File size: 17,553 Bytes
f291f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import numpy as np
import matplotlib.pyplot as plt


import umap.umap_ as umap
from sklearn.metrics import silhouette_score, calinski_harabasz_score
from sklearn.neighbors import NearestNeighbors, KernelDensity
from sklearn.cluster import Birch, KMeans
from pynndescent import NNDescent

# helper functions
def select_centroid(samples, n_select=3):
    kmeans = KMeans(n_clusters=n_select).fit(samples)

    nbrs = NearestNeighbors(n_neighbors=1).fit(samples)
    indices = nbrs.kneighbors(kmeans.cluster_centers_,return_distance=False)
    return indices.squeeze()

def select_closest(queries, pool):
    return select_close(queries, pool, k=1).squeeze(axis=1)

def select_close(queries, pool, k):
    if len(queries)==0:
        return np.array([])
    # index = NNDescent(pool)
    # indices, _ = index.query(queries, k=k)
    nbrs = NearestNeighbors(n_neighbors=k).fit(pool)
    indices = nbrs.kneighbors(queries, return_distance=False)
    return indices

def closest_dists(embedding, centers):
    dists = np.zeros((len(embedding), len(centers)))
    for i in range(len(embedding)):
        dists[i] = np.linalg.norm(embedding[i]-centers, axis=1)
    # # embedding_2 = np.power(embedding, 2).sum(axis=1)
    # embedding_2 = np.linalg.norm(embedding, axis=1)**2
    # # centers_2 = np.power(centers, 2).sum(axis=1)
    # centers_2 = np.linalg.norm(centers, axis=1)**2
    # ec = np.dot(embedding, centers.T)
    # dists = -2*ec+embedding_2[:, np.newaxis]+centers_2[np.newaxis,:]
    dists = dists.min(axis=1)
    return dists


class NoiseTrajectoryDetector:
    def __init__(self, embeddings_2d, labels):
        """ detect noise by 2d embeddings of samples

        Parameters
        ----------
        embeddings_2d : ndarray, shape (train_num, epoch_num, 2)
            all 2d embeddings of representations by timevis
        labels : ndarray, shape (train_num, )
            Noise labels list of training data
        """
        self.embeddings_2d = embeddings_2d
        self.labels = labels

        train_num, time_steps, repr_dim = embeddings_2d.shape
        self.train_num = train_num
        self.time_steps = time_steps
        self.repr_dim = repr_dim
        self.classes_num = np.max(self.labels)+1
        self.threshold = .4
        self.lambd = .5

        # init centers dict
        self.trajectory_embedding = dict()  # 2d embedding of trajectories
        self.trajectory_eval = dict()   # silhouette_scores and calinski_harabasz_scores

        self.clean_centers = dict()
        self.noise_centers = dict()
        self.sub_centers = dict()   
        self.sub_centers_labels = dict()
        self.sub_center_verified = dict()
        self.umap_scores = dict()
        self.umap_norm = dict()

        # self.dense = dict() # dense point for each class
        # self.u = dict()
        # self.pca_scores = dict()
        # self.pca_norm = dict()
    
    def proj_cls(self, cls_num, dim=2, period=75, repeat=2):
        """calculate the score for class cls_num

        Parameters
        ----------
        cls_num : int
            the number of class that we are working on
        period : _type_
            how many epochs' trajectory that we consider
        repeat : int, optional
            repeat umap algorithm and select a better one, by default 2
        """
        cls = np.argwhere(self.labels == cls_num).squeeze(axis=1)
        high_data = self.embeddings_2d[cls,-period:,:].reshape(len(cls), -1)
        best_s = -1.
        best_c = -1.
        best_embedding = None
        best_brc = None
        for _ in range(repeat):
            reducer = umap.UMAP(n_components=dim)
            embedding = reducer.fit_transform(high_data)

            brc = Birch(n_clusters=2)
            brc.fit(embedding)

            s = silhouette_score(embedding, brc.labels_, metric='euclidean')
            c = calinski_harabasz_score(embedding, brc.labels_)
            if best_s<s:
                best_s = s
                best_c = c
                best_embedding = embedding
                best_brc = brc
            if best_s <= 0.5:
                continue
            else:
                break
        self.trajectory_embedding[str(cls_num)] = best_embedding
        self.trajectory_eval[str(cls_num)] = (best_s, best_c)

        if best_s > 0.5:
            print("Suspect abnormal in embedding...")

