File size: 17,555 Bytes
f291f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from abc import ABC, abstractmethod
import torch
from torch import nn
from singleVis.backend import compute_cross_entropy_tf, convert_distance_to_probability, compute_cross_entropy

import torch
torch.manual_seed(0)  # 使用固定的种子
torch.cuda.manual_seed_all(0)
# Set the random seed for numpy

"""Losses modules for preserving four propertes"""
# https://github.com/ynjnpa/VocGAN/blob/5339ee1d46b8337205bec5e921897de30a9211a1/utils/stft_loss.py for losses module

class Loss(nn.Module):
    def __init__(self) -> None:
        super().__init__()
    
    @abstractmethod
    def forward(self, *args, **kwargs):
        pass

class UmapLoss(nn.Module):
    def __init__(self, negative_sample_rate, device, _a=1.0, _b=1.0, repulsion_strength=1.0):
        super(UmapLoss, self).__init__()

        self._negative_sample_rate = negative_sample_rate
        self._a = _a,
        self._b = _b,
        self._repulsion_strength = repulsion_strength
        self.DEVICE = torch.device(device)

    @property
    def a(self):
        return self._a[0]

    @property
    def b(self):
        return self._b[0]

    def forward(self, embedding_to, embedding_from):
        batch_size = embedding_to.shape[0]
        # get negative samples
        embedding_neg_to = torch.repeat_interleave(embedding_to, self._negative_sample_rate, dim=0)
        repeat_neg = torch.repeat_interleave(embedding_from, self._negative_sample_rate, dim=0)
        randperm = torch.randperm(repeat_neg.shape[0])
        embedding_neg_from = repeat_neg[randperm]
        

        #  distances between samples (and negative samples)
        distance_embedding = torch.cat(
            (
                torch.norm(embedding_to - embedding_from, dim=1),
                torch.norm(embedding_neg_to - embedding_neg_from, dim=1),
            ),
            dim=0,
        )
        probabilities_distance = convert_distance_to_probability(
            distance_embedding, self.a, self.b
        )
        probabilities_distance = probabilities_distance.to(self.DEVICE)

        # set true probabilities based on negative sampling
        probabilities_graph = torch.cat(
            (torch.ones(batch_size), torch.zeros(batch_size * self._negative_sample_rate)), dim=0,
        )
        probabilities_graph = probabilities_graph.to(device=self.DEVICE)

        # compute cross entropy
        (_, _, ce_loss) = compute_cross_entropy(
            probabilities_graph,
            probabilities_distance,
            repulsion_strength=self._repulsion_strength,
        )

        return torch.mean(ce_loss)


# class ReconstructionLoss(nn.Module):
#     def __init__(self, beta=1.0):
#         super(ReconstructionLoss, self).__init__()
#         self._beta = beta

#     def forward(self, edge_to, edge_from, recon_to, recon_from, a_to, a_from):
#         loss1 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_to), self._beta), torch.pow(edge_to - recon_to, 2)), 1))
#         loss2 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_from), self._beta), torch.pow(edge_from - recon_from, 2)), 1))
#         # without attention weights
#         # loss1 = torch.mean(torch.mean(torch.pow(edge_to - recon_to, 2), 1))
#         # loss2 = torch.mean(torch.mean(torch.pow(edge_from - recon_from, 2), 1))
#         return (loss1 + loss2)/2

# class ReconstructionLoss(nn.Module):
#     def __init__(self, beta=1.0, weight_loss1=0.5, weight_loss2=0.5, clip_val=None):
#         super(ReconstructionLoss, self).__init__()
#         self._beta = beta
#         self.weight_loss1 = weight_loss1
#         self.weight_loss2 = weight_loss2
#         self.clip_val = clip_val

#     def forward(self, edge_to, edge_from, recon_to, recon_from, a_to, a_from):
#         # Compute weights
#         weight_to = torch.pow((1+a_to), self._beta)
#         weight_from = torch.pow((1+a_from), self._beta)
        
#         # Optional: Clip weights
#         if self.clip_val is not None:
#             weight_to = torch.clamp(weight_to, max=self.clip_val)
#             weight_from = torch.clamp(weight_from, max=self.clip_val)
        
#         # Compute individual losses
#         loss1 = torch.mean(torch.mean(torch.multiply(weight_to, torch.pow(edge_to - recon_to, 2)), 1))
#         loss2 = torch.mean(torch.mean(torch.multiply(weight_from, torch.pow(edge_from - recon_from, 2)), 1))
        
