SalazarPevelll
be
f291f4a
raw
history blame
73.7 kB
# TODO fix loading net, sys.append problem
from abc import ABC, abstractmethod
import torch
import tensorflow as tf
import sys
import os
import time
import numpy as np
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel, tfModel
from singleVis.losses import HybridLoss, SmoothnessLoss, UmapLoss, ReconstructionLoss, DummyTemporalLoss, DVILoss, SingleVisLoss, umap_loss, reconstruction_loss, regularize_loss
from singleVis.edge_dataset import HybridDataHandler, DVIDataHandler, DataHandler, construct_edge_dataset
from singleVis.trainer import HybridVisTrainer, DVITrainer, SingleVisTrainer
from singleVis.data import DataProviderAbstractClass, NormalDataProvider, ActiveLearningDataProvider, DenseActiveLearningDataProvider
from singleVis.spatial_edge_constructor import kcHybridSpatialEdgeConstructor, SingleEpochSpatialEdgeConstructor, kcSpatialEdgeConstructor, tfEdgeConstructor
from singleVis.spatial_skeleton_edge_constructor import ProxyBasedSpatialEdgeConstructor
from singleVis.temporal_edge_constructor import GlobalTemporalEdgeConstructor
from singleVis.projector import DeepDebuggerProjector, DVIProjector, ProjectorAbstractClass, TimeVisProjector, ALProjector, tfDVIProjector, tfDVIDenseALProjector, TimeVisDenseALProjector
from singleVis.segmenter import Segmenter
from singleVis.eval.evaluator import Evaluator, ALEvaluator, EvaluatorAbstractClass, DenseALEvaluator
from singleVis.visualizer import VisualizerAbstractClass, visualizer, DenseALvisualizer
from singleVis.utils import find_neighbor_preserving_rate
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVIALMODITrainer
from singleVis.data import NormalDataProvider
from singleVis.spatial_skeleton_edge_constructor import OriginSingleEpochSpatialEdgeConstructor, PredDistSingleEpochSpatialEdgeConstructor
from singleVis.projector import DVIProjector
from singleVis.eval.evaluator import Evaluator
from singleVis.visualizer import visualizer
from trustVis.skeleton_generator import CenterSkeletonGenerator, SkeletonGenerator
class StrategyAbstractClass(ABC):
def __init__(self, CONTENT_PATH, config):
self._config = config
self.CONTENT_PATH = CONTENT_PATH
@property
def config(self)->dict:
return self._config
@property
def projector(self)->ProjectorAbstractClass:
return self._projector
@projector.setter
def projector(self, projector:ProjectorAbstractClass)->None:
self._projector = projector
@property
def data_provider(self)->DataProviderAbstractClass:
return self._data_provider
@data_provider.setter
def data_provider(self, data_provider:DataProviderAbstractClass)->None:
self._data_provider = data_provider
@property
def evaluator(self)->EvaluatorAbstractClass:
return self._evaluator
@evaluator.setter
def evaluator(self, evaluator:EvaluatorAbstractClass)->None:
self._evaluator = evaluator
@property
def vis(self)->VisualizerAbstractClass:
return self._vis
@vis.setter
def vis(self, visualizer:VisualizerAbstractClass)->None:
self._vis = visualizer
@abstractmethod
def _init(self):
pass
@abstractmethod
def _preprocess(self):
pass
@abstractmethod
def _train(self):
pass
@abstractmethod
def _evaluate(self):
pass
@abstractmethod
def _visualize(self):
pass
def visualize_embedding(self):
self._init()
self._preprocess()
self._train()
self._evaluate()
self._visualize()
class DeepVisualInsight(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self._init()
self.VIS_METHOD = "DVI"
def _init(self):
sys.path.append(self.CONTENT_PATH)
# # record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(self.CONTENT_PATH, now+".txt"), "w")
CLASSES = self.config["CLASSES"]
GPU_ID = self.config["GPU"]
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
EPOCH_NAME = self.config["EPOCH_NAME"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
# define hyperparameters
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self._data_provider = NormalDataProvider(self.CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=self.DEVICE, classes=CLASSES, epoch_name=EPOCH_NAME, verbose=1)
self.model = VisModel(ENCODER_DIMS, DECODER_DIMS)
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, self.DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
temporal_loss_fn = DummyTemporalLoss(self.DEVICE)
self.umap_fn = umap_loss_fn
self.recon_fn = recon_loss_fn
self.temporal_fn = temporal_loss_fn
self.projector = DVIProjector(vis_model=self.model, content_path=self.CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=self.DEVICE)
