SalazarPevelll
be
f291f4a
raw
history blame
46.9 kB
from abc import ABC, abstractmethod
import os
import time
import gc
import json
from tqdm import tqdm
import torch
from singleVis.losses import PositionRecoverLoss
from torch.utils.data import DataLoader, WeightedRandomSampler
import copy
import numpy as np
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler, CustomWeightedRandomSamplerVis
from singleVis.spatial_edge_constructor import ActiveLearningEpochSpatialEdgeConstructor
from singleVis.edge_dataset import DVIDataHandler
torch.manual_seed(0) # 使用固定的种子
torch.cuda.manual_seed_all(0)
"""
1. construct a spatio-temporal complex
2. construct an edge-dataset
3. train the network
Trainer should contains
1. train_step function
2. early stop
3. ...
"""
class TrainerAbstractClass(ABC):
@abstractmethod
def __init__(self, *args, **kwargs):
pass
@property
@abstractmethod
def loss(self):
pass
@abstractmethod
def reset_optim(self):
pass
@abstractmethod
def update_edge_loader(self):
pass
@abstractmethod
def update_vis_model(self):
pass
@abstractmethod
def update_optimizer(self):
pass
@abstractmethod
def update_lr_scheduler(self):
pass
@abstractmethod
def train_step(self):
pass
@abstractmethod
def train(self):
pass
@abstractmethod
def load(self):
pass
@abstractmethod
def save(self):
pass
@abstractmethod
def record_time(self):
pass
class ActiveLearningEdgeLoader(DataLoader):
def __init__(self, dataset, weights, batch_size=32, **kwargs):
# Create a WeightedRandomSampler to select samples based on weights
sampler = WeightedRandomSampler(weights, len(dataset))
super().__init__(dataset, batch_size=batch_size, sampler=sampler, **kwargs)
class SingleVisTrainer(TrainerAbstractClass):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE):
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.DEVICE = DEVICE
self.edge_loader = edge_loader
self._loss = 100.0
@property
def loss(self):
return self._loss
def reset_optim(self, optim, lr_s):
self.optimizer = optim
self.lr_scheduler = lr_s
print("Successfully reset optimizer!")
def update_edge_loader(self, edge_loader):
del self.edge_loader
gc.collect()
self.edge_loader = edge_loader
def update_vis_model(self, model):
self.model.load_state_dict(model.state_dict())
def update_optimizer(self, optimizer):
self.optimizer = optimizer
def update_lr_scheduler(self, lr_scheduler):
self.lr_scheduler = lr_scheduler
def train_step(self):
self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
t = tqdm(self.edge_loader, leave=True, total=len(self.edge_loader))
# for data in self.edge_loader:
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, outputs)
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.mean().item())
recon_losses.append(recon_l.mean().item())
# ===================backward====================
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(all_loss) / len(all_loss)))
return self.loss
def train(self, PATIENT, MAX_EPOCH_NUMS):
patient = PATIENT
time_start = time.time()
for epoch in range(MAX_EPOCH_NUMS):
print("====================\nepoch:{}\n===================".format(epoch+1))
prev_loss = self.loss
loss = self.train_step()
self.lr_scheduler.step()
# early stop, check whether converge or not
if prev_loss - loss < 5E-3:
if patient == 0:
break
else:
patient -= 1
else:
patient = PATIENT
time_end = time.time()
time_spend = time_end - time_start
print("Time spend: {:.2f} for training vis model...".format(time_spend))
def load(self, file_path):
"""
save all parameters...
:param name:
:return:
"""
save_model = torch.load(file_path, map_location="cpu")
self._loss = save_model["loss"]
self.model.load_state_dict(save_model["state_dict"])
self.model.to(self.DEVICE)
print("Successfully load visualization model...")
def save(self, save_dir, file_name):
"""
save all parameters...
