                        logger.warning("Missing required keys in `rope_scaling`: 'factor'")
         | 
| 486 | 
            +
                    elif not isinstance(factor, float) or factor < 1.0:
         | 
| 487 | 
            +
                        logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    attention_factor = rope_scaling.get("attention_factor")
         | 
| 490 | 
            +
                    if attention_factor is not None and not isinstance(attention_factor, float) or attention_factor < 0:
         | 
| 491 | 
            +
                        logger.warning(
         | 
| 492 | 
            +
                            f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
         | 
| 493 | 
            +
                        )
         | 
| 494 | 
            +
             | 
| 495 | 
            +
             | 
| 496 | 
            +
            def _validate_llama3_parameters(config: PretrainedConfig):
         | 
| 497 | 
            +
                rope_scaling = config.rope_scaling
         | 
| 498 | 
            +
                rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
         | 
| 499 | 
            +
                required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
         | 
| 500 | 
            +
                received_keys = set(rope_scaling.keys())
         | 
| 501 | 
            +
                _check_received_keys(rope_type, received_keys, required_keys)
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                factor = rope_scaling["factor"]
         | 
| 504 | 
            +
                if factor is None or not isinstance(factor, float) or factor < 1.0:
         | 
| 505 | 
            +
                    logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                low_freq_factor = rope_scaling["low_freq_factor"]
         | 
| 508 | 
            +
                high_freq_factor = rope_scaling["high_freq_factor"]
         | 
| 509 | 
            +
                if low_freq_factor is None or not isinstance(low_freq_factor, float):
         | 
| 510 | 
            +
                    logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
         | 
| 511 | 
            +
                if high_freq_factor is None or not isinstance(high_freq_factor, float):
         | 
| 512 | 
            +
                    logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
         | 
| 513 | 
            +
                if high_freq_factor <= low_freq_factor:
         | 
| 514 | 
            +
                    logger.warning(
         | 
| 515 | 
            +
                        "`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
         | 
| 516 | 
            +
                        f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
         | 
| 517 | 
            +
                    )
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
         | 
| 520 | 
            +
                if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
         | 
| 521 | 
            +
                    logger.warning(
         | 
| 522 | 
            +
                        "`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
         | 
| 523 | 
            +
                        f"{original_max_position_embeddings}"
         | 
| 524 | 
            +
                    )
         | 
| 525 | 
            +
                if original_max_position_embeddings >= config.max_position_embeddings:
         | 
| 526 | 
            +
                    logger.warning(
         | 
| 527 | 
            +
                        "`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
         | 
| 528 | 
            +
                        f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
         | 
| 529 | 
            +
                    )
         | 
| 530 | 
            +
             | 
| 531 | 
            +
             | 
| 532 | 
            +
            # Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
         | 
| 533 | 
            +
            ROPE_VALIDATION_FUNCTIONS = {
         | 
| 534 | 
            +
                "default": _validate_default_rope_parameters,
         | 
| 535 | 
            +
                "linear": _validate_linear_scaling_rope_parameters,
         | 
| 536 | 
            +
                "dynamic": _validate_dynamic_scaling_rope_parameters,
         | 
| 537 | 
            +
                "yarn": _validate_yarn_parameters,
         | 
| 538 | 
            +
                "longrope": _validate_longrope_parameters,
         | 
| 539 | 
            +
                "llama3": _validate_llama3_parameters,
         | 
| 540 | 
            +
            }
         | 
| 541 | 
            +
             | 
| 542 | 
            +
             | 
| 543 | 
            +
            def rope_config_validation(config: PretrainedConfig):
         | 
| 544 | 
            +
                """
         | 
| 545 | 
            +
                Validate the RoPE config arguments, given a `PretrainedConfig` object
         | 
| 546 | 
            +
                """
         | 
| 547 | 
            +
                rope_scaling = getattr(config, "rope_scaling", None)  # not a default parameter in `PretrainedConfig`
         | 
| 548 | 
            +
                if rope_scaling is None:
         | 
| 549 | 
            +
                    return
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                # BC: "rope_type" was originally "type"
         | 
| 552 | 
            +
                rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
         | 
| 553 | 