self.vis = visualizer(self.data_provider, self.projector, 200, "tab10")
self.evaluator = Evaluator(self.data_provider, self.projector)
def _preprocess(self):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data()
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
def _train(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
start_flag = 1
prev_model = VisModel(ENCODER_DIMS, DECODER_DIMS)
prev_model.load_state_dict(self.model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(self.model.named_parameters())
for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
# Define DVI Loss
if start_flag:
criterion = DVILoss(self.umap_fn, self.recon_fn, self.temporal_fn, lambd1=LAMBDA1, lambd2=0.0)
start_flag = 0
else:
# TODO AL mode, redefine train_representation
prev_data = self.data_provider.train_representation(iteration-EPOCH_PERIOD)
curr_data = self.data_provider.train_representation(iteration)
npr = find_neighbor_preserving_rate(prev_data, curr_data, N_NEIGHBORS)
criterion = DVILoss(self.umap_fn, self.recon_fn, self.temporal_fn, lambd1=LAMBDA1, lambd2=LAMBDA2*npr)
# Define training parameters
optimizer = torch.optim.Adam(self.model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
# Define Edge dataset
t0 = time.time()
spatial_cons = SingleEpochSpatialEdgeConstructor(self.data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
dataset = DVIDataHandler(edge_to, edge_from, feature_vectors, attention, w_prev)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chose sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=1000, sampler=sampler)
########################################################################################################################
# TRAIN #
########################################################################################################################
trainer = DVITrainer(self.model, criterion, optimizer, lr_scheduler,edge_loader=edge_loader, DEVICE=self.DEVICE)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = self.data_provider.model_path
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
save_dir = os.path.join(self.data_provider.model_path, "Epoch_{}".format(iteration))
trainer.save(save_dir=save_dir, file_name="{}".format(VIS_MODEL_NAME))
prev_model.load_state_dict(self.model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(prev_model.named_parameters())
def _visualize(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
save_dir = os.path.join(self.data_provider.content_path, "img")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
self.vis.savefig(i, path=os.path.join(save_dir, "{}_{}.png".format(self.VIS_METHOD, i)))
def _evaluate(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
eval_epochs = list(range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD))
for eval_epoch in eval_epochs:
self.evaluator.save_epoch_eval(eval_epoch, N_NEIGHBORS, temporal_k=5, file_name="{}".format(EVALUATION_NAME))
def visualize_embedding(self):
self._preprocess()
self._train()
self._visualize()
self._evaluate()
class tfDeepVisualInsight(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self._init()
self.VIS_METHOD = "tfDVI"
def _init(self):
sys.path.append(self.CONTENT_PATH)
CLASSES = self.config["CLASSES"]
GPU_ID = self.config["GPU"]
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
EPOCH_NAME = self.config["EPOCH_NAME"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
# define hyperparameters
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self.data_provider = NormalDataProvider(self.CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=self.DEVICE, classes=CLASSES, epoch_name=EPOCH_NAME, verbose=1)
# Define Projector
self.flag = "_temporal_id{}".format("_withoutB" if B_N_EPOCHS==0 else "")
self.projector = tfDVIProjector(self.CONTENT_PATH, flag=self.flag)
self.vis = visualizer(self.data_provider, self.projector, 200, "tab10")
self.evaluator = Evaluator(self.data_provider, self.projector)
def _preprocess(self):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data()
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
def _train(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
BATCH_SIZE = VISUALIZATION_PARAMETER["BATCH_SIZE"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
# Define Losses
losses = {}
loss_weights = {}
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