:param name:
:return:
"""
save_model = {
"loss": self.loss,
"state_dict": self.model.state_dict(),
"optimizer": self.optimizer.state_dict()}
save_path = os.path.join(save_dir, file_name + '.pth')
torch.save(save_model, save_path)
print("Successfully save visualization model...")
def record_time(self, save_dir, file_name, key, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
evaluation[key] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
class HybridVisTrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE)
def train_step(self):
self.model = self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
smooth_losses = []
t = tqdm(self.edge_loader, leave=True, total=len(self.edge_loader))
for data in t:
edge_to, edge_from, a_to, a_from, embedded_to, coeffi_to = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
embedded_to = embedded_to.to(device=self.DEVICE, dtype=torch.float32)
coeffi_to = coeffi_to.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, smooth_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, embedded_to, coeffi_to, outputs)
all_loss.append(loss.item())
umap_losses.append(umap_l.item())
recon_losses.append(recon_l.item())
smooth_losses.append(smooth_l.item())
# ===================backward====================
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\tsmooth_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(smooth_losses) / len(smooth_losses),
sum(all_loss) / len(all_loss)))
return self.loss
def record_time(self, save_dir, file_name, operation, seg, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][str(seg)] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
def disable_grad(model):
for param in model.parameters():
param.requires_grad = False
# retrain with full data every RE_TRAINING_INTERVAL epochs
RE_TRAINING_INTERVAL = 10
class ActiveLearningTrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE):
self.model = model
self.model = self.model.to(device=DEVICE)
self.criterion = criterion
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.DEVICE = DEVICE
self.edge_loader = edge_loader
self._loss = 100.0
class DVIALTrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE)
self.is_first_active_learning = True # Add this line
def evaluate_loss(self):
print("evluating")
# This method calculates the loss of each sample in the dataset.
# It returns a list of losses and updates the edge loader with the inverse of these losses as weights.
losses = []
# Ensure the model is in evaluation mode
self.model.eval()
with torch.no_grad():
for data in self.edge_loader:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
_, _,_, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
losses.append(loss.item())
# We use the inverse of the loss as the weight, so the samples with higher loss will have higher chance to be selected.
weights = 1.0 / torch.tensor(losses, dtype=torch.float32)
# Normalize the weights so they sum to 1
weights = weights / weights.sum()
# Update the edge loader
new_loader = ActiveLearningEdgeLoader(self.edge_loader.dataset, weights, batch_size=self.edge_loader.batch_size)
return losses,new_loader
def train_step(self, edge_loader ):
self.model = self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
temporal_losses = []
t = tqdm(edge_loader, leave=True, total=len(edge_loader))
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, temporal_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.item())
recon_losses.append(recon_l.item())
temporal_losses.append(temporal_l.mean().item())
# ===================backward====================
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\ttemporal_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(temporal_losses) / len(temporal_losses),
sum(all_loss) / len(all_loss)))
return self.loss
def run_epoch(self, epoch, is_active_learning=False, is_full_data=False):
print("====================\nepoch:{}\n===================".format(epoch+1))
start_time = time.time()
if is_active_learning and is_full_data == False:
_, current_loader = self.evaluate_loss()
# Adjust learning rate for active learning
if self.is_first_active_learning:
print("change learning rate")
for param_group in self.optimizer.param_groups:
param_group['lr'] *= 0.1 # or set to any value you want
self.is_first_active_learning = False
prev_loss = self.loss
if is_full_data:
print("full data")
loss = self.train_step(self.edge_loader) # use DVITrainer's train_step