#         # Return weighted sum of losses
#         return self.weight_loss1 * loss1 + self.weight_loss2 * loss2

class ReconstructionLoss(nn.Module):
    def __init__(self, beta=1.0,alpha=0.5):
        super(ReconstructionLoss, self).__init__()
        self._beta = beta
        self._alpha = alpha

    def forward(self, edge_to, edge_from, recon_to, recon_from, a_to, a_from):
        loss1 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_to), self._beta), torch.pow(edge_to - recon_to, 2)), 1))
        loss2 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_from), self._beta), torch.pow(edge_from - recon_from, 2)), 1))

        # l1_loss1 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_to), self._beta), torch.abs(edge_to - recon_to)), 1))
        # l1_loss2 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_from), self._beta), torch.abs(edge_from - recon_from)), 1))
        # l2_loss1 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_to), self._beta), torch.pow(edge_to - recon_to, 2)), 1))
        # l2_loss2 = torch.mean(torch.mean(torch.multiply(torch.pow((1+a_from), self._beta), torch.pow(edge_from - recon_from, 2)), 1))
        # loss1 = self._alpha * l1_loss1 + (1 - self._alpha) * l2_loss1
        # loss2 = self._alpha * l1_loss2 + (1 - self._alpha) * l2_loss2
    

        # without attention weights
        # loss1 = torch.mean(torch.mean(torch.pow(edge_to - recon_to, 2), 1))
        # loss2 = torch.mean(torch.mean(torch.pow(edge_from - recon_from, 2), 1))
        return (loss1 + loss2)/2



class SmoothnessLoss(nn.Module):
    def __init__(self, margin=0.0):
        super(SmoothnessLoss, self).__init__()
        self._margin = margin

    def forward(self, embedding, target, Coefficient):
        loss = torch.mean(Coefficient * torch.clamp(torch.norm(embedding-target, dim=1)-self._margin, min=0))
        return loss


class SingleVisLoss(nn.Module):
    def __init__(self, umap_loss, recon_loss, lambd):
        super(SingleVisLoss, self).__init__()
        self.umap_loss = umap_loss
        self.recon_loss = recon_loss
        self.lambd = lambd

    def forward(self, edge_to, edge_from, a_to, a_from, outputs):
        embedding_to, embedding_from = outputs["umap"]
        recon_to, recon_from = outputs["recon"]

        recon_l = self.recon_loss(edge_to, edge_from, recon_to, recon_from, a_to, a_from)
        # recon_l = self.recon_loss(edge_to, edge_from, recon_to, recon_from)
        umap_l = self.umap_loss(embedding_to, embedding_from)

        loss = umap_l + self.lambd * recon_l

        return umap_l, recon_l, loss

class HybridLoss(nn.Module):
    def __init__(self, umap_loss, recon_loss, smooth_loss, lambd1, lambd2):
        super(HybridLoss, self).__init__()
        self.umap_loss = umap_loss
        self.recon_loss = recon_loss
        self.smooth_loss = smooth_loss
        self.lambd1 = lambd1
        self.lambd2 = lambd2

    def forward(self, edge_to, edge_from, a_to, a_from, embeded_to, coeff, outputs):
        embedding_to, embedding_from = outputs["umap"]
        recon_to, recon_from = outputs["recon"]

        recon_l = self.recon_loss(edge_to, edge_from, recon_to, recon_from, a_to, a_from)
        umap_l = self.umap_loss(embedding_to, embedding_from)
        smooth_l = self.smooth_loss(embedding_to, embeded_to, coeff)

        loss = umap_l + self.lambd1 * recon_l + self.lambd2 * smooth_l

        return umap_l, recon_l, smooth_l, loss


class TemporalLoss(nn.Module):
    def __init__(self, prev_w, device) -> None:
        super(TemporalLoss, self).__init__()
        self.prev_w = prev_w
        self.device = device
        for param_name in self.prev_w.keys():
            self.prev_w[param_name] = self.prev_w[param_name].to(device=self.device, dtype=torch.float32)

    def forward(self, curr_module):
        loss = torch.tensor(0., requires_grad=True).to(self.device)
        # c = 0
        for name, curr_param in curr_module.named_parameters():
            # c = c + 1
            prev_param = self.prev_w[name]
            # tf dvi: diff = tf.reduce_sum(tf.math.square(w_current[j] - w_prev[j]))
            loss = loss + torch.sum(torch.square(curr_param-prev_param))
            # loss = loss + torch.norm(curr_param-prev_param, 2)
        # in dvi paper, they dont have this normalization (optional)
        # loss = loss/c
        return loss


class DummyTemporalLoss(nn.Module):
    def __init__(self, device) -> None:
        super(DummyTemporalLoss, self).__init__()
        self.device = device