# umap loss
umap_loss_fn = umap_loss(
BATCH_SIZE,
negative_sample_rate,
_a,
_b,
)
losses["umap"] = umap_loss_fn
loss_weights["umap"] = 1.0
recon_loss_fn = reconstruction_loss(beta=1)
losses["reconstruction"] = recon_loss_fn
loss_weights["reconstruction"] = LAMBDA1
regularize_loss_fn = regularize_loss()
losses["regularization"] = regularize_loss_fn
loss_weights["regularization"] = LAMBDA2 # TODO: change this weight
# define training
optimizer = tf.keras.optimizers.Adam()
# Define visualization models
weights_dict = {}
self.model = tfModel(optimizer=optimizer, encoder_dims=ENCODER_DIMS, decoder_dims=DECODER_DIMS, loss=losses, loss_weights=loss_weights, batch_size=BATCH_SIZE, prev_trainable_variables=None)
callbacks = [
tf.keras.callbacks.EarlyStopping(
monitor='loss',
min_delta=10 ** -2,
patience=8,
verbose=1,
),
tf.keras.callbacks.LearningRateScheduler(lambda epoch: 1e-3 if epoch < 8 else 1e-4),
tf.keras.callbacks.LambdaCallback(on_train_end=lambda logs: weights_dict.update(
{'prev': [tf.identity(tf.stop_gradient(x)) for x in self.model.trainable_weights]})),
]
# edge constructor
spatial_cons = tfEdgeConstructor(self.data_provider, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS)
for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
self.model.compile(
optimizer=optimizer, loss=losses, loss_weights=loss_weights,
)
t0 = time.time()
edge_to, edge_from, probs, feature_vectors, attention, n_rate = spatial_cons.construct(iteration-EPOCH_PERIOD, iteration)
t1 = time.time()
edge_dataset = construct_edge_dataset(edge_to, edge_from, probs, feature_vectors, attention, n_rate, BATCH_SIZE)
steps_per_epoch = int(
len(edge_to) / BATCH_SIZE / 10
)
t2 = time.time()
# create embedding
self.model.fit(
edge_dataset,
epochs=200, # a large value, because we have early stop callback
steps_per_epoch=steps_per_epoch,
callbacks=callbacks,
max_queue_size=100,
)
t3 = time.time()
# save for later use
self.model.prev_trainable_variables = weights_dict["prev"]
# save
self.model.encoder.save(os.path.join(CONTENT_PATH, "Model", "Epoch_{:d}".format(iteration), "encoder" + self.flag))
self.model.decoder.save(os.path.join(CONTENT_PATH, "Model", "Epoch_{:d}".format(iteration), "decoder" + self.flag))
print("save visualized model for Epoch {:d}".format(iteration))
# save time result
# TODO
# save_dir = self.data_provider.model_path
# trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
# trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
def _visualize(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
save_dir = os.path.join(self.data_provider.content_path, "img")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
self.vis.savefig(i, path=os.path.join(save_dir, "{}_{}.png".format(self.VIS_METHOD, i)))
def _evaluate(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
eval_epochs = list(range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD))
for eval_epoch in eval_epochs:
self.evaluator.save_epoch_eval(eval_epoch, N_NEIGHBORS, temporal_k=5, file_name="{}".format(EVALUATION_NAME))
def visualize_embedding(self):
self._preprocess()
self._train()
self._visualize()
self._evaluate()
class TimeVis(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self._init()
self.VIS_METHOD = "TimeVis"
def _init(self):
sys.path.append(self.CONTENT_PATH)
# record output information
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
sys.stdout = open(os.path.join(self.CONTENT_PATH, now+".txt"), "w")
CLASSES = self.config["CLASSES"]
GPU_ID = self.config["GPU"]
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
EPOCH_NAME = self.config["EPOCH_NAME"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
LAMBDA = VISUALIZATION_PARAMETER["LAMBDA"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
# define hyperparameters
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self.data_provider = NormalDataProvider(self.CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=self.DEVICE, classes=CLASSES, epoch_name=EPOCH_NAME, verbose=1)
self.model = VisModel(ENCODER_DIMS, DECODER_DIMS)
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, self.DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
self.criterion = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA)
self.projector = TimeVisProjector(vis_model=self.model, content_path=self.CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=self.DEVICE)
self.vis = visualizer(self.data_provider, self.projector, 200, "tab10")