else:
loss = self.train_step(current_loader) # use DVITrainer's train_step
self.lr_scheduler.step()
elapsed_time = time.time() - start_time
print("Epoch completed in: {:.2f} seconds".format(elapsed_time))
return prev_loss, loss
def train(self, PATIENT, MAX_EPOCH_NUMS):
print("ininin in dvi")
patient = PATIENT
time_start = time.time()
# Pretraining
for epoch in range(10):
print("Pretraining")
_, _ = self.run_epoch(epoch, is_active_learning=False,is_full_data=True )
for epoch in range(MAX_EPOCH_NUMS):
print("In active learning")
# is_full_data = (epoch % 3 == 0) # retrain with full data every RE_TRAINING_INTERVAL epochs
prev_loss, loss = self.run_epoch(epoch, is_active_learning=True, is_full_data=False)
# Early stop, check whether converge or not
if abs(prev_loss - loss) < 5E-3:
if patient == 0:
break
else:
patient -= 1
else:
patient = PATIENT
time_end = time.time()
time_spend = time_end - time_start
print("Time spend: {:.2f} for training vis model...".format(time_spend))
def record_time(self, save_dir, file_name, operation, iteration, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][iteration] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
class DVITrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader,DEVICE):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE)
def train_step(self):
self.model = self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
temporal_losses = []
t = tqdm(self.edge_loader, leave=True, total=len(self.edge_loader))
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, temporal_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
loss_new = loss
# + 1 * radius_loss + orthogonal_loss
# + distance_order_loss
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.mean().item())
recon_losses.append(recon_l.mean().item())
temporal_losses.append(temporal_l.mean().item())
# ===================backward====================
self.optimizer.zero_grad()
loss_new.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\ttemporal_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(temporal_losses) / len(temporal_losses),
sum(all_loss) / len(all_loss)))
return self.loss
# def radius_loss(self,embeddings, center, alpha=1.0):
# """
# Radius loss function.
# Args:
# embeddings: the 2D embeddings, tensor of shape (N, 2)
# center: the center of the circle in the 2D space, tensor of shape (2,)
# alpha: a coefficient for the radius loss, controlling its importance.
# Returns:
# A scalar tensor representing the radius loss.
# """
# radii = torch.norm(embeddings - center, dim=1)
# normalized_radii = torch.nn.functional.normalize(radii, dim=0, p=2)
# normalized_mean_radii = torch.mean(normalized_radii)
# return alpha * normalized_mean_radii
def radius_loss(self, embeddings, center, alpha=1.0):
"""
Modified radius loss function that tries to maximize the average distance.
Args:
embeddings: the 2D embeddings, tensor of shape (N, 2)
center: the center of the circle in the 2D space, tensor of shape (2,)
alpha: a coefficient for the radius loss, controlling its importance.
Returns:
A scalar tensor representing the radius loss.
"""
radii = torch.norm(embeddings - center, dim=1)
normalized_radii = torch.nn.functional.normalize(radii, dim=0, p=2)
normalized_mean_radii = torch.mean(normalized_radii)
return -alpha * normalized_mean_radii
def orthogonal_loss(self, embeddings, beta=0.001):
"""
Orthogonal loss function that tries to decorrelate the embeddings.
Args:
embeddings: the 2D embeddings, tensor of shape (N, 2)
beta: a coefficient for the orthogonal loss, controlling its importance.
Returns:
A scalar tensor representing the orthogonal loss.
"""
gram_matrix = torch.mm(embeddings, embeddings.t())
identity = torch.eye(embeddings.shape[0]).to(embeddings.device)
loss = torch.norm(gram_matrix - identity)
return beta * loss
def distance_order_loss(self,high_embeddings, low_embeddings, high_center, low_center, beta=0.001):
"""
Distance order preserving loss function.
Args:
high_embeddings: the high-dimensional embeddings, tensor of shape (N, D)
low_embeddings: the 2D embeddings, tensor of shape (N, 2)
high_center: the center of the sphere in the high-dimensional space, tensor of shape (D,)
low_center: the center of the circle in the 2D space, tensor of shape (2,)
beta: a coefficient for the distance order loss, controlling its importance.
Returns:
A scalar tensor representing the distance order loss.
