Pentium95 commited on
Commit
53aeb2a
·
verified ·
1 Parent(s): 102bea9

Upload train.py

Browse files
Files changed (1) hide show
  1. train.py +103 -0
train.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from datasets import load_dataset
4
+ from peft import LoraConfig, TaskType
5
+ from trl import SFTTrainer, SFTConfig
6
+ import trackio
7
+
8
+ model_name = "./SmolLM3-3B-Base/"
9
+ dataset_path = "./MathInstruct/MathInstruct.json"
10
+ output_dir = "./SmolLMathematician-3B"
11
+ project_name = "SmolLMathematician-3B"
12
+ MAX_SEQ_LENGTH = 4096
13
+
14
+ trackio.init(project=project_name)
15
+ model = AutoModelForCausalLM.from_pretrained(
16
+ model_name,
17
+ device_map="auto",
18
+ dtype=torch.bfloat16,
19
+ low_cpu_mem_usage=True,
20
+ trust_remote_code=True,
21
+ attn_implementation="flash_attention_2",
22
+ )
23
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
24
+ if tokenizer.pad_token is None:
25
+ tokenizer.pad_token = tokenizer.eos_token
26
+ model.config.pad_token_id = model.config.eos_token_id
27
+
28
+ with open("chat_template.jinja", "r") as f:
29
+ chat_template = f.read()
30
+ tokenizer.chat_template = chat_template
31
+
32
+ model.gradient_checkpointing_enable()
33
+ dataset = load_dataset("json", data_files=dataset_path, split="train")
34
+
35
+ def formatInstructionWithTemplate(example: dict) -> str:
36
+ messages = [
37
+ {"role": "user", "content": example["instruction"]},
38
+ {"role": "assistant", "content": example["output"]},
39
+ ]
40
+ return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
41
+
42
+
43
+ def checkSequenceLength(example: dict) -> bool:
44
+ formatted_text = formatInstructionWithTemplate(example)
45
+ tokens = tokenizer(formatted_text)
46
+ return len(tokens['input_ids']) <= MAX_SEQ_LENGTH
47
+
48
+ original_size = len(dataset)
49
+ train_dataset = dataset.filter(checkSequenceLength)
50
+ new_size = len(train_dataset)
51
+
52
+ print(f"Dataset: {original_size} → {new_size} samples (removed: {original_size - new_size})")
53
+
54
+ torch.cuda.empty_cache()
55
+ peft_config = LoraConfig(
56
+ r=16,
57
+ lora_alpha=32,
58
+ lora_dropout=0.1,
59
+ target_modules=['q_proj', 'v_proj'],
60
+ bias="none",
61
+ task_type=TaskType.CAUSAL_LM,
62
+ )
63
+
64
+ training_args = SFTConfig(
65
+ output_dir=output_dir,
66
+ num_train_epochs=1,
67
+ per_device_train_batch_size=2,
68
+ gradient_accumulation_steps=8,
69
+ optim="paged_adamw_8bit",
70
+ learning_rate=2e-5,
71
+ weight_decay=0.01,
72
+ adam_epsilon=1e-6,
73
+ max_grad_norm=1.0,
74
+ lr_scheduler_type="cosine",
75
+ warmup_ratio=0.1,
76
+ logging_steps=8,
77
+ eval_strategy="no",
78
+ save_strategy="steps",
79
+ save_steps=32,
80
+ save_total_limit=4,
81
+ resume_from_checkpoint=True,
82
+ report_to="trackio",
83
+ bf16=True,
84
+ packing=True,
85
+ max_length=MAX_SEQ_LENGTH,
86
+ dataloader_pin_memory=False,
87
+ gradient_checkpointing_kwargs={"use_reentrant": False},
88
+ )
89
+
90
+ trainer = SFTTrainer(
91
+ model=model,
92
+ args=training_args,
93
+ train_dataset=train_dataset,
94
+ peft_config=peft_config,
95
+ formatting_func=formatInstructionWithTemplate,
96
+ )
97
+
98
+ torch.cuda.empty_cache()
99
+ trainer.train()
100
+ torch.cuda.empty_cache()
101
+ trainer.save_model(output_dir)
102
+ print(f"LoRA adapter saved to {output_dir}")
103
+ trackio.finish()