SalazarPevelll
be
f291f4a
raw
history blame
24.8 kB
from abc import ABC, abstractmethod
import os
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import base64
class VisualizerAbstractClass(ABC):
@abstractmethod
def __init__(self, data_provider, projector, * args, **kawargs):
pass
@abstractmethod
def _init_plot(self, *args, **kwargs):
pass
@abstractmethod
def get_epoch_plot_measures(self, *args, **kwargs):
# return x_min, y_min, x_max, y_max
pass
@abstractmethod
def get_epoch_decision_view(self, *args, **kwargs):
pass
@abstractmethod
def savefig(self, *args, **kwargs):
pass
@abstractmethod
def get_background(self, *args, **kwargs):
pass
@abstractmethod
def show_grid_embedding(self, *args, **kwargs):
pass
class visualizer(VisualizerAbstractClass):
def __init__(self, data_provider, projector, resolution, cmap='tab10'):
self.data_provider = data_provider
self.projector = projector
self.cmap = plt.get_cmap(cmap)
self.classes = data_provider.classes
self.class_num = len(self.classes)
self.resolution= resolution
def _init_plot(self, only_img=False):
'''
Initialises matplotlib artists and plots. from DeepView and DVI
'''
plt.ion()
self.fig, self.ax = plt.subplots(1, 1, figsize=(8, 8))
if not only_img:
self.ax.set_title("TimeVis visualization")
self.desc = self.fig.text(0.5, 0.02, '', fontsize=8, ha='center')
self.ax.legend()
else:
self.ax.set_axis_off()
self.cls_plot = self.ax.imshow(np.zeros([5, 5, 3]),
interpolation='gaussian', zorder=0, vmin=0, vmax=1)
self.sample_plots = []
# labels = prediction
for c in range(self.class_num):
color = self.cmap(c/(self.class_num-1))
plot = self.ax.plot([], [], '.', label=self.classes[c], ms=5,
color=color, zorder=2, picker=mpl.rcParams['lines.markersize'])
self.sample_plots.append(plot[0])
# labels != prediction, labels be a large circle
for c in range(self.class_num):
color = self.cmap(c/(self.class_num-1))
plot = self.ax.plot([], [], 'o', markeredgecolor=color,
fillstyle='full', ms=7, mew=2.5, zorder=3)
self.sample_plots.append(plot[0])
# labels != prediction, prediction stays inside of circle
for c in range(self.class_num):
color = self.cmap(c / (self.class_num - 1))
plot = self.ax.plot([], [], '.', markeredgecolor=color,
fillstyle='full', ms=6, zorder=4)
self.sample_plots.append(plot[0])
# Initialize white border points
for c in range(self.class_num):
color = self.cmap(c / (self.class_num - 1))
plot = self.ax.plot([], [], '.', label="border", ms=5,
color="yellow", markeredgecolor=color, zorder=6, picker=mpl.rcParams['lines.markersize'])
self.sample_plots.append(plot[0])
color = (0.0, 0.0, 0.0, 1.0)
plot = self.ax.plot([], [], '.', markeredgecolor=color,
fillstyle='full', ms=20, zorder=1)
self.sample_plots.append(plot[0])
# set the mouse-event listeners
# self.fig.canvas.mpl_connect('pick_event', self.show_sample)
# self.fig.canvas.mpl_connect('button_press_event', self.show_sample)
self.disable_synth = False
def _init_default_plot(self, only_img=True):
'''
Initialises matplotlib artists and plots. from DeepView and DVI
'''
plt.ion()
self.fig, self.ax = plt.subplots(1, 1, figsize=(8, 8))
if not only_img:
self.ax.set_title("TimeVis visualization")
self.desc = self.fig.text(0.5, 0.02, '', fontsize=8, ha='center')
self.ax.legend()
else:
self.ax.set_axis_off()
self.cls_plot = self.ax.imshow(np.zeros([5, 5, 3]),
interpolation='gaussian', zorder=0, vmin=0, vmax=1)
self.sample_plots = []
for c in range(self.class_num):
color = self.cmap(c/(self.class_num-1))
plot = self.ax.plot([], [], '.', label=self.classes[c], ms=5,
color=color, zorder=2, picker=mpl.rcParams['lines.markersize'])
self.sample_plots.append(plot[0])
self.disable_synth = False
def get_epoch_plot_measures(self, epoch):
"""get plot measure for visualization"""
data = self.data_provider.train_representation(epoch)
embedded = self.projector.batch_project(epoch, data)
ebd_min = np.min(embedded, axis=0)
ebd_max = np.max(embedded, axis=0)
ebd_extent = ebd_max - ebd_min
x_min, y_min = ebd_min - 0.1 * ebd_extent
x_max, y_max = ebd_max + 0.1 * ebd_extent
x_min = min(x_min, y_min)
y_min = min(x_min, y_min)
x_max = max(x_max, y_max)
y_max = max(x_max, y_max)
return x_min, y_min, x_max, y_max
def get_epoch_decision_view(self, epoch, resolution, xy_limit=None, forDetail=False):
'''
get background classifier view
:param epoch_id: epoch that need to be visualized
:param resolution: background resolution
:return:
grid_view : numpy.ndarray, self.resolution,self.resolution, 2
decision_view : numpy.ndarray, self.resolution,self.resolution, 3
'''
print('Computing decision regions ...')