"""
high_distances = torch.norm(high_embeddings - high_center, dim=1)
low_distances = torch.norm(low_embeddings - low_center, dim=1)
high_order = torch.argsort(high_distances)
low_order = torch.argsort(low_distances)
high_order = high_order.float()
low_order = low_order.float()
# loss = torch.norm(high_order - low_order)
loss = torch.norm(high_order - low_order) / high_order.shape[0]
# loss = torch.sigmoid(torch.norm(high_order - low_order) / high_order.shape[0])
return beta * loss
def record_time(self, save_dir, file_name, operation, iteration, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][iteration] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
class DVIActiveLearningTrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE)
def train_step(self):
self.model = self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
temporal_losses = []
t = tqdm(self.edge_loader, leave=True, total=len(self.edge_loader))
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, temporal_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.mean().item())
recon_losses.append(recon_l.mean().item())
temporal_losses.append(temporal_l.mean().item())
# ===================backward====================
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\ttemporal_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(temporal_losses) / len(temporal_losses),
sum(all_loss) / len(all_loss)))
return self.loss
def record_time(self, save_dir, file_name, operation, iteration, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][iteration] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
class TVITrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, adv_edge_loader, DEVICE):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE)
self.adv_edge_loader = adv_edge_loader # adversarial data loader
def disable_grad(self, model):
for param in model.parameters():
param.requires_grad = False
def enable_grad(self, model):
for param in model.parameters():
param.requires_grad = True
def train_step(self):
self.model = self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
temporal_losses = []
t = tqdm(self.edge_loader, leave=True, total=len(self.edge_loader))
self.enable_grad(self.model.encoder)# Freeze encoder parameters
print("enable")
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, temporal_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.item())
recon_losses.append(recon_l.item())
temporal_losses.append(temporal_l.mean().item())
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
# Use adversarial data for decoder
# for param in self.model.encoder.parameters():
# param.requires_grad = False # Freeze encoder parameters
# for param in self.model.decoder.parameters():
# param.requires_grad = True # Unfreeze decoder parameters
adv_t = tqdm(self.adv_edge_loader, leave=True, total=len(self.adv_edge_loader))
# adv_t = iter(self.adv_edge_loader)
self.disable_grad(self.model.encoder)# Freeze encoder parameters
print("disable")
for adv_data in adv_t:
adv_edge_to, adv_edge_from, adv_a_to, adv_a_from = adv_data
adv_edge_to = adv_edge_to.to(device=self.DEVICE, dtype=torch.float32)
adv_edge_from = adv_edge_from.to(device=self.DEVICE, dtype=torch.float32)
adv_a_to = adv_a_to.to(device=self.DEVICE, dtype=torch.float32)
adv_a_from = adv_a_from.to(device=self.DEVICE, dtype=torch.float32)
adv_outputs = self.model(adv_edge_to, adv_edge_from)
adv_umap_l, adv_recon_l, adv_temporal_l, adv_loss = self.criterion(adv_edge_to, adv_edge_from, adv_a_to, adv_a_from, self.model, adv_outputs)
# Only update decoder
self.optimizer.zero_grad()
adv_loss.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\ttemporal_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(temporal_losses) / len(temporal_losses),
sum(all_loss) / len(all_loss)))
return self._loss
def record_time(self, save_dir, file_name, operation, iteration, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][iteration] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
class DVIReFineTrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE,data, disable_encoder_grad=False, **kwargs):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE, **kwargs)
