File size: 7,306 Bytes
f291f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import json

import numpy as np
import pandas as pd
import matplotlib as mpl
import seaborn as sns


def main():
    datasets = ["mnist","fmnist"]
    selected_epochs_dict = {"mnist":[[1], [10], [15]],"fmnist":[[1],[25],[50]], "cifar10":[[1], [100],[199]]}
    col = np.array(["dataset", "method", "type", "hue", "period", "eval"])
    df = pd.DataFrame({}, columns=col)

    for i in range(len(datasets)): # dataset
        dataset = datasets[i]
        data = np.array([])
        selected_epochs = selected_epochs_dict[dataset]
        # load data from evaluation.json
        content_path = "/home/xianglin/projects/DVI_data/resnet18_{}".format(dataset)
        for epoch_id in range(3):
            stage_epochs = selected_epochs[epoch_id]
            inv_acc_train_list = list()
            inv_acc_test_list = list()
            for epoch in stage_epochs:

                eval_path = os.path.join(content_path, "Model", "Epoch_{}".format(epoch), "evaluation_id_parametricUmap_step2.json")
                with open(eval_path, "r") as f:
                    eval = json.load(f)
                inv_acc_train = round(eval["inv_acc_train"], 3)
                inv_acc_test = round(eval["inv_acc_test"], 3)
                inv_acc_train_list.append(inv_acc_train)
                inv_acc_test_list.append(inv_acc_test)
            
            inv_acc_train = sum(inv_acc_train_list)/len(inv_acc_train_list)
            inv_acc_test = sum(inv_acc_test_list)/len(inv_acc_test_list)

            if len(data)==0:
                data = np.array([[dataset, "DVI", "Train", "DVI(Train)", "{}".format(str(epoch_id)), inv_acc_train]])
            else:
                data = np.concatenate((data, np.array([[dataset, "DVI", "Train", "DVI(Train)", "{}".format(str(epoch_id)), inv_acc_train]])), axis=0)
            data = np.concatenate((data, np.array([[dataset, "DVI", "Test", "DVI(Test)", "{}".format(str(epoch_id)), inv_acc_test]])), axis=0)
        
        # torch dvi
        eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/evaluation_singleDVI.json".format(dataset)
        with open(eval_path, "r") as f:
                eval = json.load(f)
        for epoch_id  in range(3):
            stage_epochs = selected_epochs[epoch_id]
            ppr_train_list = list()
            ppr_test_list = list()
            for epoch in stage_epochs:
                ppr_train = round(eval["ppr_train"][str(epoch)], 3)
                ppr_test = round(eval["ppr_test"][str(epoch)], 3)
                ppr_train_list.append(ppr_train)
                ppr_test_list.append(ppr_test)
            ppr_train = sum(ppr_train_list)/len(ppr_train_list)
            ppr_test = sum(ppr_test_list)/len(ppr_test_list)

            data = np.concatenate((data, np.array([[dataset, "torch-DVI", "Train", "torch-DVI(Train)",  "{}".format(str(epoch_id)), ppr_train]])), axis=0)
            data = np.concatenate((data, np.array([[dataset, "torch-DVI", "Test", "torch-DVI(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0)
        
        eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_tnn_noB.json".format(dataset)
        with open(eval_path, "r") as f:
                eval = json.load(f)
        for epoch_id  in range(3):
            stage_epochs = selected_epochs[epoch_id]
            ppr_train_list = list()
            ppr_test_list = list()
            for epoch in stage_epochs:
                ppr_train = round(eval["ppr_train"][str(epoch)], 3)
                ppr_test = round(eval["ppr_test"][str(epoch)], 3)
                ppr_train_list.append(ppr_train)
                ppr_test_list.append(ppr_test)
            ppr_train = sum(ppr_train_list)/len(ppr_train_list)
            ppr_test = sum(ppr_test_list)/len(ppr_test_list)