if xy_limit is None:
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch)
else:
x_min, y_min, x_max, y_max = xy_limit
# create grid
xs = np.linspace(x_min, x_max, resolution)
ys = np.linspace(y_min, y_max, resolution)
grid = np.array(np.meshgrid(xs, ys))
grid = np.swapaxes(grid.reshape(grid.shape[0], -1), 0, 1)
# map gridmpoint to images
grid_samples = self.projector.batch_inverse(epoch, grid)
print("grid_samples",grid_samples.shape)
mesh_preds = self.data_provider.get_pred(epoch, grid_samples)
mesh_preds = mesh_preds + 1e-8
sort_preds = np.sort(mesh_preds, axis=1)
diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0])
border = np.zeros(len(diff), dtype=np.uint8) + 0.05
border[diff < 0.15] = 1
diff[border == 1] = 0.
diff = diff/(diff.max()+1e-8)
diff = diff*0.9
mesh_classes = mesh_preds.argmax(axis=1)
mesh_max_class = max(mesh_classes)
color = self.cmap(mesh_classes / mesh_max_class)
diff = diff.reshape(-1, 1)
color = color[:, 0:3]
color = diff * 0.5 * color + (1 - diff) * np.ones(color.shape, dtype=np.uint8)
decision_view = color.reshape(resolution, resolution, 3)
grid_view = grid.reshape(resolution, resolution, 2)
if forDetail == True:
return grid_samples, grid, border
return grid_view, decision_view
def savefig(self, epoch, path="vis"):
'''
Shows the current plot.
'''
self._init_plot(only_img=True)
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch)
# with torch.no_grad():
# mu, _ = self.projector.
# mu = mu.cpu().numpy() # Convert to numpy array for easier manipulation
# Xmin, Ymin = mu.min(axis=0) # Minimum values for each dimension
# Xmax, Ymax = mu.max(axis=0) # Maximum values for each dimension
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution)
self.cls_plot.set_data(decision_view)
self.cls_plot.set_extent((x_min, x_max, y_max, y_min))
self.ax.set_xlim((x_min, x_max))
self.ax.set_ylim((y_min, y_max))
# params_str = 'res: %d'
# desc = params_str % (self.resolution)
# self.desc.set_text(desc)
train_data = self.data_provider.train_representation(epoch)
train_labels = self.data_provider.train_labels(epoch)
pred = self.data_provider.get_pred(epoch, train_data)
pred = pred.argmax(axis=1)
embedding = self.projector.batch_project(epoch, train_data)
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, train_labels == pred)]
self.sample_plots[c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, train_labels != pred)]
self.sample_plots[self.class_num+c].set_data(data.transpose())
#
for c in range(self.class_num):
data = embedding[np.logical_and(pred == c, train_labels != pred)]
self.sample_plots[2*self.class_num + c].set_data(data.transpose())
# self.fig.canvas.draw()
# self.fig.canvas.flush_events()
# plt.text(-8, 8, "test", fontsize=18, style='oblique', ha='center', va='top', wrap=True)
plt.savefig(path)
def show_grid_embedding(self, epoch, data, embedding, border, noOutline=False, path="vis"):
'''
Shows the current plot.
