File size: 11,269 Bytes
f291f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/yifan/miniconda3/envs/deepdebugger/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "2023-07-21 18:00:51.052396: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA\n",
      "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2023-07-21 18:00:51.578131: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n",
      "2023-07-21 18:00:51.578176: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n",
      "2023-07-21 18:00:51.578180: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Finish initialization...\n"
     ]
    }
   ],
   "source": [
    "########################################################################################################################\n",
    "#                                                          IMPORT                                                      #\n",
    "########################################################################################################################\n",
    "import torch\n",
    "import sys\n",
    "import os\n",
    "import json\n",
    "import numpy as np\n",
    "sys.path.append('..')\n",
    "\n",
    "from singleVis.SingleVisualizationModel import VisModel\n",
    "\n",
    "from singleVis.data import NormalDataProvider\n",
    "\n",
    "from singleVis.projector import DVIProjector\n",
    "from singleVis.eval.evaluator import Evaluator\n",
    "\n",
    "VIS_METHOD = \"DVI\" # DeepVisualInsight\n",
    "\n",
    "########################################################################################################################\n",
    "#                                                     LOAD PARAMETERS                                                  #\n",
    "########################################################################################################################\n",
    "CONTENT_PATH = \"/home/yifan/0ExpMinist/Default/01\"\n",
    "\n",
    "sys.path.append(CONTENT_PATH)\n",
    "with open(os.path.join(CONTENT_PATH, \"config.json\"), \"r\") as f:\n",
    "    config = json.load(f)\n",
    "config = config[VIS_METHOD]\n",
    "\n",
    "# record output information\n",
    "# now = time.strftime(\"%Y-%m-%d-%H_%M_%S\", time.localtime(time.time())) \n",
    "# sys.stdout = open(os.path.join(CONTENT_PATH, now+\".txt\"), \"w\")\n",
    "\n",
    "SETTING = config[\"SETTING\"]\n",
    "CLASSES = config[\"CLASSES\"]\n",
    "DATASET = config[\"DATASET\"]\n",
    "PREPROCESS = config[\"VISUALIZATION\"][\"PREPROCESS\"]\n",
    "GPU_ID = config[\"GPU\"]\n",
    "EPOCH_START = config[\"EPOCH_START\"]\n",
    "EPOCH_END = config[\"EPOCH_END\"]\n",
    "EPOCH_PERIOD = config[\"EPOCH_PERIOD\"]\n",
    "\n",
    "# Training parameter (subject model)\n",
    "TRAINING_PARAMETER = config[\"TRAINING\"]\n",
    "NET = TRAINING_PARAMETER[\"NET\"]\n",
    "LEN = TRAINING_PARAMETER[\"train_num\"]\n",
    "\n",
    "# Training parameter (visualization model)\n",
    "VISUALIZATION_PARAMETER = config[\"VISUALIZATION\"]\n",
    "LAMBDA1 = VISUALIZATION_PARAMETER[\"LAMBDA1\"]\n",
    "LAMBDA2 = VISUALIZATION_PARAMETER[\"LAMBDA2\"]\n",
    "B_N_EPOCHS = VISUALIZATION_PARAMETER[\"BOUNDARY\"][\"B_N_EPOCHS\"]\n",
    "L_BOUND = VISUALIZATION_PARAMETER[\"BOUNDARY\"][\"L_BOUND\"]\n",
    "ENCODER_DIMS = VISUALIZATION_PARAMETER[\"ENCODER_DIMS\"]\n",
    "DECODER_DIMS = VISUALIZATION_PARAMETER[\"DECODER_DIMS\"]\n",
    "S_N_EPOCHS = VISUALIZATION_PARAMETER[\"S_N_EPOCHS\"]\n",
    "N_NEIGHBORS = VISUALIZATION_PARAMETER[\"N_NEIGHBORS\"]\n",
    "PATIENT = VISUALIZATION_PARAMETER[\"PATIENT\"]\n",
    "MAX_EPOCH = VISUALIZATION_PARAMETER[\"MAX_EPOCH\"]\n",
    "\n",
    "VIS_MODEL_NAME = VISUALIZATION_PARAMETER[\"VIS_MODEL_NAME\"]\n",
    "EVALUATION_NAME = VISUALIZATION_PARAMETER[\"EVALUATION_NAME\"]\n",
    "\n",
    "\n",
    "\n",
    "# VIS_MODEL_NAME = 'dvi_grid'\n",
    "\n",
    "# Define hyperparameters\n",
    "DEVICE = torch.device(\"cuda:{}\".format(GPU_ID) if torch.cuda.is_available() else \"cpu\")\n",
    "\n",
    "import Model.model as subject_model\n",
    "net = eval(\"subject_model.{}()\".format(NET))\n",
