PereLluis13 commited on
Commit
28c1624
2 Parent(s): 5a8a864 18a91d5

Merge branch 'main' of https://huggingface.co/PereLluis13/Wav2Vec2-Large-XLSR-53-catalan into main

Browse files
Files changed (1) hide show
  1. README.md +29 -30
README.md CHANGED
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
- speech_array, sampling_rate = torchaudio.load(batch["path"])
55
- batch["speech"] = resampler(speech_array).squeeze().numpy()
56
- return batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
@@ -87,55 +87,54 @@ processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-5
87
  model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- speech_array, sampling_rate = torchaudio.load(batch["path"])
98
- batch["speech"] = resampler(speech_array).squeeze().numpy()
99
- return batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- with torch.no_grad():
109
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- pred_ids = torch.argmax(logits, dim=-1)
112
- batch["pred_strings"] = processor.batch_decode(pred_ids)
113
- return batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
  import jiwer
117
 
118
  # Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es
119
  def chunked_wer(targets, predictions, chunk_size=None):
120
- if chunk_size is None: return jiwer.wer(targets, predictions)
121
- start = 0
122
- end = chunk_size
123
- H, S, D, I = 0, 0, 0, 0
124
- while start < len(targets):
125
- chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
126
- H = H + chunk_metrics["hits"]
127
- S = S + chunk_metrics["substitutions"]
128
- D = D + chunk_metrics["deletions"]
129
- I = I + chunk_metrics["insertions"]
130
- start += chunk_size
131
- end += chunk_size
132
- return float(S + D + I) / float(H + S + D)
133
 
134
  print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
135
  ```
136
 
137
- **Test Result**: 15.20 % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
138
-
139
 
140
  ## Training
141
 
 
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ \treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
 
87
  model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\;\\:\\"\\“]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
+ \treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
+ \twith torch.no_grad():
109
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
+ \tpred_ids = torch.argmax(logits, dim=-1)
112
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
+ \treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
  import jiwer
117
 
118
  # Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es
119
  def chunked_wer(targets, predictions, chunk_size=None):
120
+ \tif chunk_size is None: return jiwer.wer(targets, predictions)
121
+ \tstart = 0
122
+ \tend = chunk_size
123
+ \tH, S, D, I = 0, 0, 0, 0
124
+ \twhile start < len(targets):
125
+ \t\tchunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
126
+ \t\tH = H + chunk_metrics["hits"]
127
+ \t\tS = S + chunk_metrics["substitutions"]
128
+ \t\tD = D + chunk_metrics["deletions"]
129
+ \t\tI = I + chunk_metrics["insertions"]
130
+ \t\tstart += chunk_size
131
+ \t\tend += chunk_size
132
+ \treturn float(S + D + I) / float(H + S + D)
133
 
134
  print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
135
  ```
136
 
137
+ **Test Result**: 14.48 %
 
138
 
139
  ## Training
140