            +
                validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
         | 
| 554 | 
            +
                if validation_fn is not None:
         | 
| 555 | 
            +
                    validation_fn(config)
         | 
| 556 | 
            +
                else:
         | 
| 557 | 
            +
                    logger.warning(
         | 
| 558 | 
            +
                        f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
         | 
| 559 | 
            +
                    )
         | 
    	
        transformers_4_44_2__pytorch_utils.py
    ADDED
    
    | @@ -0,0 +1,17 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2022 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from torch import nn
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            ALL_LAYERNORM_LAYERS = [nn.LayerNorm]
         | 
    	
        variable_cache.py
    ADDED
    
    | @@ -0,0 +1,139 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 Nvidia Corporation. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from copy import deepcopy
         | 
| 17 | 
            +
            from typing import Optional, Dict, Any, Tuple
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            from transformers.cache_utils import Cache  # used to let GenerationMixin know that we use a Cache object
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from .configuration_decilm import DeciLMConfig
         | 
| 23 | 
            +
            from .transformers_4_44_2__cache_utils import Cache as Cache_4_44_2, SinkCache, StaticCache, SlidingWindowCache
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class VariableCache(Cache_4_44_2, Cache):
         | 
| 27 | 
            +
                """
         | 
| 28 | 
            +
                A Cache object that supports a different Cache implementation for every layer,
         | 
| 29 | 
            +
                including layers without any kv-cache.
         | 
| 30 | 
            +
                Implemented using a list of Cache objects, each represents a "model" with 1 layer.
         | 
| 31 | 
            +
                The default implementation for the layer caches is StaticCache.
         | 
| 32 | 
            +
                The cache of each layer is allocated to the same gpu as the layer itself.
         | 
| 33 | 
            +
                """
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                def __init__(
         | 
| 36 | 
            +
                        self,
         | 
| 37 | 
            +
                        *,  # key-word only, no positional args allowed to avoid mix-ups with newer transformers versions
         | 
| 38 | 
            +
                        config: DeciLMConfig,
         | 
| 39 | 
            +
                        batch_size: int = None,
         | 
| 40 | 
            +
                        max_cache_len: int = None,
         | 
| 41 | 
            +
                        dtype: torch.dtype = torch.float32,
         | 
| 42 | 
            +
                        max_batch_size: Optional[int] = None,
         | 
| 43 | 
            +
                        **kwargs,
         | 
| 44 | 
            +
                ) -> None:
         | 
| 45 | 
            +
                    Cache_4_44_2.__init__(self)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    self.config = deepcopy(config)
         | 
| 48 | 
            +
                    self.max_batch_size = batch_size or max_batch_size
         | 
| 49 | 
            +
                    self.batch_size = self.max_batch_size
         | 
| 50 | 
            +
                    self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
         | 
| 51 | 
            +
                    self.dtype = dtype
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    self.layer_caches: list[Cache_4_44_2 | None] = [None] * config.num_hidden_layers
         | 
| 54 | 
            +
                    self.layer_devices: list[torch.device | None] = [None] * config.num_hidden_layers
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def update(
         | 
| 57 | 
            +
                        self,
         | 
| 58 | 
            +
                        key_states: torch.Tensor,
         | 
| 59 | 
            +
                        value_states: torch.Tensor,
         | 
| 60 | 
            +
                        layer_idx: int,
         | 
| 61 | 
            +
                        cache_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 62 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 63 | 
            +
                    if self.layer_caches[layer_idx] is None:
         | 
| 64 | 
            +
                        self.layer_devices[layer_idx] = key_states.device
         | 
| 65 | 
            +
                        self._init_layer_cache(layer_idx)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    layer_cache = self.layer_caches[layer_idx]
         | 
| 68 | 
            +
                    assert layer_cache is not None, f"Trying to update the cache of a cache-less layer: {layer_idx=}"
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                    k_out, v_out = layer_cache.update(key_states=key_states,
         | 
| 71 | 
            +
                                                      value_states=value_states,
         | 
| 72 | 
            +
                                                      layer_idx=0,
         | 
| 73 | 
            +
                                                      cache_kwargs=cache_kwargs)
         | 
| 74 | 
            +