            print("Calculating umap scores...")
            # calculate umap scores
            labels = best_brc.labels_
            centroid = best_brc.subcluster_centers_
            centroid_labels = best_brc.subcluster_labels_
            # clean 0, noise 1
            bin = np.bincount(labels)
            if bin[0] < bin[1]:
                centroid_labels = np.abs(centroid_labels-1)
                labels = np.abs(labels-1)

            centroid_idxs = select_closest(centroid, embedding)
            self.sub_centers[str(cls_num)] = centroid_idxs
            self.sub_center_verified[str(cls_num)] = np.full(len(centroid), False, dtype=bool)
            # update labels
            self.sub_centers_labels[str(cls_num)] = centroid_labels

            clean_center = embedding[labels==0].mean(axis=0)
            id = select_closest([clean_center], embedding)
            self.clean_centers[str(cls_num)] = np.array(embedding[id])
            self.noise_centers[str(cls_num)] = None

            umap_scores = closest_dists(embedding, self.clean_centers[str(cls_num)])
            # self.umap_scores[str(cls_num)] = umap_scores
            self.umap_norm[str(cls_num)] = umap_scores.max()

            # # calculate pca scores
            # print("Calculating pca scores...")
            # _, _, v = np.linalg.svd(high_data)
            # pca_scores = np.abs(np.inner(v[0], high_data))
            # pca_scores = pca_scores / pca_scores.max()

            # X_plot = np.linspace(0, 1, 1000)[:, np.newaxis]
            # kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(pca_scores.reshape(len(pca_scores), 1))
            # log_dens = kde.score_samples(X_plot)
            # i = np.argmax(np.exp(log_dens))
            # dense = X_plot[i, 0]
            # self.dense[str(cls_num)] = dense
            # self.u[str(cls_num)] = v[0]
            # self.pca_scores[str(cls_num)] = np.abs(pca_scores-dense).squeeze()
            # self.pca_norm[str(cls_num)] = self.pca_scores[str(cls_num)].max()
            # print("Finish calculating scores for class {}".format(cls_num))

            # update scores
        
        else:
            print("No anomaly detected for class {}!".format(cls_num))

    def proj_all(self, dim=2, period=75, repeat=2):
        for cls_num in range(int(self.classes_num)):
            self.proj_cls(cls_num, dim=dim, period=period, repeat=repeat)
    
    def detect_noise_cls(self, cls_num, verbose=0):
        best_s, best_c = self.trajectory_eval[str(cls_num)]
        if verbose:
            print("silhouette_score\t", best_s)
            print("calinski_harabasz_score\t", best_c)
        if best_s>=0.5:
            return True   
        return False
    
    def update_belief(self, cls_num, centroid, is_noise):
        embeddings = self.trajectory_embedding[str(cls_num)]
        centroids = embeddings[self.sub_centers[str(cls_num)]]

        # update single center, (clean 0, noise 1)
        label = 1 if is_noise else 0

        idx = np.argmin(np.linalg.norm(centroids-centroid, axis=1))
        self.sub_centers_labels[str(cls_num)][idx] = label 
        self.sub_center_verified[str(cls_num)][idx] = True

        if label==0:
            self.clean_centers[str(cls_num)] = np.concatenate((self.clean_centers[str(cls_num)], [centroid]), axis=0)

            # recalculate scores
            # umap_scores = closest_dists(embeddings, self.clean_centers[str(cls_num)])
            # umap_scores = umap_scores/umap_scores.max()
            # self.umap_scores[str(cls_num)] = umap_scores

            # # update labels of each sub centers
            # scores = self.query_noise_score(cls_num)
            # center_s = scores[self.sub_centers[str(cls_num)]]
            # labels = np.zeros(len(center_s))
            # labels[center_s>self.threshold] = 1
            # not_verified = np.logical_not(self.sub_center_verified[str(cls_num)])

            # self.sub_centers_labels[str(cls_num)][not_verified] = labels[not_verified]
        else:
            if self.noise_centers[str(cls_num)] is None:
                self.noise_centers[str(cls_num)] = np.array([centroid])
            else:
                self.noise_centers[str(cls_num)] = np.concatenate((self.noise_centers[str(cls_num)], [centroid]), axis=0)