'''
self._init_plot(only_img=True)
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch)
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution)
self.cls_plot.set_data(decision_view)
self.cls_plot.set_extent((x_min, x_max, y_max, y_min))
self.ax.set_xlim((x_min, x_max))
self.ax.set_ylim((y_min, y_max))
# params_str = 'res: %d'
# desc = params_str % (self.resolution)
# self.desc.set_text(desc)
train_labels = self.data_provider.get_pred(epoch, data)
train_labels = train_labels.argmax(axis=1)
inv = self.projector.batch_inverse(epoch, embedding)
pred = self.data_provider.get_pred(epoch, inv)
pred = pred.argmax(axis=1)
# mesh_preds = self.data_provider.get_pred(epoch, inv)
# mesh_preds = mesh_preds + 1e-8
# sort_preds = np.sort(mesh_preds, axis=1)
# diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0])
# border = np.zeros(len(diff), dtype=np.uint8) + 0.05
# border[diff < 0.15] = 1
# mesh_preds = self.data_provider.get_pred(epoch, data) + 1e-8
# sort_preds = np.sort(mesh_preds, axis=1)
# diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0])
# border = np.zeros(len(diff), dtype=np.uint8) + 0.05
# border[diff < 0.15] = 1
if noOutline == True:
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, border!=1)]
self.sample_plots[c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, border==1)]
self.sample_plots[3*self.class_num + c].set_data(data.transpose())
else:
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, train_labels == pred, border!=1)]
self.sample_plots[c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, train_labels != pred, border!=1)]
self.sample_plots[self.class_num+c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(pred == c, train_labels != pred, border!=1)]
self.sample_plots[2*self.class_num + c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, border==1)]
self.sample_plots[3*self.class_num+ c].set_data(data.transpose())
# self.fig.canvas.draw()
# self.fig.canvas.flush_events()
# plt.text(-8, 8, "test", fontsize=18, style='oblique', ha='center', va='top', wrap=True)
plt.savefig(path)
def save_default_fig(self, epoch, path="vis"):
'''
Shows the current plot.
'''
self._init_default_plot(only_img=True)
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch)
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution)
self.cls_plot.set_data(decision_view)
self.cls_plot.set_extent((x_min, x_max, y_max, y_min))
self.ax.set_xlim((x_min, x_max))
self.ax.set_ylim((y_min, y_max))
train_data = self.data_provider.train_representation(epoch)
train_labels = self.data_provider.train_labels(epoch)
pred = self.data_provider.get_pred(epoch, train_data)
pred = pred.argmax(axis=1)
embedding = self.projector.batch_project(epoch, train_data)
for c in range(self.class_num):
data = embedding[train_labels == c]
self.sample_plots[c].set_data(data.transpose())
plt.savefig(path)
def savefig_cus(self, epoch, data, pred, labels, path="vis"):
'''
Shows the current plot with given data
'''
self._init_plot(only_img=True)
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch)
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution)
self.cls_plot.set_data(decision_view)
self.cls_plot.set_extent((x_min, x_max, y_max, y_min))
self.ax.set_xlim((x_min, x_max))
self.ax.set_ylim((y_min, y_max))
# params_str = 'res: %d'
# desc = params_str % (self.resolution)
# self.desc.set_text(desc)
embedding = self.projector.batch_project(epoch, data)
for c in range(self.class_num):
data = embedding[np.logical_and(labels == c, labels == pred)]
self.sample_plots[c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(labels == c, labels != pred)]
self.sample_plots[self.class_num+c].set_data(data.transpose())
#
for c in range(self.class_num):
data = embedding[np.logical_and(pred == c, labels != pred)]