self.evaluator = Evaluator(self.data_provider, self.projector)
def _preprocess(self):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data()
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
def _train(self):
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
T_N_EPOCHS = VISUALIZATION_PARAMETER["T_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
INIT_NUM = VISUALIZATION_PARAMETER["INIT_NUM"]
ALPHA = VISUALIZATION_PARAMETER["ALPHA"]
BETA = VISUALIZATION_PARAMETER["BETA"]
MAX_HAUSDORFF = VISUALIZATION_PARAMETER["MAX_HAUSDORFF"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
optimizer = torch.optim.Adam(self.model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
t0 = time.time()
spatial_cons = kcSpatialEdgeConstructor(data_provider=self.data_provider, init_num=INIT_NUM, s_n_epochs=S_N_EPOCHS, b_n_epochs=B_N_EPOCHS, n_neighbors=N_NEIGHBORS, MAX_HAUSDORFF=MAX_HAUSDORFF, ALPHA=ALPHA, BETA=BETA)
s_edge_to, s_edge_from, s_probs, feature_vectors, time_step_nums, time_step_idxs_list, knn_indices, sigmas, rhos, attention = spatial_cons.construct()
temporal_cons = GlobalTemporalEdgeConstructor(X=feature_vectors, time_step_nums=time_step_nums, sigmas=sigmas, rhos=rhos, n_neighbors=N_NEIGHBORS, n_epochs=T_N_EPOCHS)
t_edge_to, t_edge_from, t_probs = temporal_cons.construct()
t1 = time.time()
edge_to = np.concatenate((s_edge_to, t_edge_to),axis=0)
edge_from = np.concatenate((s_edge_from, t_edge_from), axis=0)
probs = np.concatenate((s_probs, t_probs), axis=0)
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
dataset = DataHandler(edge_to, edge_from, feature_vectors, attention)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chose sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=1000, sampler=sampler)
########################################################################################################################
# TRAIN #
########################################################################################################################
trainer = SingleVisTrainer(self.model, self.criterion, optimizer, lr_scheduler, edge_loader=edge_loader, DEVICE=self.DEVICE)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
save_dir = self.data_provider.model_path
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "complex_construction", t1-t0)
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "training", t3-t2)
trainer.save(save_dir=save_dir, file_name="{}".format(VIS_MODEL_NAME))
def _visualize(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
self._vis = visualizer(self.data_provider, self.projector, 200, "plasma")
save_dir = os.path.join(self.data_provider.content_path, "img")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
self.vis.savefig(i, path=os.path.join(save_dir, "{}_{}.png".format(self.VIS_METHOD, i)))
def _evaluate(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
eval_epochs = list(range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD))
self.evaluator = Evaluator(self.data_provider, self.projector)
for eval_epoch in eval_epochs:
self.evaluator.save_epoch_eval(eval_epoch, N_NEIGHBORS, temporal_k=5, file_name="{}".format(EVALUATION_NAME))
def visualize_embedding(self):
self._preprocess()
self._train()
self._visualize()
self._evaluate()
class DeepDebugger(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self._init()
self.VIS_METHOD = "DeepDebugger"
def _init(self):
sys.path.append(self.CONTENT_PATH)
# record output information
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
sys.stdout = open(os.path.join(self.CONTENT_PATH, now+".txt"), "w")
CLASSES = self.config["CLASSES"]
GPU_ID = self.config["GPU"]
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
EPOCH_NAME = self.config["EPOCH_NAME"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
LAMBDA = VISUALIZATION_PARAMETER["LAMBDA"]
S_LAMBDA = VISUALIZATION_PARAMETER["S_LAMBDA"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
# define hyperparameters
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self.data_provider = NormalDataProvider(self.CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=self.DEVICE, classes=CLASSES, epoch_name=EPOCH_NAME, verbose=1)
self.model = VisModel(ENCODER_DIMS, DECODER_DIMS)
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, self.DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
smooth_loss_fn = SmoothnessLoss(margin=0.5)