    "\n",
    "# Define data_provider\n",
    "data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, epoch_name='Epoch',classes=CLASSES,verbose=1)\n",
    "\n",
    "\n",
    "# Define visualization models\n",
    "model = VisModel(ENCODER_DIMS, DECODER_DIMS)\n",
    "\n",
    "# Define Projector\n",
    "projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=DEVICE)    \n",
    "\n",
    "########################################################################################################################\n",
    "#                                                      VISUALIZATION                                                   #\n",
    "########################################################################################################################\n",
    "\n",
    "from singleVis.visualizer import visualizer\n",
    "\n",
    "vis = visualizer(data_provider, projector, 200, \"tab10\")\n",
    "save_dir = os.path.join(data_provider.content_path, \"imgptDVI\")\n",
    "if not os.path.exists(save_dir):\n",
    "    os.mkdir(save_dir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "epoch = 20\n",
    "from trustVis.sampeling import Sampleing\n",
    "sampleing = Sampleing(data_provider,epoch,data_provider.DEVICE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "k = 15\n",
    "from sklearn.cluster import KMeans\n",
    "data = data_provider.train_representation(epoch)\n",
    "\n",
    "# ๅˆ›ๅปบKMeansๅฏน่ฑก\n",
    "kmeans = KMeans(n_clusters=k)\n",
    "\n",
    "# ๅฏนๆ•ฐๆฎ่ฟ›่กŒ่š็ฑป\n",
    "kmeans.fit(data)\n",
    "\n",
    "# ่Žทๅ–่š็ฑปไธญๅฟƒ\n",
    "centers = kmeans.cluster_centers_\n",
    "labels = kmeans.labels_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "label = 10\n",
    "\n",
    "subset_indices = np.where(labels == label)[0]\n",
    "subset = data[subset_indices]\n",
    "center = centers[label]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 300/300 [00:00<00:00, 8085.35it/s]\n",
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 1/1 [00:00<00:00, 3880.02it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "p_d 0.8967833433333334 p_a 0.8224383433333334\n",
      "val 0.30442274250810725\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "val= sampleing.subset_info_cal(data_provider.train_representation(epoch),center,10,2)\n",
    "print(\"val\",val)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "val 0.30442274250810725\n"
     ]
    },
    {
     "ename": "",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31mThe Kernel crashed while executing code in the the current cell or a previous cell. Please review the code in the cell(s) to identify a possible cause of the failure. Click <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
     ]
    }
   ],
   "source": [
    "print(\"val\",val)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully load the DVI visualization model for iteration 20\n",
      "Successfully load the DVI visualization model for iteration 20\n"
     ]
    }
   ],
   "source": [
    "emb = projector.batch_project(epoch, data_provider.train_representation(epoch))\n",
    "new_data = projector.batch_inverse(epoch,emb )\n",
    "# new_center = projector.individual_inverse()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 300/300 [00:00<00:00, 8086.91it/s]\n",
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 1/1 [00:00<00:00, 3826.92it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "p_d 0.8794333433333333 p_a 0.8224383433333334\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "val_ = sampleing.subset_info_cal(new_data,center,10,1.5)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.32395926861598934\n"
     ]
    }
   ],
   "source": [
    "print(val_)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(0.7935021381815792, 0.55190001, 0.8194566766666668)"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "val_,a_,b_"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "deepdebugger",
   "language": "python",
   "name": "deepdebugger"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.15"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}