self.disable_encoder_grad = disable_encoder_grad
self.data = data
def train(self, PATIENT, MAX_EPOCH_NUMS):
patient = PATIENT
print("patient",patient)
time_start = time.time()
for epoch in range(MAX_EPOCH_NUMS):
print("====================\nepoch:{}\n===================".format(epoch+1))
prev_loss = self.loss
loss = self.train_step()
self.lr_scheduler.step()
# early stop, check whether converge or not
if prev_loss - loss < 5E-3:
if patient == 0:
break
else:
patient -= 1
else:
patient = PATIENT
time_end = time.time()
time_spend = time_end - time_start
print("Time spend: {:.2f} for training vis model...".format(time_spend))
def train_step(self):
self.model = self.model.to(device=self.DEVICE)
####### disable encoder
if self.disable_encoder_grad == True:
disable_grad(self.model.encoder)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
temporal_losses = []
recoverposition_losses = []
# loss_fn = PositionRecoverLoss()
t = tqdm(self.edge_loader, leave=True, total=len(self.edge_loader))
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, temporal_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
data = torch.Tensor(self.data).to(self.DEVICE)
new_emb = self.model.encoder(data).to(self.DEVICE)
grid_high = self.model.decoder(torch.Tensor(new_emb).to(self.DEVICE))
pos_recover_loss_fn = PositionRecoverLoss(self.DEVICE)
pos_loss = pos_recover_loss_fn(torch.Tensor(grid_high).to(self.DEVICE), torch.Tensor(self.data).to(self.DEVICE))
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.item())
recon_losses.append(recon_l.item())
temporal_losses.append(temporal_l.mean().item())
recoverposition_losses.append(pos_loss.mean().item())
# ===================backward====================
recoverposition_loss = sum(recoverposition_losses) / len(recoverposition_losses)
loss_new = loss + 1 * recoverposition_loss
self.optimizer.zero_grad()
loss_new.mean().backward()
# pos_loss.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\ttemporal_l:{:.4f}\tloss:{:.4f}\tecoverposition_losses:{}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(temporal_losses) / len(temporal_losses),
sum(all_loss) / len(all_loss), sum(recoverposition_losses) / len(all_loss)))
return self.loss
def record_time(self, save_dir, file_name, operation, iteration, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][iteration] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
class OriginDVITrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE)
def train_step(self):
self.model = self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
temporal_losses = []
t = tqdm(self.edge_loader, leave=True, total=len(self.edge_loader))
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, temporal_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.item())
recon_losses.append(recon_l.item())
temporal_losses.append(temporal_l.mean().item())
# ===================backward====================
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\ttemporal_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(temporal_losses) / len(temporal_losses),
sum(all_loss) / len(all_loss)))
return self.loss
def record_time(self, save_dir, file_name, operation, iteration, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][iteration] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)
class DVIALMODITrainer(SingleVisTrainer):
def __init__(self, model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE, grid_high_mask, high_bom, high_rad, iteration, data_provider, prev_model, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS,vis_error_indices=None, **kwargs):
super().__init__(model, criterion, optimizer, lr_scheduler, edge_loader, DEVICE, **kwargs)
self.is_first_active_learning = True # Add this line
self.grid_high_mask = grid_high_mask
self.high_bom = high_bom
self.high_rad = high_rad
self.iteration = iteration
self.data_provider = data_provider
self.prev_model = prev_model
self.S_N_EPOCHS = S_N_EPOCHS
self.B_N_EPOCHS = B_N_EPOCHS
self.N_NEIGHBORS = N_NEIGHBORS
self.vis_error_indices = vis_error_indices
def al_loader(self):
print("evluating")