self.sample_plots[2*self.class_num + c].set_data(data.transpose())
# self.fig.canvas.draw()
# self.fig.canvas.flush_events()
plt.savefig(path)
def savefig_trajectory(self, epoch, xs, ys, xy_limit=None, path="vis"):
'''
Shows the current plot with given data
'''
self._init_plot(only_img=True)
if xy_limit is None:
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch)
else:
x_min, y_min, x_max, y_max = xy_limit
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution, xy_limit)
self.cls_plot.set_data(decision_view)
self.cls_plot.set_extent((x_min, x_max, y_max, y_min))
self.ax.set_xlim((x_min, x_max))
self.ax.set_ylim((y_min, y_max))
self.sample_plots[-1].set_data(np.vstack((xs,ys)))
# set data point
u = xs[1:] - xs[:-1]
v = ys[1:] - ys[:-1]
x = xs[:len(u)] # 使得维数和u,v一致
y = ys[:len(v)]
# plt.quiver(prev_embedding[:, 0], prev_embedding[:, 1], embedding[:, 0]-prev_embedding[:, 0],embedding[:, 1]-prev_embedding[:, 1], scale_units='xy', angles='xy', scale=1, color='black')
plt.quiver(x,y,u,v, angles='xy', scale_units='xy', scale=1, color="black")
plt.savefig(path)
def get_background(self, epoch, resolution):
'''
Initialises matplotlib artists and plots. from DeepView and DVI
'''
plt.ion()
px = 1/plt.rcParams['figure.dpi'] # pixel in inches
fig, ax = plt.subplots(1, 1, figsize=(200*px, 200*px))
ax.set_axis_off()
cls_plot = ax.imshow(np.zeros([5, 5, 3]),
interpolation='gaussian', zorder=0, vmin=0, vmax=1)
# self.disable_synth = False
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch)
_, decision_view = self.get_epoch_decision_view(epoch, resolution)
cls_plot.set_data(decision_view)
cls_plot.set_extent((x_min, x_max, y_max, y_min))
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
# save first and them load
fname = "Epoch" if self.data_provider.mode == "normal" else "Iteration"
save_path = os.path.join(self.data_provider.model_path, "{}_{}".format(fname, epoch), "bgimg.png")
plt.savefig(save_path, format='png',bbox_inches='tight',pad_inches=0.0)
with open(save_path, 'rb') as img_f:
img_stream = img_f.read()
save_file_base64 = base64.b64encode(img_stream)
return x_min, y_min, x_max, y_max, save_file_base64
def get_standard_classes_color(self):
'''
get the RGB value for 10 classes
:return:
color : numpy.ndarray, shape (10, 3)
'''
# TODO 10 classes?
if self.class_num <= 1:
# Return a default gray color
return np.array([[0.9, 0.9, 0.9]]) # Gray, as an example
mesh_max_class = self.class_num - 1
mesh_classes = np.arange(len(self.classes))
color = self.cmap(mesh_classes / mesh_max_class)
color = color[:, 0:3]
# color = np.concatenate((color, np.zeros((1,3))), axis=0)
return color
class DenseALvisualizer(visualizer):
def __init__(self, data_provider, projector, resolution, cmap='tab10'):
super().__init__(data_provider, projector, resolution, cmap)
def get_epoch_plot_measures(self, iteration, epoch):
"""get plot measure for visualization"""
data = self.data_provider.train_representation(iteration, epoch)
embedded = self.projector.batch_project(iteration, epoch, data)
ebd_min = np.min(embedded, axis=0)
ebd_max = np.max(embedded, axis=0)
ebd_extent = ebd_max - ebd_min
x_min, y_min = ebd_min - 0.1 * ebd_extent
x_max, y_max = ebd_max + 0.1 * ebd_extent
x_min = min(x_min, y_min)
y_min = min(x_min, y_min)
x_max = max(x_max, y_max)
y_max = max(x_max, y_max)
return x_min, y_min, x_max, y_max
def get_epoch_decision_view(self, iteration, epoch, resolution):
'''
get background classifier view
:param epoch_id: epoch that need to be visualized
:param resolution: background resolution
:return:
grid_view : numpy.ndarray, self.resolution,self.resolution, 2
decision_view : numpy.ndarray, self.resolution,self.resolution, 3
'''
print('Computing decision regions ...')
