PereLluis13 commited on
Commit
0fa8914
1 Parent(s): 28c1624

Fix readme again

Browse files
Files changed (1) hide show
  1. README.md +24 -24
README.md CHANGED
@@ -87,49 +87,49 @@ processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-5
87
  model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\;\\:\\"\\“]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
- \treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- \twith torch.no_grad():
109
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- \tpred_ids = torch.argmax(logits, dim=-1)
112
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
- \treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
  import jiwer
117
 
118
  # Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es
119
  def chunked_wer(targets, predictions, chunk_size=None):
120
- \tif chunk_size is None: return jiwer.wer(targets, predictions)
121
- \tstart = 0
122
- \tend = chunk_size
123
- \tH, S, D, I = 0, 0, 0, 0
124
- \twhile start < len(targets):
125
- \t\tchunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
126
- \t\tH = H + chunk_metrics["hits"]
127
- \t\tS = S + chunk_metrics["substitutions"]
128
- \t\tD = D + chunk_metrics["deletions"]
129
- \t\tI = I + chunk_metrics["insertions"]
130
- \t\tstart += chunk_size
131
- \t\tend += chunk_size
132
- \treturn float(S + D + I) / float(H + S + D)
133
 
134
  print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
135
  ```
 
87
  model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
98
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
99
+ return batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
+ with torch.no_grad():
109
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
+ pred_ids = torch.argmax(logits, dim=-1)
112
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
113
+ return batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
  import jiwer
117
 
118
  # Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es
119
  def chunked_wer(targets, predictions, chunk_size=None):
120
+ if chunk_size is None: return jiwer.wer(targets, predictions)
121
+ start = 0
122
+ end = chunk_size
123
+ H, S, D, I = 0, 0, 0, 0
124
+ while start < len(targets):
125
+ chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
126
+ H = H + chunk_metrics["hits"]
127
+ S = S + chunk_metrics["substitutions"]
128
+ D = D + chunk_metrics["deletions"]
129
+ I = I + chunk_metrics["insertions"]
130
+ start += chunk_size
131
+ end += chunk_size
132
+ return float(S + D + I) / float(H + S + D)
133
 
134
  print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
135
  ```