        
    
    def query_noise_score(self, cls_num):
        # recalculate scores
        # normed = self.umap_norm[str(cls_num)]
        embeddings = self.trajectory_embedding[str(cls_num)]
        
        clean_scores = closest_dists(embeddings, self.clean_centers[str(cls_num)])
        if self.noise_centers[str(cls_num)] is None:
            noise_scores = np.array([0.]*len(embeddings))
        else:
            noise_scores = closest_dists(embeddings, self.noise_centers[str(cls_num)])
        s1 = clean_scores- noise_scores
        s1 = s1/s1.max()
        # s2 = self.pca_scores[str(cls_num)]/self.pca_norm[str(cls_num)]
        return s1
    
    def suggest_abnormal(self, cls_num, show=False):
        # check if we have abnormal
        if not self.detect_noise_cls(cls_num):
            return False

        embeddings = self.trajectory_embedding[str(cls_num)]
        centroids = embeddings[self.sub_centers[str(cls_num)]]

        scores = self.query_noise_score(cls_num)
        center_idxs = self.sub_centers[str(cls_num)]

        # vote for scores (score summary)
        c_labels = select_closest(embeddings, centroids)
        centroid_scores = np.zeros(len(centroids))
        for i in range(len(centroids)):
            centroid_scores[i] = scores[c_labels==i].mean()


        not_verified = (self.sub_center_verified[str(cls_num)] == False)
        s = np.max(centroid_scores[not_verified])
        suggest_idx = np.argwhere(centroid_scores==s)[0,0]

        if show:

            plt.scatter(
                embeddings[:, 0],
                embeddings[:, 1],
                s=.3,
                c=[1 for _ in range(len(embeddings))],
                cmap="Pastel2")

            plt.scatter(
                embeddings[center_idxs[suggest_idx]:center_idxs[suggest_idx]+1, 0],
                embeddings[center_idxs[suggest_idx]:center_idxs[suggest_idx]+1, 1],
                s=7,
                c='black' if s>self.threshold else "red" )
            plt.title('Trajectories Visualization of class {}'.format(cls_num), fontsize=24)
            plt.show()
        return suggest_idx, center_idxs[suggest_idx], s, self.trajectory_embedding[str(cls_num)][center_idxs[suggest_idx]]
    
    def batch_suggest_abnormal(self, cls_num, budget):
        # check if we have abnormal
        if not self.detect_noise_cls(cls_num):
            return False

        embeddings = self.trajectory_embedding[str(cls_num)]
        centroids = embeddings[self.sub_centers[str(cls_num)]]

        scores = self.query_noise_score(cls_num)
        center_idxs = self.sub_centers[str(cls_num)]

        # vote for scores (score summary)
        c_labels = select_closest(embeddings, centroids)
        centroid_scores = np.zeros(len(centroids))
        for i in range(len(centroids)):
            centroid_scores[i] = scores[c_labels==i].mean()

        not_verified = np.argwhere(self.sub_center_verified[str(cls_num)] == False).squeeze(axis=1)
        ranking = np.flip(np.argsort(centroid_scores[not_verified])[-budget:])

        suggest_idxs = not_verified[ranking]
        scores = centroid_scores[suggest_idxs]

        return suggest_idxs, center_idxs[suggest_idxs], scores, self.trajectory_embedding[str(cls_num)][center_idxs[suggest_idxs]]
    
    def show(self, cls_num, save_path=None):
        embedding = self.trajectory_embedding[str(cls_num)]

        centroids = embedding[self.sub_centers[str(cls_num)]]
        centroid_labels = self.sub_centers_labels[str(cls_num)]

        # show embeddings
        nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(centroids)
        indices = nbrs.kneighbors(embedding, return_distance=False)
        labels = centroid_labels[indices]

        plt.scatter(
            embedding[:, 0],
            embedding[:, 1],
            s=.3,
            c=labels,
            cmap="Pastel2")
        
