File size: 20,069 Bytes
f291f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import os
import json
import time
import csv
import numpy as np
import sys
import pickle
import base64
from scipy.special import softmax
vis_path = ".."
sys.path.append(vis_path)
from context import VisContext, ActiveLearningContext, AnormalyContext
from strategy import DeepDebugger, TimeVis, tfDeepVisualInsight, DVIAL, tfDVIDenseAL, TimeVisDenseAL, TrustActiveLearningDVI,DeepVisualInsight, TrustProxyDVI
from singleVis.eval.evaluate import evaluate_isAlign, evaluate_isNearestNeighbour, evaluate_isAlign_single, evaluate_isNearestNeighbour_single
"""Interface align"""
def initialize_strategy(CONTENT_PATH, VIS_METHOD, SETTING, dense=False):
# initailize strategy (visualization method)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
conf = json.load(f)
config = conf[VIS_METHOD]
# todo support timevis, curretnly only support dvi
# remove unnecessary parts
if SETTING == "normal" or SETTING == "abnormal":
if VIS_METHOD == "TrustVisActiveLearning":
strategy = TrustActiveLearningDVI(CONTENT_PATH, config)
elif VIS_METHOD == "TrustVisProxy":
strategy = TrustProxyDVI(CONTENT_PATH, config)
elif VIS_METHOD == "DVI":
strategy = DeepVisualInsight(CONTENT_PATH, config)
elif VIS_METHOD == "TimeVis":
strategy = TimeVis(CONTENT_PATH, config)
elif VIS_METHOD == "DeepDebugger":
strategy = DeepDebugger(CONTENT_PATH, config)
else:
raise NotImplementedError
elif SETTING == "active learning":
if dense:
if VIS_METHOD == "DVI":
strategy = tfDVIDenseAL(CONTENT_PATH, config)
elif VIS_METHOD == "TimeVis":
strategy = TimeVisDenseAL(CONTENT_PATH, config)
else:
raise NotImplementedError
else:
strategy = DVIAL(CONTENT_PATH, config)
else:
raise NotImplementedError
return strategy
# todo remove unnecessary parts
def initialize_context(strategy, setting):
if setting == "normal":
context = VisContext(strategy)
elif setting == "active learning":
context = ActiveLearningContext(strategy)
elif setting == "abnormal":
context = AnormalyContext(strategy)
else:
raise NotImplementedError
return context
def initialize_backend(CONTENT_PATH, VIS_METHOD, SETTING, dense=False):
""" initialize backend for visualization
Args:
CONTENT_PATH (str): the directory to training process
VIS_METHOD (str): visualization strategy
"DVI", "TimeVis", "DeepDebugger",...
setting (str): context
"normal", "active learning", "dense al", "abnormal"
Raises:
NotImplementedError: _description_
Returns:
backend: a context with a specific strategy
"""
strategy = initialize_strategy(CONTENT_PATH, VIS_METHOD, SETTING, dense)
context = initialize_context(strategy=strategy, setting=SETTING)
return context
def get_train_test_data(context, EPOCH):
train_data = context.train_representation_data(EPOCH)
test_data = context.test_representation_data(EPOCH)
all_data = np.concatenate((train_data, test_data), axis=0)
return all_data
def get_train_test_label(context, EPOCH):
train_labels = context.train_labels(EPOCH)
test_labels = context.test_labels(EPOCH)
labels = np.concatenate((train_labels, test_labels), axis=0).astype(int)