            data = np.concatenate((data, np.array([[dataset, "TimeVis", "Train", "TimeVis(Train)",  "{}".format(str(epoch_id)), ppr_train]])), axis=0)
            data = np.concatenate((data, np.array([[dataset, "TimeVis", "Test", "TimeVis(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0)
        
        eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/evaluation_dd_noB.json".format(dataset)
        with open(eval_path, "r") as f:
                eval = json.load(f)
        for epoch_id  in range(3):
            stage_epochs = selected_epochs[epoch_id]
            ppr_train_list = list()
            ppr_test_list = list()
            for epoch in stage_epochs:
                ppr_train = round(eval["ppr_train"][str(epoch)], 3)
                ppr_test = round(eval["ppr_test"][str(epoch)], 3)
                ppr_train_list.append(ppr_train)
                ppr_test_list.append(ppr_test)
            ppr_train = sum(ppr_train_list)/len(ppr_train_list)
            ppr_test = sum(ppr_test_list)/len(ppr_test_list)

            data = np.concatenate((data, np.array([[dataset, "DD", "Train", "DD(Train)",  "{}".format(str(epoch_id)), ppr_train]])), axis=0)
            data = np.concatenate((data, np.array([[dataset, "DD", "Test", "DD(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0)

        df_tmp = pd.DataFrame(data, columns=col)
        df = df.append(df_tmp, ignore_index=True)
        df[["period"]] = df[["period"]].astype(int)
        # df[["k"]] = df[["k"]].astype(int)
        df[["eval"]] = df[["eval"]].astype(float)

    df.to_excel("./plot_results/PPR.xlsx")

    pal20c = sns.color_palette('tab20', 20)
    sns.set_theme(style="whitegrid", palette=pal20c)
    hue_dict = {
        "DVI(Train)": pal20c[4],
        "torch-DVI(Train)":pal20c[10],
        "TimeVis(Train)": pal20c[6],
        "DD(Train)": pal20c[8],

        "DVI(Test)": pal20c[5],
        "torch-DVI(Test)": pal20c[11],
        "TimeVis(Test)": pal20c[7],
        "DD(Test)": pal20c[9],
    }
    sns.palplot([hue_dict[i] for i in hue_dict.keys()])

    axes = {'labelsize': 15,
            'titlesize': 15,}
    mpl.rc('axes', **axes)
    mpl.rcParams['xtick.labelsize'] = 15

    hue_list = ["DVI(Train)", "DVI(Test)", "torch-DVI(Train)", "torch-DVI(Test)", "TimeVis(Train)", "TimeVis(Test)", "DD(Train)", "DD(Test)"]

    fg = sns.catplot(
        x="period",
        y="eval",
        hue="hue",
        hue_order=hue_list,
        # order = [1, 2, 3, 4, 5],
        # row="method",
        col="dataset",
        ci=0.001,
        height=2.5, #2.65,
        aspect=1.0,#3,
        data=df,
        kind="bar",
        palette=[hue_dict[i] for i in hue_list],
        legend=True
    )
    sns.move_legend(fg, "lower center", bbox_to_anchor=(.43, 0.92), ncol=4, title=None, frameon=False)
    mpl.pyplot.setp(fg._legend.get_texts(), fontsize='15')

    axs = fg.axes[0]
    max_ = df["eval"].max()
    # min_ = df["eval"].min()
    axs[0].set_ylim(0., max_*1.1)
    # axs[0].set_title("MNIST(20)")
    # axs[1].set_title("FMNIST(50)")
    # axs[2].set_title("CIFAR-10(200)")

    (fg.despine(bottom=False, right=False, left=False, top=False)
     .set_xticklabels(['Early', 'Mid','Late'])
     .set_axis_labels("", "")
     )
    # fg.fig.suptitle("Prediction Preserving property")

    fg.savefig(
        "./plot_results/noB_inv_accu.png",
        dpi=300,
        bbox_inches="tight",
        pad_inches=0.0,
        transparent=True,
    )



if __name__ == "__main__":
    main()