        # show centroids
        cleans = centroids[centroid_labels==0]
        noises = centroids[centroid_labels==1]
        plt.scatter(
            cleans[:, 0],
            cleans[:, 1],
            s=5,
            c='r')
        plt.scatter(
            noises[:, 0],
            noises[:, 1],
            s=5,
            c='black')

        plt.title('Trajectories Visualization of class {}'.format(cls_num), fontsize=24)
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)
    
    def show_ground_truth(self, cls_num, clean_labels, save_path=None):
        embedding = self.trajectory_embedding[str(cls_num)]
        centroids = embedding[self.sub_centers[str(cls_num)]]
        scores = self.query_noise_score(cls_num=cls_num)

        # vote for labels and scores
        c_labels = select_closest(embedding, centroids)
        centroid_scores = np.zeros(len(centroids))
        centroid_labels = np.zeros(len(centroids))
        for i in range(len(centroids)):
            centroid_scores[i] = scores[c_labels==i].mean()
            centroid_labels[i] = np.bincount(clean_labels[c_labels==i]).argmax()

        noise_c = centroid_labels != cls_num
        benign = centroid_labels == cls_num

        plt.scatter(
            embedding[:, 0],
            embedding[:, 1],
            s=.3,
            c=clean_labels,
            cmap="tab10")
        
        plt.scatter(
            centroids[benign][:, 0],
            centroids[benign][:, 1],
            s=5,
            c='r')

        plt.scatter(
            centroids[noise_c][:, 0],
            centroids[noise_c][:, 1],
            s=5,
            c='black')
        plt.title('Trajectories Visualization of class {}'.format(cls_num), fontsize=24)
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)
    
    def show_verified(self, cls_num, save_path=None):
        embedding = self.trajectory_embedding[str(cls_num)]
        centroid = embedding[self.sub_centers[str(cls_num)]]
        verified = self.sub_center_verified[str(cls_num)]
        centroid_labels = self.sub_centers_labels[str(cls_num)]

        plt.scatter(
            embedding[:, 0],
            embedding[:, 1],
            s=.3,
            c=[1 for _ in range(len(embedding))],
            cmap="Pastel2")
        colors = np.array(["red","black"])
        plt.scatter(
            centroid[verified][:, 0],
            centroid[verified][:, 1],
            s=5,
            c=colors[centroid_labels[verified].astype("int")],
        )

        plt.title('Trajectories Visualization of class {}'.format(cls_num), fontsize=24)
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)

    
    def show_highlight(self, cls_num, highlights, save_path=None):
        embedding = self.trajectory_embedding[str(cls_num)]

        plt.scatter(
            embedding[:, 0],
            embedding[:, 1],
            s=.3,
            c=[1 for _ in range(len(embedding))],
            cmap="Pastel2")

        if len(highlights)>0:
            plt.scatter(
                highlights[:, 0],
                highlights[:, 1],
                s=7,
                c='black')
        plt.title('Trajectories Visualization of class {}'.format(cls_num), fontsize=24)
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)
    
    def show_centroid_scores(self, cls_num, save_path=None):
        embedding = self.trajectory_embedding[str(cls_num)]
        centroids = embedding[self.sub_centers[str(cls_num)]]
        scores = self.query_noise_score(cls_num=cls_num)

        # vote for score summary
        c_labels = select_closest(embedding, centroids)
        centroid_scores = np.zeros(len(centroids))
        for i in range(len(centroids)):
            centroid_scores[i] = scores[c_labels==i].mean()

        plt.scatter(
            embedding[:, 0],
            embedding[:, 1],
            s=.3,
            c=[1 for _ in range(len(embedding))],
            cmap="Pastel2")

        # show centroids
        plt.scatter(
            centroids[:, 0],
            centroids[:, 1],
            s=5,
            c=centroid_scores/centroid_scores.max(),
            cmap="Reds")

        plt.title('Trajectories Visualization of class {}'.format(cls_num), fontsize=24)
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)
    
    def show_scores(self, cls_num, save_path=None):
        embedding = self.trajectory_embedding[str(cls_num)]
        scores = self.query_noise_score(cls_num)
        scores = scores/scores.max()

        plt.scatter(
            embedding[:, 0],
            embedding[:, 1],
            s=.3,
            c=scores,
            cmap="Reds")

        plt.title('Trajectories Visualization of class {}'.format(cls_num), fontsize=24)
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)