LunarLander-v2 / config.json
Penguin-N's picture
First Try
1b5b146
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7df4c2c9a7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7df4c2c9a830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7df4c2c9a8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7df4c2c9a950>", "_build": "<function ActorCriticPolicy._build at 0x7df4c2c9a9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7df4c2c9aa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7df4c2c9ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7df4c2c9ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7df4c2c9ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7df4c2c9acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7df4c2c9ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7df4c2c9add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7df4c2ca0380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695382885106104648, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANNcLj5syPw8JDulvnbrar3zPrG9GMjovQAAAAAAAAAABucpPtIywbuDajK+102yvCLlKj2r4he+AACAPwAAgD+GTi0+1xshuy4FIrR/abwwDRsBvD7joDMAAIA/AACAP81JBr1fMZM+tdZaPN+rvb4Sg+o8ZRQ9PQAAAAAAAAAAQN0/PuGxt7zb+K26zDEgOVYePL7oNfc5AACAPwAAgD9Ntjs9XDteulBxBbM0x5Mw46QkOufJmTMAAIA/AACAP6Yk873X6wE6vo9KPo0ew7z5zFm8Ds2sPQAAgD8AAIA/xtQgPmSJnz61Heg8EdwFvwlwFj42F/U8AAAAAAAAAACgxi2+we6avEK2ETqrunc4GC4JPh46SrkAAIA/AACAP2DSjT5Rf44+Dr00vruTuL7G/MA9thAYvgAAAAAAAAAAzbc4PZGorD+g6Zs+PYa9vhUIpbu82YQ9AAAAAAAAAAANjjw+CFy/vC6nljzM7jK7wzQtviLiCrwAAIA/AACAPwBwpDsrxLQ/0x4CP/mYbz1IUr67O8vrvQAAAAAAAAAA0zEBvoUdi7vwPWG980LpuzML1jwwnsg8AACAPwAAAAAm1G8+6QZsPqZ4/r0gzMO+b/wpPYUufjwAAAAAAAAAALPZwL0Ucoa6AoMGO/YvjzoC5Ai7YqL3OgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH/DdP+GXaMAWyUS6aMAXSUR0CY02crAgxKdX2UKGgGR0BxuDCMxXXAaAdLnmgIR0CY1TKdhAnldX2UKGgGR0Bxuj3i704BaAdLv2gIR0CY1gGTLW7OdX2UKGgGR0BxDk0CRwIdaAdL2WgIR0CY1iJtSAH3dX2UKGgGR0Bw0z7WNFSbaAdLyGgIR0CY1qCIUJv6dX