File size: 6,016 Bytes
fbcaf65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f59b2d
fbcaf65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dccb8f8
fbcaf65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: mit
language:
- fr
library_name: transformers
tags:
- linformer
- legal
- medical
- RoBERTa
- pytorch
---

# Jargon-multidomain-base

[Jargon](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf) is an efficient transformer encoder LM for French, combining the LinFormer attention mechanism with the RoBERTa model architecture.

Jargon is available in several versions with different context sizes and types of pre-training corpora.

<!-- Provide a quick summary of what the model is/does. -->

<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
 -->

| **Model**                                                                           | **Initialised from...** |**Training Data**|
|-------------------------------------------------------------------------------------|:-----------------------:|:----------------:|
| [jargon-general-base](https://huggingface.co/PantagrueLLM/jargon-general-base)        |         scratch         |8.5GB Web Corpus|
| [jargon-general-biomed](https://huggingface.co/PantagrueLLM/jargon-general-biomed)    |   jargon-general-base   |5.4GB Medical Corpus|
| jargon-general-legal                                                                |   jargon-general-base   |18GB Legal Corpus
| [jargon-multidomain-base](https://huggingface.co/PantagrueLLM/jargon-multidomain-base) |   jargon-general-base   |Medical+Legal Corpora|
| jargon-legal                                                                        |         scratch         |18GB Legal Corpus|
| [jargon-legal-4096](https://huggingface.co/PantagrueLLM/jargon-legal-4096)   |         scratch         |18GB Legal Corpus|
| [jargon-biomed](https://huggingface.co/PantagrueLLM/jargon-biomed)                    |         scratch         |5.4GB Medical Corpus|
| [jargon-biomed-4096](https://huggingface.co/PantagrueLLM/jargon-biomed-4096)          |         scratch         |5.4GB Medical Corpus|
| [jargon-NACHOS](https://huggingface.co/PantagrueLLM/jargon-NACHOS)                    |         scratch         |[NACHOS](https://drbert.univ-avignon.fr/)|
| [jargon-NACHOS-4096](https://huggingface.co/PantagrueLLM/jargon-NACHOS-4096)        |         scratch         |[NACHOS](https://drbert.univ-avignon.fr/)|


## Evaluation

The Jargon models were evaluated on an range of specialized downstream tasks.

For more info please check out the [paper](https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf), accepted for publication at [LREC-COLING 2024](https://lrec-coling-2024.org/list-of-accepted-papers/).


## Using Jargon models with HuggingFace transformers

You can get started with this model using the code snippet below:

```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained("PantagrueLLM/jargon-multidomain-base", trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained("PantagrueLLM/jargon-multidomain-base", trust_remote_code=True)

jargon_maskfiller = pipeline("fill-mask", model=model, tokenizer=tokenizer)
output = jargon_maskfiller("Il est allé au <mask> hier")
```

You can also use the classes `AutoModel`, `AutoModelForSequenceClassification`, or `AutoModelForTokenClassification` to load Jargon models, depending on the downstream task in question.

- **Language(s):** French
- **License:** MIT
- **Developed by:** Vincent Segonne
- **Funded by**
  - GENCI-IDRIS (Grant 2022 A0131013801)
  - French National Research Agency: Pantagruel grant ANR-23-IAS1-0001
  - MIAI@Grenoble Alpes ANR-19-P3IA-0003
  - PROPICTO ANR-20-CE93-0005
  - Lawbot ANR-20-CE38-0013
  - Swiss National Science Foundation (grant PROPICTO N°197864)
- **Authors**
  - Vincent Segonne
  - Aidan Mannion
  - Laura Cristina Alonzo Canul
  - Alexandre Audibert
  - Xingyu Liu
  - Cécile Macaire
  - Adrien Pupier
  - Yongxin Zhou
  - Mathilde Aguiar
  - Felix Herron
  - Magali Norré
  - Massih-Reza Amini
  - Pierrette Bouillon
  - Iris Eshkol-Taravella
  - Emmanuelle Esperança-Rodier
  - Thomas François
  - Lorraine Goeuriot
  - Jérôme Goulian
  - Mathieu Lafourcade
  - Benjamin Lecouteux
  - François Portet
  - Fabien Ringeval
  - Vincent Vandeghinste
  - Maximin Coavoux
  - Marco Dinarelli
  - Didier Schwab



## Citation

If you use this model for your own research work, please cite as follows:

```bibtex
@inproceedings{segonne:hal-04535557,
  TITLE = {{Jargon: A Suite of Language Models and Evaluation Tasks for French Specialized Domains}},
  AUTHOR = {Segonne, Vincent and Mannion, Aidan and Alonzo Canul, Laura Cristina and Audibert, Alexandre and Liu, Xingyu and Macaire, C{\'e}cile and Pupier, Adrien and Zhou, Yongxin and Aguiar, Mathilde and Herron, Felix and Norr{\'e}, Magali and Amini, Massih-Reza and Bouillon, Pierrette and Eshkol-Taravella, Iris and Esperan{\c c}a-Rodier, Emmanuelle and Fran{\c c}ois, Thomas and Goeuriot, Lorraine and Goulian, J{\'e}r{\^o}me and Lafourcade, Mathieu and Lecouteux, Benjamin and Portet, Fran{\c c}ois and Ringeval, Fabien and Vandeghinste, Vincent and Coavoux, Maximin and Dinarelli, Marco and Schwab, Didier},
  URL = {https://hal.science/hal-04535557},
  BOOKTITLE = {{LREC-COLING 2024 - Joint International Conference on Computational Linguistics, Language Resources and Evaluation}},
  ADDRESS = {Turin, Italy},
  YEAR = {2024},
  MONTH = May,
  KEYWORDS = {Self-supervised learning ; Pretrained language models ; Evaluation benchmark ; Biomedical document processing ; Legal document processing ; Speech transcription},
  PDF = {https://hal.science/hal-04535557/file/FB2_domaines_specialises_LREC_COLING24.pdf},
  HAL_ID = {hal-04535557},
  HAL_VERSION = {v1},
}
```



<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
<!-- 
### Model Sources [optional]


<!-- Provide the basic links for the model. -->