File size: 2,225 Bytes
2e17a7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
model-index:
- name: t5-small-salidaLarga-tfg
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-salidaLarga-tfg
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3428
- Rouge2 Precision: 0.0633
- Rouge2 Recall: 0.1234
- Rouge2 Fmeasure: 0.0835
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 7.2339 | 0.27 | 10 | 4.7620 | 0.0337 | 0.0321 | 0.0327 |
| 4.3192 | 0.53 | 20 | 4.0073 | 0.0427 | 0.05 | 0.046 |
| 3.9608 | 0.8 | 30 | 3.6537 | 0.0589 | 0.0922 | 0.0717 |
| 3.7992 | 1.07 | 40 | 3.4747 | 0.0626 | 0.1114 | 0.08 |
| 3.7694 | 1.33 | 50 | 3.3968 | 0.0618 | 0.1145 | 0.0801 |
| 3.5839 | 1.6 | 60 | 3.3600 | 0.0654 | 0.1248 | 0.0856 |
| 3.5573 | 1.87 | 70 | 3.3428 | 0.0633 | 0.1234 | 0.0835 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2
|