return labels
# def get_strategy_by_setting(CONTENT_PATH, config, VIS_METHOD, SETTING, dense=False):
# if SETTING == "normal" or SETTING == "abnormal":
# if VIS_METHOD == "DVI":
# strategy = tfDeepVisualInsight(CONTENT_PATH, config)
# elif VIS_METHOD == "TimeVis":
# strategy = TimeVis(CONTENT_PATH, config)
# elif VIS_METHOD == "DeepDebugger":
# strategy = DeepDebugger(CONTENT_PATH, config)
# else:
# raise NotImplementedError
# elif SETTING == "active learning":
# if dense:
# if VIS_METHOD == "DVI":
# strategy = tfDVIDenseAL(CONTENT_PATH, config)
# elif VIS_METHOD == "TimeVis":
# strategy = TimeVisDenseAL(CONTENT_PATH, config)
# else:
# raise NotImplementedError
# else:
# strategy = DVIAL(CONTENT_PATH, config)
# else:
# raise NotImplementedError
# return strategy
# def update_embeddings(new_strategy, context, EPOCH, all_data, is_focus):
# embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(EPOCH), "embedding.npy")
# if os.path.exists(embedding_path):
# original_embedding_2d = np.load(embedding_path)
# dd = TimeVis(context.contentpath,new_conf)
# dd._preprocess()
# dd._train()
# embedding_2d = dd.projector.batch_project(EPOCH, all_data)
# return embedding_2d
# def find_and_add_nearest_neighbors(data, subset_indices, num_neighbors=10):
# dimension = len(data[0]) # Assuming all data points have the same dimension
# t = AnnoyIndex(dimension, 'euclidean') # 'euclidean' distance metric; you can use 'angular' as well
# # Build the index with the entire data
# for i, vector in enumerate(data):
# t.add_item(i, vector)
# t.build(10) # Number of trees. More trees gives higher precision.
# # Use a set for faster look-up and ensuring no duplicates
# subset_indices_set = set(subset_indices)
# for idx in subset_indices:
# nearest_neighbors = t.get_nns_by_item(idx, num_neighbors)
# # Use set union operation to merge indices without duplicates
# subset_indices_set = subset_indices_set.union(nearest_neighbors)
# # Convert set back to list
# return list(subset_indices_set)
# def get_expanded_subset(context, EPOCH, subset_indices):
# all_data = get_train_test_data(context, EPOCH)
# expanded_subset = find_and_add_nearest_neighbors(all_data, subset_indices)
# return expanded_subset
# def update_vis_error_points(new_strategy, context, EPOCH, is_focus):
# embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(EPOCH), "embedding.npy")
# if os.path.exists(embedding_path):
# original_embedding_2d = np.load(embedding_path)
# new_strategy._train()
# new_strategy.projector.batch_project
# embedding_2d = dd.projector.batch_project(EPOCH, all_data)
# update_embeddings(strategy, context, EPOCH, True)
def update_epoch_projection(context, EPOCH, predicates, isContraVis):
# TODO consider active learning setting
train_data = context.train_representation_data(EPOCH)
test_data = context.test_representation_data(EPOCH)
all_data = np.concatenate((train_data, test_data), axis=0)
print(len(all_data))
train_labels = context.train_labels(EPOCH)
# test_labels = context.test_labels(EPOCH)
# labels = np.concatenate((train_labels, test_labels), axis=0).astype(int)
labels = train_labels
embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(EPOCH), "embedding.npy")
if os.path.exists(embedding_path):
embedding_2d = np.load(embedding_path)
else:
embedding_2d = context.strategy.projector.batch_project(EPOCH, all_data)
np.save(embedding_path, embedding_2d)
training_data_number = context.strategy.config["TRAINING"]["train_num"]
testing_data_number = context.strategy.config["TRAINING"]["test_num"]
training_data_index = list(range(training_data_number))
testing_data_index = list(range(training_data_number, training_data_number + testing_data_number))
# return the image of background
# read cache if exists
bgimg_path = os.path.join(context.strategy.data_provider.checkpoint_path(EPOCH), "bgimg.png")
scale_path = os.path.join(context.strategy.data_provider.checkpoint_path(EPOCH), "scale.npy")
# grid_path = os.path.join(context.strategy.data_provider.checkpoint_path(EPOCH), "grid.pkl")
if os.path.exists(bgimg_path) and os.path.exists(scale_path):
# with open(os.path.join(grid_path), "rb") as f:
# grid = pickle.load(f)
with open(bgimg_path, 'rb') as img_f:
img_stream = img_f.read()
b_fig = base64.b64encode(img_stream).decode()
grid = np.load(scale_path)
else:
x_min, y_min, x_max, y_max, b_fig = context.strategy.vis.get_background(EPOCH, context.strategy.config["VISUALIZATION"]["RESOLUTION"])
grid = [x_min, y_min, x_max, y_max]
# formating
grid = [float(i) for i in grid]
b_fig = str(b_fig, encoding='utf-8')
# save results, grid and decision_view
# with open(grid_path, "wb") as f:
# pickle.dump(grid, f)
np.save(embedding_path, embedding_2d)
# TODO fix its structure
eval_new = dict()
file_name = context.strategy.config["VISUALIZATION"]["EVALUATION_NAME"]
save_eval_dir = os.path.join(context.strategy.data_provider.model_path, file_name + ".json")