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch)
# create grid
xs = np.linspace(x_min, x_max, resolution)
ys = np.linspace(y_min, y_max, resolution)
grid = np.array(np.meshgrid(xs, ys))
grid = np.swapaxes(grid.reshape(grid.shape[0], -1), 0, 1)
# map gridmpoint to images
grid_samples = self.projector.batch_inverse(iteration, epoch, grid)
mesh_preds = self.data_provider.get_pred(iteration, epoch, grid_samples)
mesh_preds = mesh_preds + 1e-8
sort_preds = np.sort(mesh_preds, axis=1)
diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0])
border = np.zeros(len(diff), dtype=np.uint8) + 0.05
border[diff < 0.15] = 1
diff[border == 1] = 0.
diff = diff/(diff.max()+1e-8)
diff = diff*0.9
mesh_classes = mesh_preds.argmax(axis=1)
mesh_max_class = max(mesh_classes)
color = self.cmap(mesh_classes / mesh_max_class)
diff = diff.reshape(-1, 1)
color = color[:, 0:3]
color = diff * 0.5 * color + (1 - diff) * np.ones(color.shape, dtype=np.uint8)
decision_view = color.reshape(resolution, resolution, 3)
grid_view = grid.reshape(resolution, resolution, 2)
return grid_view, decision_view
def savefig(self, iteration, epoch, path="vis"):
'''
Shows the current plot.
'''
self._init_plot(only_img=True)
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch)
_, decision_view = self.get_epoch_decision_view(iteration, epoch, self.resolution)
self.cls_plot.set_data(decision_view)
self.cls_plot.set_extent((x_min, x_max, y_max, y_min))
self.ax.set_xlim((x_min, x_max))
self.ax.set_ylim((y_min, y_max))
# params_str = 'res: %d'
# desc = params_str % (self.resolution)
# self.desc.set_text(desc)
train_data = self.data_provider.train_representation(iteration, epoch)
train_labels = self.data_provider.train_labels(epoch)
pred = self.data_provider.get_pred(iteration, epoch, train_data)
pred = pred.argmax(axis=1)
embedding = self.projector.batch_project(iteration, epoch, train_data)
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, train_labels == pred)]
self.sample_plots[c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(train_labels == c, train_labels != pred)]
self.sample_plots[self.class_num+c].set_data(data.transpose())
#
for c in range(self.class_num):
data = embedding[np.logical_and(pred == c, train_labels != pred)]
self.sample_plots[2*self.class_num + c].set_data(data.transpose())
# self.fig.canvas.draw()
# self.fig.canvas.flush_events()
# plt.text(-8, 8, "test", fontsize=18, style='oblique', ha='center', va='top', wrap=True)
plt.savefig(path)
def savefig_cus(self, iteration, epoch, data, pred, labels, path="vis"):
'''
Shows the current plot with given data
'''
self._init_plot(only_img=True)
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch)
_, decision_view = self.get_epoch_decision_view(iteration, epoch, self.resolution)
self.cls_plot.set_data(decision_view)
self.cls_plot.set_extent((x_min, x_max, y_max, y_min))
self.ax.set_xlim((x_min, x_max))
self.ax.set_ylim((y_min, y_max))
embedding = self.projector.batch_project(iteration, epoch, data)
for c in range(self.class_num):
data = embedding[np.logical_and(labels == c, labels == pred)]
self.sample_plots[c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(labels == c, labels != pred)]
self.sample_plots[self.class_num+c].set_data(data.transpose())
for c in range(self.class_num):
data = embedding[np.logical_and(pred == c, labels != pred)]
self.sample_plots[2*self.class_num + c].set_data(data.transpose())
plt.savefig(path)
def get_background(self, iteration, epoch, resolution):
'''
Initialises matplotlib artists and plots. from DeepView and DVI
'''
plt.ion()
px = 1/plt.rcParams['figure.dpi'] # pixel in inches
fig, ax = plt.subplots(1, 1, figsize=(200*px, 200*px))
ax.set_axis_off()
cls_plot = ax.imshow(np.zeros([5, 5, 3]),
interpolation='gaussian', zorder=0, vmin=0, vmax=1)
# self.disable_synth = False
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch)
_, decision_view = self.get_epoch_decision_view(iteration, epoch, resolution)
cls_plot.set_data(decision_view)
cls_plot.set_extent((x_min, x_max, y_max, y_min))
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
# save first and them load
fname = "Epoch" if self.data_provider.mode == "normal" else "Iteration"
save_path = os.path.join(self.data_provider.model_path, "{}_{}".format(fname, epoch), "bgimg.png")
plt.savefig(save_path, format='png',bbox_inches='tight',pad_inches=0.0)
with open(save_path, 'rb') as img_f:
img_stream = img_f.read()
save_file_base64 = base64.b64encode(img_stream)
return x_min, y_min, x_max, y_max, save_file_base64