2UKGgGR0BvvXmcOLBLaAdLtGgIR0CY1wda+vhZdX2UKGgGR0BxTMZ5zHS4aAdL12gIR0CY1ypkf9xZdX2UKGgGR0Bw3pZGKAJ+aAdLxmgIR0CY11xh2GIsdX2UKGgGR0By0wPSUkfLaAdLsWgIR0CY2TVqN6w/dX2UKGgGR0ByZGwGGEf1aAdL6WgIR0CY2hFlkH2RdX2UKGgGR0ByEp+WnjyXaAdNHgFoCEdAmNrsLfDUE3V9lChoBkdAcPEAuZkTYmgHS/VoCEdAmNsHWSU1RHV9lChoBkdAcLTQ0GeMAGgHS7hoCEdAmNuZJPIn0HV9lChoBkdAcB759mYjS2gHS59oCEdAmN1oOMERrnV9lChoBkdAceojR2KVIWgHS6poCEdAmN6pT/ACXHV9lChoBkdAcJQ/cWTHKmgHS6VoCEdAmN9AOz6acHV9lChoBkdAcjb7EpAlfWgHS9xoCEdAmN+bNGEwnHV9lChoBkdAP0q0QbuMM2gHS19oCEdAmN+mOEM9bHV9lChoBkdAYmVQa72+PGgHTegDaAhHQJjf91cMVlB1fZQoaAZHQHN9GSyMUAVoB0vDaAhHQJjgZ3OfNA11fZQoaAZHQHB5SrksBhhoB0vOaAhHQJjgvrnkkrx1fZQoaAZHQHDd9KRMewNoB0ugaAhHQJjg8h7mdRR1fZQoaAZHQGNVR2B8QZpoB03oA2gIR0CY4QqXWvr4dX2UKGgGR0Bw/K3EyckMaAdLrmgIR0CY4kqk/KQrdX2UKGgGR0BxCMPczqKQaAdLkmgIR0CY4nEZiuuBdX2UKGgGR0Bw2U7o0Q9SaAdLvmgIR0CY49CA+Y+jdX2UKGgGR0BxFM+u/1xsaAdLuWgIR0CY5a1+y7f6dX2UKGgGR0Bv6mTibUgCaAdLs2gIR0CY5pRIjGDMdX2UKGgGR0BwgImkWRA9aAdLpWgIR0CY5tYeT3ZgdX2UKGgGR0BwzOv9tMwlaAdLr2gIR0CY51Xv6TGHdX2UKGgGR0Bxq+etjkMkaAdLyWgIR0CY6A1oQFs6dX2UKGgGR0Bxr2B3A2ycaAdLvGgIR0CY6B+PRzBAdX2UKGgGR0Bwsmj1wo9caAdLpWgIR0CY6C5cC5mRdX2UKGgGR0BxU3sQd0aIaAdL0WgIR0CY6WxwyZa3dX2UKGgGR0Bxb9SHdoFnaAdL2mgIR0CY6Y5xR2r5dX2UKGgGR0BygHaXa8HwaAdL42gIR0CY6ZlwtJ4CdX2UKGgGR0BxMaWSlnAZaAdLomgIR0CY6gyHVPN3dX2UKGgGR0BxiM3uNPxhaAdL1WgIR0CY6n/xDst1dX2UKGgGR0Bkw4zeoDPoaAdN6ANoCEdAmOqsE7nxKHV9lChoBkdAcfsD1XeWOmgHS7loCEdAmOvWVqveQHV9lChoBkdAcdRqbBoEjmgHTRMBaAhHQJjsOfdyksV1fZQoaAZHQHOKxn3+MqBoB0vCaAhHQJjssywfQrt1fZQoaAZHQHFwFxS5y2hoB0vPaAhHQJjs5hXr+o91fZQoaAZHQHAHt/e+Eh9oB0vGaAhHQJjtFL5AQg91fZQoaAZHQHPC/NRm9QJoB0u5aAhHQJjtP2HtWuJ1fZQoaAZHQHIck12q1gJoB0vGaAhHQJjth21UlzF1fZQoaAZHQHDODLOiWVxoB0vVaAhHQJjuAEOiFkB1fZQoaAZHQHBdHHJcPe5oB0utaAhHQJjuC3jMmnh1fZQoaAZHQHFhiVW0Z3toB0uwaAhHQJjuNtdiUgV1fZQoaAZHQGMWerU9ZA9oB03oA2gIR0CY7mKwY+B6dX2UKGgGR0BxE5vXK8tgaAdLwmgIR0CY7p/LDAJtdX2UKGgGR0Bu4WAqd6LPaAdLqmgIR0CY7uK6WgOCdX2UKGgGR0BxxwLiMo+faAdLy2gIR0CY73cRDkU9dX2UKGgGR0