# This method calculates the loss of each sample in the dataset.
# It returns a list of losses and updates the edge loader with the inverse of these losses as weights.
losses = []
# Ensure the model is in evaluation mode
self.model.eval()
# 检查grid_high_mask的类型
if isinstance(self.grid_high_mask, torch.Tensor):
# 将Tensor转换为ndarray
self.grid_high_mask = self.grid_high_mask.cpu().detach().numpy()
grid_pred = self.data_provider.get_pred(self.iteration, self.grid_high_mask).argmax(axis=1)
self.grid_high_mask = torch.tensor(self.grid_high_mask).to(device=self.DEVICE, dtype=torch.float32)
grid_second_high_mask = self.model(self.grid_high_mask,self.grid_high_mask)['recon'][0]
grid_second_high_mask = grid_second_high_mask.cpu().detach().numpy()
grid_second_pred = self.data_provider.get_pred(self.iteration, grid_second_high_mask).argmax(axis=1)
error_indices = [i for i in range(len(grid_pred)) if grid_pred[i] != grid_second_pred[i]]
grid_high_error = [self.grid_high_mask[i] for i in error_indices]
# 获取阈值
threshold = self.high_rad[0] // 2
# 筛选出半径小于阈值的点的索引
filtered_indices = np.where(self.high_rad < threshold)
# 根据索引获取对应位置的center
filtered_centers = self.high_bom[filtered_indices]
filtered_radius = self.high_rad[filtered_indices]
cluster_points = []
uncluster_points = []
# 遍历每个点
for point in grid_high_error:
point = point.cpu().detach().numpy()
# 计算点到所有center的距离
distances = np.linalg.norm(point - filtered_centers, axis=1)
# 找到最近center的索引
closest_center_index = np.argmin(distances)
# 判断最近center的距离是否小于对应center的半径
if distances[closest_center_index] < filtered_radius[closest_center_index]:
# 满足条件的点
cluster_points.append(point)
else:
# 不满足条件的点
uncluster_points.append(point)
cluster_points = np.array(cluster_points)
uncluster_points = np.array(uncluster_points)
al_spatial_cons = ActiveLearningEpochSpatialEdgeConstructor(self.data_provider, self.iteration, self.S_N_EPOCHS, self.B_N_EPOCHS, self.N_NEIGHBORS, cluster_points, uncluster_points, self.high_bom)
al_edge_to, al_edge_from, al_probs, al_feature_vectors, al_attention = al_spatial_cons.construct()
al_probs = al_probs / (al_probs.max()+1e-3)
eliminate_zeros = al_probs>5e-2 #1e-3
al_edge_to = al_edge_to[eliminate_zeros]
al_edge_from = al_edge_from[eliminate_zeros]
al_probs = al_probs[eliminate_zeros]
dataset = DVIDataHandler(al_edge_to, al_edge_from, al_feature_vectors, al_attention)
n_samples = int(np.sum(self.S_N_EPOCHS * al_probs) // 1)
# chose sampler based on the number of dataset
if len(al_edge_to) > pow(2,24):
sampler = CustomWeightedRandomSampler(al_probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(al_probs, n_samples, replacement=True)
new_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)
if self.vis_error_indices:
lens_edge = len(al_edge_from)
new_edge_to = []
new_edge_from = []
new_feature = []
new_attention = []
new_probs = []
mapping = {}
for i in range(lens_edge):
if al_edge_from[i] in self.vis_error_indices or al_edge_to[i] in self.vis_error_indices:
new_edge_to.append(al_edge_to[i])
new_edge_from.append(al_edge_from[i])
new_probs.append(al_probs[i])
new_edge_from = np.array(new_edge_from)
new_edge_to = np.array(new_edge_to)
# new_feature = np.array(new_feature)
# new_attention = np.array(new_attention)
new_probs = np.array(new_probs)
dataset = DVIDataHandler(new_edge_to, new_edge_from, al_feature_vectors, al_attention)
n_samples = int(np.sum(self.S_N_EPOCHS * new_probs) // 1)
# since new probs have the same ordering as new edge to/from, so higher prob asociated with
# edges, higher chance of that index being selected, so higher chance of that edges with this index being selected
# neg_probs = 1-new_probs
if lens_edge > pow(2,24):
sampler = CustomWeightedRandomSampler(new_probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(new_probs, n_samples, replacement=True)
#todo change batch size