    def forward(self, curr_module):
        loss = torch.tensor(0., requires_grad=True).to(self.device)
        return loss
    

class PositionRecoverLoss(nn.Module):
    def __init__(self, device) -> None:
        super(PositionRecoverLoss, self).__init__()
        self.device = device
    def forward(self, position, recover_position):
        mse_loss = nn.MSELoss().to(self.device)
        loss = mse_loss(position, recover_position)
        return loss


class DVILoss(nn.Module):
    def __init__(self, umap_loss, recon_loss, temporal_loss, lambd1, lambd2, device, umap_weight=1):
        super(DVILoss, self).__init__()
        self.umap_loss = umap_loss
        self.recon_loss = recon_loss
        self.temporal_loss = temporal_loss
        self.lambd1 = lambd1
        self.lambd2 = lambd2
        self.device = device
        self.umap_weight = umap_weight

    def forward(self, edge_to, edge_from, a_to, a_from, curr_model, outputs):

        embedding_to, embedding_from = outputs["umap"]
        recon_to, recon_from = outputs["recon"]
        # TODO stop gradient edge_to_ng = edge_to.detach().clone()

        recon_l = self.recon_loss(edge_to, edge_from, recon_to, recon_from, a_to, a_from).to(self.device)
        umap_l = self.umap_loss(embedding_to, embedding_from).to(self.device)
        temporal_l = self.temporal_loss(curr_model).to(self.device)

        loss = self.umap_weight * umap_l + self.lambd1 * recon_l + self.lambd2 * temporal_l

        return self.umap_weight * umap_l, self.lambd1 *recon_l, self.lambd2 *temporal_l, loss

class MINE(nn.Module):
    def __init__(self):
        super(MINE, self).__init__()
        # 在这里,MINE网络是一个MLP
        self.network = nn.Sequential(
            nn.Linear(2, 100),
            nn.ReLU(),
            nn.Linear(100, 1),
        )

    def forward(self, x, y):
        joint = torch.cat((x, y), dim=1)
        marginal = torch.cat((x, y[torch.randperm(x.size(0))]), dim=1)
        t_joint = self.network(joint)
        t_marginal = self.network(marginal)
        # 重新调整以避免exp(t)变为无穷大
        mi = torch.mean(t_joint) - torch.log(torch.mean(torch.exp(t_marginal)))
        return -mi  # 最大化mi <=> 最小化-mi


class TVILoss(nn.Module):
    def __init__(self, umap_loss, recon_loss, temporal_loss, MI_loss, lambd1, lambd2, lambd3, device):
        super(TVILoss, self).__init__()
        self.umap_loss = umap_loss
        self.recon_loss = recon_loss
        self.temporal_loss = temporal_loss
        self.MI_loss = MI_loss
        self.lambd1 = lambd1
        self.lambd2 = lambd2
        self.lambd3 = lambd3
        self.device = device

    def forward(self, edge_to, edge_from, a_to, a_from, curr_model, outputs):
        embedding_to, embedding_from = outputs["umap"]
        recon_to, recon_from = outputs["recon"]
        recon_l = self.recon_loss(edge_to, edge_from, recon_to, recon_from, a_to, a_from).to(self.device)
        umap_l = self.umap_loss(embedding_to, embedding_from).to(self.device)
        temporal_l = self.temporal_loss(curr_model).to(self.device)
         # 计算嵌入和边之间的互信息
        # MI_l = self.MI_loss(embedding_to, embedding_from, edge_to, edge_from).to(self.device)
        # Calculate mutual information between embedding and edge separately
        MI_l_embedding = self.MI_loss(embedding_to, embedding_from).to(self.device)
        MI_l_edge = self.MI_loss(edge_to, edge_from).to(self.device)
        # Assuming you want to give them equal weight, but you can adjust it as you need
        MI_l = (MI_l_embedding + MI_l_edge) / 2
        loss = umap_l + self.lambd1 * recon_l + self.lambd2 * temporal_l + self.lambd3 * MI_l

        return umap_l, self.lambd1 * recon_l, self.lambd2 * temporal_l, loss

# class DVILoss(nn.Module):
#     def __init__(self, umap_loss, recon_loss, temporal_loss, lambd1, lambd2, device):
#         super(DVILoss, self).__init__()
#         self.umap_loss = umap_loss
#         self.recon_loss = recon_loss
#         self.temporal_loss = temporal_loss
#         self.lambd1 = lambd1
#         self.lambd2 = lambd2
#         self.device = device