Bw9yr+5vtMaAdLumgIR0CY8EbTMJQddX2UKGgGR0BvMdYOlO45aAdLvmgIR0CY8TQHRkVfdX2UKGgGR0BzNaULUkOaaAdLrmgIR0CY8V7fpD/mdX2UKGgGR0BxXpE9dNWVaAdLyGgIR0CY8bksSTQmdX2UKGgGR0BxbYiyIHkcaAdLt2gIR0CY8e0WuX/pdX2UKGgGR0Bw4xO1v2oOaAdLxGgIR0CY8tSSNfgKdX2UKGgGR0BwK4s189fUaAdLt2gIR0CY8usImgJ1dX2UKGgGR0BwkVkxyn1naAdLvWgIR0CY8uSxZ+x4dX2UKGgGR0Bw7xCa7VawaAdLsWgIR0CY9DlDWsijdX2UKGgGR0By2NhjOLR8aAdNBwFoCEdAmPTPA9FF2HV9lChoBkdATKIC4jKPn2gHS69oCEdAmPUxAGB4EHV9lChoBkdAcBPFpPAO8WgHS7FoCEdAmPc1yq+8G3V9lChoBkdAcmF3Jgb6xmgHS8NoCEdAmPdrdvbXYnV9lChoBkdAcCqSfDk2gmgHS6loCEdAmPhPUONHY3V9lChoBkdAcCJYekpI+WgHS7loCEdAmPkByKekHnV9lChoBkdAYrVIz3yqdmgHTegDaAhHQJj5ObXpW3l1fZQoaAZHQHB2pOnEVFhoB0vEaAhHQJj5ZD2Jzkp1fZQoaAZHQG77+67NB4VoB0upaAhHQJj7MnQY1pF1fZQoaAZHQHM1/6be/HpoB00iAWgIR0CY+30tyxRmdX2UKGgGR0ByUf/82rGSaAdLwmgIR0CY+6TUy57PdX2UKGgGR0BxjRSFXaJzaAdL5mgIR0CY/CwrDqGDdX2UKGgGR0Bw+ddnkDISaAdLm2gIR0CY/Zpc5bQkdX2UKGgGR0Bwj6dqcmShaAdL3WgIR0CY/t2Bas6rdX2UKGgGR0BwV7MUypJgaAdLsGgIR0CY/wvC/GlzdX2UKGgGR0By/tO8CgbqaAdL3GgIR0CY/whESdvsdX2UKGgGR0Bw8t+c6NlzaAdL22gIR0CZAOM9bHIZdX2UKGgGR0ByjuEeyRjjaAdL4WgIR0CZA0PYWcjJdX2UKGgGR0BxzIWGh24eaAdL4WgIR0CZA56Vt4zKdX2UKGgGR0BxqnQqqfe2aAdL0WgIR0CZA9MOPNmldX2UKGgGR0BwkBi3G4qgaAdL9mgIR0CZBJayrxRVdX2UKGgGR0BxtKPFNtZWaAdLymgIR0CZBUHpr1ujdX2UKGgGR0BwLAJLM9r5aAdLqGgIR0CZBUmhdt2tdX2UKGgGR0BwKYFgUlAvaAdLxmgIR0CZBrXe3x4IdX2UKGgGR0ByC4jfNzKcaAdLlmgIR0CZBu1w5vLpdX2UKGgGR0BkwS5Zr56/aAdN6ANoCEdAmQqr7sOXmnV9lChoBkdAchkNVinYQWgHS7loCEdAmQtH1nM+vHV9lChoBkdAchCswtapxWgHS8NoCEdAmQtY1gpjMHV9lChoBkdAcyKWC2+fy2gHS79oCEdAmQu5sTFl1HV9lChoBkdAcbCrwvxpc2gHS7VoCEdAmQwcTSLIgnV9lChoBkdAb5k2oegctGgHS7poCEdAmQzy+xnnMnV9lChoBkdAcZe6vq1PWWgHS8poCEdAmQ2YtpVS43V9lChoBkdAYx12Qnx8UmgHTegDaAhHQJkN3NGEwnJ1fZQoaAZHQHFQTSofjjtoB0utaAhHQJkOHpPhybR1fZQoaAZHQHE6TYh+vyNoB0u3aAhHQJkOSrNnoPl1fZQoaAZHQGNxWgezUqhoB03oA2gIR0CZDx6YE4ecdX2UKGgGR0Bi+cM9bHIZaAdN6ANoCEdAmRInDziCKHV9lChoBkdAYguCJ40Mw2gHTegDaAhHQJkS1iSaEzx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}