                    seq_len = self.get_seq_length(layer_idx)
         | 
| 75 | 
            +
                    k_out = k_out[:, :, :seq_len, :]
         | 
| 76 | 
            +
                    v_out = v_out[:, :, :seq_len, :]
         | 
| 77 | 
            +
                    return k_out, v_out
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                def _init_layer_cache(self, layer_idx: int) -> None:
         | 
| 80 | 
            +
                    block_config = self.config.block_configs[layer_idx]
         | 
| 81 | 
            +
                    attention_config = block_config.attention
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    if attention_config.no_op or attention_config.replace_with_linear:
         | 
| 84 | 
            +
                        return None
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    device = self.layer_devices[layer_idx]
         | 
| 87 | 
            +
                    assert device is not None, f"Trying to init layer cache for {layer_idx=} without device"
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    config = deepcopy(self.config)
         | 
| 90 | 
            +
                    config.num_hidden_layers = 1
         | 
| 91 | 
            +
                    config.num_key_value_heads = self.config.num_attention_heads // attention_config.n_heads_in_group
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    if attention_config.window_length is not None:
         | 
| 94 | 
            +
                        if not attention_config.is_sink:
         | 
| 95 | 
            +
                            config.sliding_window = attention_config.window_length
         | 
| 96 | 
            +
                            self.layer_caches[layer_idx] = SlidingWindowCache(config=config,
         | 
| 97 | 
            +
                                                                              max_batch_size=self.max_batch_size,
         | 
| 98 | 
            +
                                                                              max_cache_len=self.max_cache_len,
         | 
| 99 | 
            +
                                                                              device=device,
         | 
| 100 | 
            +
                                                                              dtype=self.dtype)
         | 
| 101 | 
            +
                            return
         | 
| 102 | 
            +
                        elif not attention_config.unshifted_sink:
         | 
| 103 | 
            +
                            self.layer_caches[layer_idx] = SinkCache(window_length=attention_config.window_length,
         | 
| 104 | 
            +
                                                                     num_sink_tokens=attention_config.num_sink_tokens)
         | 
| 105 | 
            +
                            return
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    self.layer_caches[layer_idx] = StaticCache(config=config,
         | 
| 108 | 
            +
                                                               max_batch_size=self.max_batch_size,
         | 
| 109 | 
            +
                                                               max_cache_len=self.max_cache_len,
         | 
| 110 | 
            +
                                                               device=device,
         | 
| 111 | 
            +
                                                               dtype=self.dtype)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def _get_first_real_cache(self) -> Cache:
         | 
| 114 | 
            +
                    for layer_cache in self.layer_caches:
         | 
| 115 | 
            +
                        if layer_cache is not None:
         | 
| 116 | 
            +
                            return layer_cache
         | 
| 117 | 
            +
                    raise ValueError(f"No real cache found, all layer caches are None.")
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
         | 
| 120 | 
            +
                    if layer_idx == 0 and self.layer_caches[0] is None:
         | 
| 121 | 
            +
                        try:
         | 
| 122 | 
            +
                            layer_cache = self._get_first_real_cache()
         | 
| 123 | 
            +
                        except ValueError:
         | 
| 124 | 
            +
                            return 0
         | 
| 125 | 
            +
                    else:
         | 
| 126 | 
            +
                        layer_cache = self.layer_caches[layer_idx]
         | 
| 127 | 
            +
                    return layer_cache.get_seq_length()
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                def get_max_length(self) -> Optional[int]:
         | 
| 130 | 
            +
                    """Returns the maximum sequence length of the cached states."""
         | 
| 131 | 
            +
                    return self.max_cache_len
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                def reset(self):
         | 
| 134 | 
            +
                    for layer_idx in range(len(self.layer_caches)):
         | 
| 135 | 
            +
                        layer_cache = self.layer_caches[layer_idx]
         | 
| 136 | 
            +
                        if hasattr(layer_cache, "reset"):
         | 
| 137 | 
            +
                            layer_cache.reset()
         | 
| 138 | 
            +
                        else:
         | 
| 139 | 
            +
                            self._init_layer_cache(layer_idx)
         |