new_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)
# new_loader = ActiveLearningEdgeLoader(current_loader.dataset, weights, batch_size=current_loader.batch_size)
return losses, new_loader
def train_step(self, edge_loader):
self.model = self.model.to(device=self.DEVICE)
self.model.train()
all_loss = []
umap_losses = []
recon_losses = []
temporal_losses = []
t = tqdm(edge_loader, leave=True, total=len(edge_loader))
for data in t:
edge_to, edge_from, a_to, a_from = data
edge_to = edge_to.to(device=self.DEVICE, dtype=torch.float32)
edge_from = edge_from.to(device=self.DEVICE, dtype=torch.float32)
a_to = a_to.to(device=self.DEVICE, dtype=torch.float32)
a_from = a_from.to(device=self.DEVICE, dtype=torch.float32)
outputs = self.model(edge_to, edge_from)
umap_l, recon_l, temporal_l, loss = self.criterion(edge_to, edge_from, a_to, a_from, self.model, outputs)
all_loss.append(loss.mean().item())
umap_losses.append(umap_l.mean().item())
recon_losses.append(recon_l.mean().item())
temporal_losses.append(temporal_l.mean().item())
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
self._loss = sum(all_loss) / len(all_loss)
self.model.eval()
print('umap:{:.4f}\trecon_l:{:.4f}\ttemporal_l:{:.4f}\tloss:{:.4f}'.format(sum(umap_losses) / len(umap_losses),
sum(recon_losses) / len(recon_losses),
sum(temporal_losses) / len(temporal_losses),
sum(all_loss) / len(all_loss)))
return self.loss
def run_epoch(self, epoch, current_loader, is_active_learning=False, is_full_data=False):
print("====================\nepoch:{}\n===================".format(epoch+1))
start_time = time.time()
if is_active_learning and is_full_data == False:
_, current_loader = self.al_loader()
# Adjust learning rate for active learning
if self.is_first_active_learning:
print("change learning rate")
for param_group in self.optimizer.param_groups:
param_group['lr'] *= 0.1 # or set to any value you want
self.is_first_active_learning = False
prev_loss = self.loss
if is_full_data:
print("full data")
loss = self.train_step(self.edge_loader) # use DVITrainer's train_step
else:
loss = self.train_step(current_loader) # use DVITrainer's train_step
self.lr_scheduler.step()
elapsed_time = time.time() - start_time
print("Epoch completed in: {:.2f} seconds".format(elapsed_time))
return prev_loss, loss, current_loader
def train(self, PATIENT, MAX_EPOCH_NUMS):
start_flag = 1
if start_flag:
current_loader = self.edge_loader
start_flag = 0
print("ininin in dvi")
patient = PATIENT
time_start = time.time()
# Pretraining
# for epoch in range(10):
# print("Pretraining")
# _, _, current_loader= self.run_epoch(epoch, current_loader, is_active_learning=False,is_full_data=True)
for epoch in range(MAX_EPOCH_NUMS):
print("In active learning")
# is_full_data = (epoch % 3 == 0) # retrain with full data every RE_TRAINING_INTERVAL epochs
prev_loss, loss, current_loader = self.run_epoch(epoch, current_loader, is_active_learning=True, is_full_data=False)
# Early stop, check whether converge or not
if abs(prev_loss - loss) < 5E-3:
if patient == 0:
break
else:
patient -= 1
else:
patient = PATIENT
time_end = time.time()
time_spend = time_end - time_start
print("Time spend: {:.2f} for training vis model...".format(time_spend))
self.prev_model.load_state_dict(self.model.state_dict())
for param in self.prev_model.parameters():
param.requires_grad = False
w_prev = dict(self.prev_model.named_parameters())
def record_time(self, save_dir, file_name, operation, iteration, t):
# save result
save_file = os.path.join(save_dir, file_name+".json")
if not os.path.exists(save_file):
evaluation = dict()
else:
f = open(save_file, "r")
evaluation = json.load(f)
f.close()
if operation not in evaluation.keys():
evaluation[operation] = dict()
evaluation[operation][iteration] = round(t, 3)
with open(save_file, 'w') as f:
json.dump(evaluation, f)