File size: 6,142 Bytes
f291f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import json
import numpy as np
import pandas as pd
import matplotlib as mpl
import seaborn as sns
def main():
datasets = ["mnist","fmnist", "cifar10"]
selected_epochs_dict = {"mnist":[[1], [10], [15]],"fmnist":[[1],[25],[50]], "cifar10":[[1], [100],[199]]}
col = np.array(["dataset", "method", "type", "hue", "period", "eval"])
df = pd.DataFrame({}, columns=col)
for i in range(len(datasets)): # dataset
dataset = datasets[i]
data = np.array([])
selected_epochs = selected_epochs_dict[dataset]
# load data from evaluation.json
content_path = "/home/xianglin/projects/DVI_data/resnet18_{}".format(dataset)
for epoch_id in range(3):
stage_epochs = selected_epochs[epoch_id]
inv_acc_train_list = list()
inv_acc_test_list = list()
for epoch in stage_epochs:
eval_path = os.path.join(content_path, "Model", "Epoch_{}".format(epoch), "evaluation_id_parametricUmap_step2.json")
with open(eval_path, "r") as f:
eval = json.load(f)
inv_acc_train = round(eval["inv_dist_train"], 3)
inv_acc_test = round(eval["inv_dist_test"], 3)
inv_acc_train_list.append(inv_acc_train)
inv_acc_test_list.append(inv_acc_test)
inv_acc_train = sum(inv_acc_train_list)/len(inv_acc_train_list)
inv_acc_test = sum(inv_acc_test_list)/len(inv_acc_test_list)
if len(data)==0:
data = np.array([[dataset, "DVI", "Train", "DVI(Train)", "{}".format(str(epoch_id)), inv_acc_train]])
else:
data = np.concatenate((data, np.array([[dataset, "DVI", "Train", "DVI(Train)", "{}".format(str(epoch_id)), inv_acc_train]])), axis=0)
data = np.concatenate((data, np.array([[dataset, "DVI", "Test", "DVI(Test)", "{}".format(str(epoch_id)), inv_acc_test]])), axis=0)
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_tnn_noB.json".format(dataset)
with open(eval_path, "r") as f:
eval = json.load(f)
for epoch_id in range(3):
stage_epochs = selected_epochs[epoch_id]
ppr_train_list = list()
ppr_test_list = list()
for epoch in stage_epochs:
ppr_train = round(eval["ppr_dist_train"][str(epoch)], 3)
ppr_test = round(eval["ppr_dist_test"][str(epoch)], 3)
ppr_train_list.append(ppr_train)
ppr_test_list.append(ppr_test)
ppr_train = sum(ppr_train_list)/len(ppr_train_list)
ppr_test = sum(ppr_test_list)/len(ppr_test_list)
data = np.concatenate((data, np.array([[dataset, "TimeVis", "Train", "TimeVis(Train)", "{}".format(str(epoch_id)), ppr_train]])), axis=0)
data = np.concatenate((data, np.array([[dataset, "TimeVis", "Test", "TimeVis(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0)
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/evaluation_dd_noB.json".format(dataset)
with open(eval_path, "r") as f:
eval = json.load(f)
for epoch_id in range(3):
stage_epochs = selected_epochs[epoch_id]
ppr_train_list = list()
ppr_test_list = list()
for epoch in stage_epochs:
ppr_train = round(eval["ppr_dist_train"][str(epoch)], 3)
ppr_test = round(eval["ppr_dist_test"][str(epoch)], 3)
ppr_train_list.append(ppr_train)
ppr_test_list.append(ppr_test)
ppr_train = sum(ppr_train_list)/len(ppr_train_list)
ppr_test = sum(ppr_test_list)/len(ppr_test_list)
data = np.concatenate((data, np.array([[dataset, "DD", "Train", "DD(Train)", "{}".format(str(epoch_id)), ppr_train]])), axis=0)
data = np.concatenate((data, np.array([[dataset, "DD", "Test", "DD(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0)
df_tmp = pd.DataFrame(data, columns=col)
df = df.append(df_tmp, ignore_index=True)
df[["period"]] = df[["period"]].astype(int)
# df[["k"]] = df[["k"]].astype(int)
df[["eval"]] = df[["eval"]].astype(float)
df.to_excel("./plot_results/PPR.xlsx")
pal20c = sns.color_palette('tab20', 20)
sns.set_theme(style="whitegrid", palette=pal20c)
hue_dict = {
"DVI(Train)": pal20c[4],
"TimeVis(Train)": pal20c[6],
"DD(Train)": pal20c[8],
"DVI(Test)": pal20c[5],
"TimeVis(Test)": pal20c[7],
"DD(Test)": pal20c[9],
}
sns.palplot([hue_dict[i] for i in hue_dict.keys()])
axes = {'labelsize': 15,
'titlesize': 15,}
mpl.rc('axes', **axes)
mpl.rcParams['xtick.labelsize'] = 15
hue_list = ["DVI(Train)", "DVI(Test)", "TimeVis(Train)", "TimeVis(Test)", "DD(Train)", "DD(Test)"]
fg = sns.catplot(
x="period",
y="eval",
hue="hue",
hue_order=hue_list,
# order = [1, 2, 3, 4, 5],
# row="method",
col="dataset",
ci=0.001,
height=2.5, #2.65,
aspect=1.0,#3,
data=df,
kind="bar",
palette=[hue_dict[i] for i in hue_list],
legend=True
)
sns.move_legend(fg, "lower center", bbox_to_anchor=(.43, 0.92), ncol=3, title=None, frameon=False)
mpl.pyplot.setp(fg._legend.get_texts(), fontsize='15')
axs = fg.axes[0]
max_ = df["eval"].max()
# min_ = df["eval"].min()
axs[0].set_ylim(0., max_*1.1)
# axs[0].set_title("MNIST(20)")
# axs[1].set_title("FMNIST(50)")
# axs[2].set_title("CIFAR-10(200)")
(fg.despine(bottom=False, right=False, left=False, top=False)
.set_xticklabels(['Early', 'Mid','Late'])
.set_axis_labels("", "")
)
# fg.fig.suptitle("Prediction Preserving property")
fg.savefig(
"./plot_results/noB_inv_dist.png",
dpi=300,
bbox_inches="tight",
pad_inches=0.0,
transparent=True,
)
if __name__ == "__main__":
main()
|