if os.path.exists(save_eval_dir):
evaluation = context.strategy.evaluator.get_eval(file_name=file_name)
eval_new["train_acc"] = evaluation["train_acc"][str(EPOCH)]
eval_new["test_acc"] = evaluation["test_acc"][str(EPOCH)]
else:
eval_new["train_acc"] = 0
eval_new["test_acc"] = 0
color = context.strategy.vis.get_standard_classes_color() * 255
color = color.astype(int)
CLASSES = np.array(context.strategy.config["CLASSES"])
# label_color_list = [0] * len(labels)
label_color_list = color[labels].tolist()
label_list = CLASSES[labels].tolist()
label_name_dict = dict(enumerate(CLASSES))
prediction_list = []
# if (isContraVis == 'false'):
# prediction = context.strategy.data_provider.get_pred(EPOCH, all_data).argmax(1)
# for i in range(len(prediction)):
# prediction_list.append(CLASSES[prediction[i]])
for i in range(len(train_data)):
prediction_list.append("0")
EPOCH_START = context.strategy.config["EPOCH_START"]
EPOCH_PERIOD = context.strategy.config["EPOCH_PERIOD"]
EPOCH_END = context.strategy.config["EPOCH_END"]
max_iter = (EPOCH_END - EPOCH_START) // EPOCH_PERIOD + 1
# max_iter = context.get_max_iter()
# current_index = timevis.get_epoch_index(EPOCH)
# selected_points = np.arange(training_data_number + testing_data_number)[current_index]
selected_points = np.arange(training_data_number + testing_data_number)
for key in predicates.keys():
if key == "label":
tmp = np.array(context.filter_label(predicates[key]))
elif key == "type":
tmp = np.array(context.filter_type(predicates[key], int(EPOCH)))
else:
tmp = np.arange(training_data_number + testing_data_number)
selected_points = np.intersect1d(selected_points, tmp)
properties = np.concatenate((np.zeros(training_data_number, dtype=np.int16), 2*np.ones(testing_data_number, dtype=np.int16)), axis=0)
lb = context.get_epoch_index(EPOCH)
ulb = np.setdiff1d(training_data_index, lb)
properties[ulb] = 1
highlightedPointIndices = []
if (isContraVis == 'false'):
high_pred = context.strategy.data_provider.get_pred(EPOCH, all_data).argmax(1)
inv_high_dim_data = context.strategy.projector.batch_inverse(EPOCH, embedding_2d)
inv_high_pred = context.strategy.data_provider.get_pred(EPOCH, inv_high_dim_data).argmax(1)
highlightedPointIndices = np.where(high_pred != inv_high_pred)[0]
print("EMBEDDINGLEN", len(embedding_2d))
return embedding_2d.tolist(), grid, b_fig, label_name_dict, label_color_list, label_list, max_iter, training_data_index, testing_data_index, eval_new, prediction_list, selected_points, properties, highlightedPointIndices,
def getContraVisChangeIndices(context, iterationLeft, iterationRight, method):
predChangeIndices = []
train_data = context.train_representation_data(iterationLeft)
test_data = context.test_representation_data(iterationLeft)
all_data = np.concatenate((train_data, test_data), axis=0)
embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(iterationLeft), "embedding.npy")
if os.path.exists(embedding_path):
embedding_2d = np.load(embedding_path)
else:
embedding_2d = context.strategy.projector.batch_project(iterationLeft, all_data)
np.save(embedding_path, embedding_2d)
last_train_data = context.train_representation_data(iterationRight)
last_test_data = context.test_representation_data(iterationRight)
last_all_data = np.concatenate((last_train_data, last_test_data), axis=0)
last_embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(iterationRight), "embedding.npy")
if os.path.exists(last_embedding_path):
last_embedding_2d = np.load(last_embedding_path)
else:
last_embedding_2d = context.strategy.projector.batch_project(iterationRight, last_all_data)
np.save(last_embedding_path, last_embedding_2d)
if (method == "align"):
predChangeIndices = evaluate_isAlign(embedding_2d, last_embedding_2d)
elif (method == "nearest neighbour"):
predChangeIndices = evaluate_isNearestNeighbour(embedding_2d, last_embedding_2d)
elif (method == "both"):
predChangeIndices_align = evaluate_isAlign(embedding_2d, last_embedding_2d)
predChangeIndices_nearest = evaluate_isNearestNeighbour(embedding_2d, last_embedding_2d)
intersection = set(predChangeIndices_align).intersection(predChangeIndices_nearest)
predChangeIndices = list(intersection)
else:
print("wrong method")
return predChangeIndices
def getContraVisChangeIndicesSingle(context, iterationLeft, iterationRight, method, left_selected, right_selected):
train_data = context.train_representation_data(iterationLeft)
test_data = context.test_representation_data(iterationLeft)
all_data = np.concatenate((train_data, test_data), axis=0)
embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(iterationLeft), "embedding.npy")
if os.path.exists(embedding_path):
embedding_2d = np.load(embedding_path)
else:
embedding_2d = context.strategy.projector.batch_project(iterationLeft, all_data)
np.save(embedding_path, embedding_2d)
last_train_data = context.train_representation_data(iterationRight)
