PereLluis13
commited on
Merge branch 'main' of https://huggingface.co/PereLluis13/Wav2Vec2-Large-XLSR-53-catalan into main
Browse files
README.md
CHANGED
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
-
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
@@ -87,55 +87,54 @@ processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-5
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
import jiwer
|
117 |
|
118 |
# Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es
|
119 |
def chunked_wer(targets, predictions, chunk_size=None):
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
|
134 |
print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
|
135 |
```
|
136 |
|
137 |
-
**Test Result**:
|
138 |
-
|
139 |
|
140 |
## Training
|
141 |
|
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
55 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
56 |
+
\treturn batch
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan")
|
88 |
model.to("cuda")
|
89 |
|
90 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\;\\:\\"\\“]'
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
+
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
97 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
98 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
99 |
+
\treturn batch
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
107 |
|
108 |
+
\twith torch.no_grad():
|
109 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
110 |
|
111 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
112 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
113 |
+
\treturn batch
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
import jiwer
|
117 |
|
118 |
# Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es
|
119 |
def chunked_wer(targets, predictions, chunk_size=None):
|
120 |
+
\tif chunk_size is None: return jiwer.wer(targets, predictions)
|
121 |
+
\tstart = 0
|
122 |
+
\tend = chunk_size
|
123 |
+
\tH, S, D, I = 0, 0, 0, 0
|
124 |
+
\twhile start < len(targets):
|
125 |
+
\t\tchunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
|
126 |
+
\t\tH = H + chunk_metrics["hits"]
|
127 |
+
\t\tS = S + chunk_metrics["substitutions"]
|
128 |
+
\t\tD = D + chunk_metrics["deletions"]
|
129 |
+
\t\tI = I + chunk_metrics["insertions"]
|
130 |
+
\t\tstart += chunk_size
|
131 |
+
\t\tend += chunk_size
|
132 |
+
\treturn float(S + D + I) / float(H + S + D)
|
133 |
|
134 |
print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000)))
|
135 |
```
|
136 |
|
137 |
+
**Test Result**: 14.48 %
|
|
|
138 |
|
139 |
## Training
|
140 |
|