#     def forward(self, edge_to, edge_from, a_to, a_from, curr_model, outputs):
#         embedding_to, embedding_from = outputs["umap"]
#         recon_to, recon_from = outputs["recon"]

#         # Create new tensors which do not require gradients
#         edge_to_ng = edge_to.detach()
#         edge_from_ng = edge_from.detach()

#         # Calculate loss with these new tensors
#         recon_l = self.recon_loss(edge_to_ng, edge_from_ng, recon_to, recon_from, a_to, a_from).to(self.device)
#         umap_l = self.umap_loss(embedding_to, embedding_from).to(self.device)
#         temporal_l = self.temporal_loss(curr_model).to(self.device)

#         loss = umap_l + self.lambd1 * recon_l + self.lambd2 * temporal_l

#         return umap_l, self.lambd1 *recon_l, self.lambd2 *temporal_l, loss



import tensorflow as tf
def umap_loss(
    batch_size,
    negative_sample_rate,
    _a,
    _b,
    repulsion_strength=1.0,
):
    """
    Generate a keras-ccompatible loss function for UMAP loss

    Parameters
    ----------
    batch_size : int
        size of mini-batches
    negative_sample_rate : int
        number of negative samples per positive samples to train on
    _a : float
        distance parameter in embedding space
    _b : float float
        distance parameter in embedding space
    repulsion_strength : float, optional
        strength of repulsion vs attraction for cross-entropy, by default 1.0

    Returns
    -------
    loss : function
        loss function that takes in a placeholder (0) and the output of the keras network
    """

    @tf.function
    def loss(placeholder_y, embed_to_from):
        # split out to/from
        embedding_to, embedding_from, weights = tf.split(
            embed_to_from, num_or_size_splits=[2, 2, 1], axis=1
        )
        # embedding_to, embedding_from, weight = embed_to_from

        # get negative samples
        embedding_neg_to = tf.repeat(embedding_to, negative_sample_rate, axis=0)
        repeat_neg = tf.repeat(embedding_from, negative_sample_rate, axis=0)
        embedding_neg_from = tf.gather(
            repeat_neg, tf.random.shuffle(tf.range(tf.shape(repeat_neg)[0]))
        )

        #  distances between samples (and negative samples)
        distance_embedding = tf.concat(
            (
                tf.norm(embedding_to - embedding_from, axis=1),
                tf.norm(embedding_neg_to - embedding_neg_from, axis=1),
            ),
            axis=0,
        )

        # convert probabilities to distances
        probabilities_distance = 1.0 / (1.0 + _a * tf.math.pow(distance_embedding, 2 * _b))

        # set true probabilities based on negative sampling
        probabilities_graph = tf.concat(
            (tf.ones(batch_size), tf.zeros(batch_size * negative_sample_rate)), axis=0,
        )
        probabilities = tf.concat(
            (tf.squeeze(weights), tf.zeros(batch_size * negative_sample_rate)), axis=0,
        )

        # compute cross entropy
        (attraction_loss, repellant_loss, ce_loss) = compute_cross_entropy_tf(
            probabilities_graph,
            probabilities_distance,
            repulsion_strength=repulsion_strength,
        )

        return tf.reduce_mean(ce_loss)

    return loss

# step2
def regularize_loss():
    '''
    Add temporal regularization L2 loss on weights
    '''

    @tf.function
    def loss(w_prev, w_current, to_alpha):
        assert len(w_prev) == len(w_current)
        # multiple layers of weights, need to add them up
        for j in range(len(w_prev)):
            diff = tf.reduce_sum(tf.math.square(w_current[j] - w_prev[j]))
            diff = tf.math.multiply(to_alpha, diff)
            if j == 0:
                alldiff = tf.reduce_mean(diff)
            else:
                alldiff += tf.reduce_mean(diff)
        return alldiff

    return loss

def reconstruction_loss(
    beta=1
):
    """
    Generate a keras-ccompatible loss function for customize reconstruction loss

    Parameters
    ----------
    beta: hyperparameter
    Returns
    -------
    loss : function
    """

    @tf.function
    def loss(edge_to, edge_from, recon_to, recon_from, alpha_to, alpha_from):
        loss1 = tf.reduce_mean(tf.reduce_mean(tf.math.multiply(tf.math.pow((1+alpha_to), beta), tf.math.pow(edge_to - recon_to, 2)), 1))
        loss2 = tf.reduce_mean(tf.reduce_mean(tf.math.multiply(tf.math.pow((1+alpha_from), beta), tf.math.pow(edge_from - recon_from, 2)), 1))
        return (loss1 + loss2)/2

    return loss