last_test_data = context.test_representation_data(iterationRight)
last_all_data = np.concatenate((last_train_data, last_test_data), axis=0)
last_embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(iterationRight), "embedding.npy")
if os.path.exists(last_embedding_path):
last_embedding_2d = np.load(last_embedding_path)
else:
last_embedding_2d = context.strategy.projector.batch_project(iterationRight, last_all_data)
np.save(last_embedding_path, last_embedding_2d)
predChangeIndicesLeft = []
predChangeIndicesRight = []
predChangeIndicesLeft_Left = []
predChangeIndicesLeft_Right = []
predChangeIndicesRight_Left = []
predChangeIndicesRight_Right = []
if (method == "align"):
predChangeIndicesLeft, predChangeIndicesRight = evaluate_isAlign_single(embedding_2d, last_embedding_2d, left_selected, right_selected)
elif (method == "nearest neighbour"):
predChangeIndicesLeft_Left, predChangeIndicesLeft_Right,predChangeIndicesRight_Left, predChangeIndicesRight_Right= evaluate_isNearestNeighbour_single(embedding_2d, last_embedding_2d, left_selected, right_selected)
return predChangeIndicesLeft, predChangeIndicesRight, predChangeIndicesLeft_Left, predChangeIndicesLeft_Right, predChangeIndicesRight_Left, predChangeIndicesRight_Right
def getCriticalChangeIndices(context, curr_iteration, last_iteration):
predChangeIndices = []
train_data = context.train_representation_data(curr_iteration)
test_data = context.test_representation_data(curr_iteration)
all_data = np.concatenate((train_data, test_data), axis=0)
embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(curr_iteration), "embedding.npy")
if os.path.exists(embedding_path):
embedding_2d = np.load(embedding_path)
else:
embedding_2d = context.strategy.projector.batch_project(curr_iteration, all_data)
np.save(embedding_path, embedding_2d)
last_train_data = context.train_representation_data(last_iteration)
last_test_data = context.test_representation_data(last_iteration)
last_all_data = np.concatenate((last_train_data, last_test_data), axis=0)
last_embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(last_iteration), "embedding.npy")
if os.path.exists(last_embedding_path):
last_embedding_2d = np.load(last_embedding_path)
else:
last_embedding_2d = context.strategy.projector.batch_project(last_iteration, last_all_data)
np.save(last_embedding_path, last_embedding_2d)
high_pred = context.strategy.data_provider.get_pred(curr_iteration, all_data).argmax(1)
last_high_pred = context.strategy.data_provider.get_pred(last_iteration, last_all_data).argmax(1)
predChangeIndices = np.where(high_pred != last_high_pred)[0]
return predChangeIndices
def getConfChangeIndices(context, curr_iteration, last_iteration, confChangeInput):
train_data = context.train_representation_data(curr_iteration)
test_data = context.test_representation_data(curr_iteration)
all_data = np.concatenate((train_data, test_data), axis=0)
embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(curr_iteration), "embedding.npy")
if os.path.exists(embedding_path):
embedding_2d = np.load(embedding_path)
else:
embedding_2d = context.strategy.projector.batch_project(curr_iteration, all_data)
np.save(embedding_path, embedding_2d)
last_train_data = context.train_representation_data(last_iteration)
last_test_data = context.test_representation_data(last_iteration)
last_all_data = np.concatenate((last_train_data, last_test_data), axis=0)
last_embedding_path = os.path.join(context.strategy.data_provider.checkpoint_path(last_iteration), "embedding.npy")
if os.path.exists(last_embedding_path):
last_embedding_2d = np.load(last_embedding_path)
else:
last_embedding_2d = context.strategy.projector.batch_project(last_iteration, last_all_data)
np.save(last_embedding_path, last_embedding_2d)
high_pred = context.strategy.data_provider.get_pred(curr_iteration, all_data)
last_high_pred = context.strategy.data_provider.get_pred(last_iteration, last_all_data)
high_conf = softmax(high_pred, axis=1)
last_high_conf = softmax(last_high_pred, axis=1)
# get class type with highest prob
high_pred_class = high_conf.argmax(axis=1)
last_high_pred_class = last_high_conf.argmax(axis=1)
same_pred_indices = np.where(high_pred_class == last_high_pred_class)[0]
print("same")
print(same_pred_indices)
# get
conf_diff = np.abs(high_conf[np.arange(len(high_conf)), high_pred_class] - last_high_conf[np.arange(len(last_high_conf)), last_high_pred_class])
print("conf")
print(conf_diff)
significant_conf_change_indices = same_pred_indices[conf_diff[same_pred_indices] > confChangeInput]
print("siginificant")
print(significant_conf_change_indices)
return significant_conf_change_indices
def add_line(path, data_row):
"""
data_row: list, [API_name, username, time]
"""
now_time = time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime())
data_row.append(now_time)
with open(path, "a+") as f:
csv_write = csv.writer(f)
csv_write.writerow(data_row)
|