--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-lift-data-resize results: [] --- # videomae-base-finetuned-lift-data-resize This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8146 - Accuracy: 0.7681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 156 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.5758 | 0.1282 | 20 | 1.6619 | 0.2901 | | 1.3067 | 1.1282 | 40 | 1.6048 | 0.2990 | | 1.3787 | 2.1282 | 60 | 1.4723 | 0.3181 | | 1.1642 | 3.1282 | 80 | 1.4191 | 0.3004 | | 1.1172 | 4.1282 | 100 | 1.2374 | 0.3196 | | 0.8982 | 5.1282 | 120 | 1.0099 | 0.5655 | | 0.915 | 6.1282 | 140 | 0.9540 | 0.5891 | | 0.7809 | 7.1026 | 156 | 0.9189 | 0.5714 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.0.1+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1