File size: 5,734 Bytes
f291f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
import json
import numpy as np
import pandas as pd
import matplotlib as mpl
import seaborn as sns
import argparse
def main():
datasets = ["mnist", "fmnist", "cifar10"]
selected_epochs_dict = {"mnist":[4, 12, 20],"fmnist":[10,30,50], "cifar10":[40, 120,200]}
k_neighbors = [10, 15, 20]
col = np.array(["dataset", "method", "type", "hue", "k", "period", "eval"])
df = pd.DataFrame({}, columns=col)
for k in k_neighbors:
for i in range(3): # dataset
dataset = datasets[i]
data = np.array([])
selected_epochs = selected_epochs_dict[dataset]
# load data from evaluation.json
# DVI
content_path = "/home/xianglin/projects/DVI_data/resnet18_{}".format(dataset)
for epoch_id in range(3):
epoch = selected_epochs[epoch_id]
eval_path = os.path.join(content_path, "Model", "Epoch_{}".format(epoch), "evaluation_step2_A.json")
with open(eval_path, "r") as f:
eval = json.load(f)
bound_train = round(eval["bound_train_{}".format(k)], 3)
bound_test = round(eval["bound_test_{}".format(k)], 3)
if len(data)==0:
data = np.array([[dataset, "DVI", "Train", "DVI-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]])
else:
data = np.concatenate((data, np.array([[dataset, "DVI", "Train", "DVI-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]])), axis=0)
data = np.concatenate((data, np.array([[dataset, "DVI", "Test", "DVI-Test", "{}".format(k), "{}".format(str(epoch_id)), bound_test]])), axis=0)
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_tnn.json".format(dataset)
with open(eval_path, "r") as f:
eval = json.load(f)
for epoch_id in range(3):
epoch = selected_epochs[epoch_id]
bound_train = round(eval[str(k)]["b_train"][str(epoch)], 3)
bound_test = round(eval[str(k)]["b_test"][str(epoch)], 3)
data = np.concatenate((data, np.array([[dataset, "TimeVis", "Train", "TimeVis-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]])), axis=0)
data = np.concatenate((data, np.array([[dataset, "TimeVis", "Test", "TimeVis-Test", "{}".format(k), "{}".format(str(epoch_id)), bound_test]])), axis=0)
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_hybrid.json".format(dataset)
with open(eval_path, "r") as f:
eval = json.load(f)
for epoch_id in range(3):
epoch = selected_epochs[epoch_id]
bound_train = round(eval["b_train"][str(epoch)][str(k)], 3)
bound_test = round(eval["b_test"][str(epoch)][str(k)], 3)
data = np.concatenate((data, np.array([[dataset, "DeepDebugger", "Train", "DeepDebugger-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]])), axis=0)
data = np.concatenate((data, np.array([[dataset, "DeepDebugger", "Test", "DeepDebugger-Test", "{}".format(k), "{}".format(str(epoch_id)), bound_test]])), axis=0)
df_tmp = pd.DataFrame(data, columns=col)
df = df.append(df_tmp, ignore_index=True)
df[["period"]] = df[["period"]].astype(int)
df[["k"]] = df[["k"]].astype(int)
df[["eval"]] = df[["eval"]].astype(float)
#%%
df.to_excel("./plot_results/boundary.xlsx")
for k in k_neighbors:
df_tmp = df[df["k"] == k]
pal20c = sns.color_palette('tab20c', 20)
sns.set_theme(style="whitegrid", palette=pal20c)
hue_dict = {
"DVI-Train": pal20c[0],
"TimeVis-Train": pal20c[4],
"DeepDebugger-Train": pal20c[8],
"DVI-Test": pal20c[3],
"TimeVis-Test": pal20c[7],
"DeepDebugger-Test":pal20c[11]
}
sns.palplot([hue_dict[i] for i in hue_dict.keys()])
axes = {'labelsize': 15,
'titlesize': 15,}
mpl.rc('axes', **axes)
mpl.rcParams['xtick.labelsize'] = 15
hue_list = ["DVI-Train", "DVI-Test", "TimeVis-Train", "TimeVis-Test", "DeepDebugger-Train", "DeepDebugger-Test"]
fg = sns.catplot(
x="period",
y="eval",
hue="hue",
hue_order=hue_list,
# order = [1, 2, 3, 4, 5],
# row="method",
col="dataset",
ci=0.001,
height=2.5, #2.65,
aspect=1.0,#3,
data=df_tmp,
kind="bar",
palette=[hue_dict[i] for i in hue_list],
legend=True
)
sns.move_legend(fg, "lower center", bbox_to_anchor=(.42, 0.92), ncol=4, title=None, frameon=False)
mpl.pyplot.setp(fg._legend.get_texts(), fontsize='15')
axs = fg.axes[0]
max_ = df_tmp["eval"].max()
# min_ = df["eval"].min()
axs[0].set_ylim(0., max_*1.1)
axs[0].set_title("MNIST")
axs[1].set_title("FMNIST")
axs[2].set_title("CIFAR-10")
(fg.despine(bottom=False, right=False, left=False, top=False)
.set_xticklabels(['Begin', 'Mid', 'End'])
.set_axis_labels("", "")
)
# fg.fig.suptitle("Boundary preserving property")
fg.savefig(
"./plot_results/boundary_{}.png".format(k),
dpi=300,
bbox_inches="tight",
pad_inches=0.0,
transparent=True,
)
if __name__ == "__main__":
main() |