self.criterion = HybridLoss(umap_loss_fn, recon_loss_fn, smooth_loss_fn, lambd1=LAMBDA, lambd2=S_LAMBDA)
self.segmenter = Segmenter(data_provider=self.data_provider, threshold=78.5, range_s=EPOCH_START, range_e=EPOCH_END, range_p=EPOCH_PERIOD)
self.projector = DeepDebuggerProjector(vis_model=self.model, content_path=self.CONTENT_PATH,vis_model_name=VIS_MODEL_NAME, segments=None, device=self.DEVICE)
self.vis = visualizer(self.data_provider, self.projector, 200, "tab10")
self.evaluator = Evaluator(self.data_provider, self.projector)
def _preprocess(self):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data()
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
def _segment(self):
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
t0 = time.time()
SEGMENTS = self.segmenter.segment()
t1 = time.time()
self.projector.segments = SEGMENTS
self.segmenter.record_time(self.data_provider.model_path, "time_{}.json".format(VIS_MODEL_NAME), t1-t0)
print("Segmentation takes {:.1f} seconds.".format(round(t1-t0, 3)))
def _train(self):
TRAINING_PARAMETER = self.config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
SEGMENTS = self.segmenter.segments
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
INIT_NUM = VISUALIZATION_PARAMETER["INIT_NUM"]
ALPHA = VISUALIZATION_PARAMETER["ALPHA"]
BETA = VISUALIZATION_PARAMETER["BETA"]
MAX_HAUSDORFF = VISUALIZATION_PARAMETER["MAX_HAUSDORFF"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
T_N_EPOCHS = VISUALIZATION_PARAMETER["T_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
prev_selected = np.random.choice(np.arange(LEN), size=INIT_NUM, replace=False)
prev_embedding = None
start_point = len(SEGMENTS)-1
c0=None
d0=None
for seg in range(start_point,-1,-1):
epoch_start, epoch_end = SEGMENTS[seg]
self.data_provider.update_interval(epoch_s=epoch_start, epoch_e=epoch_end)
optimizer = torch.optim.Adam(self.model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
t0 = time.time()
spatial_cons = kcHybridSpatialEdgeConstructor(data_provider=self.data_provider, init_num=INIT_NUM, s_n_epochs=S_N_EPOCHS, b_n_epochs=B_N_EPOCHS, n_neighbors=N_NEIGHBORS, MAX_HAUSDORFF=MAX_HAUSDORFF, ALPHA=ALPHA, BETA=BETA, init_idxs=prev_selected, init_embeddings=prev_embedding, c0=c0, d0=d0)
s_edge_to, s_edge_from, s_probs, feature_vectors, embedded, coefficient, time_step_nums, time_step_idxs_list, knn_indices, sigmas, rhos, attention, (c0,d0) = spatial_cons.construct()
temporal_cons = GlobalTemporalEdgeConstructor(X=feature_vectors, time_step_nums=time_step_nums, sigmas=sigmas, rhos=rhos, n_neighbors=N_NEIGHBORS, n_epochs=T_N_EPOCHS)
t_edge_to, t_edge_from, t_probs = temporal_cons.construct()
t1 = time.time()
edge_to = np.concatenate((s_edge_to, t_edge_to),axis=0)
edge_from = np.concatenate((s_edge_from, t_edge_from), axis=0)
probs = np.concatenate((s_probs, t_probs), axis=0)
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
dataset = HybridDataHandler(edge_to, edge_from, feature_vectors, attention, embedded, coefficient)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chose sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=1000, sampler=sampler)
########################################################################################################################
# TRAIN #
########################################################################################################################
trainer = HybridVisTrainer(self.model, self.criterion, optimizer, lr_scheduler, edge_loader=edge_loader, DEVICE=self.DEVICE)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
file_name = "time_{}".format(VIS_MODEL_NAME)
trainer.record_time(self.data_provider.model_path, file_name, "complex_construction", seg, t1-t0)
trainer.record_time(self.data_provider.model_path, file_name, "training", seg, t3-t2)
trainer.save(save_dir=self.data_provider.model_path, file_name="{}_{}".format(VIS_MODEL_NAME, seg))
self.model = trainer.model
# update prev_idxs and prev_embedding
prev_selected = time_step_idxs_list[0]
prev_data = torch.from_numpy(feature_vectors[:len(prev_selected)]).to(dtype=torch.float32, device=self.DEVICE)
self.model = self.model.to(device=self.DEVICE)
prev_embedding = self.model.encoder(prev_data).cpu().detach().numpy()
def _evaluate(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
eval_epochs = list(range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD))
for eval_epoch in eval_epochs:
self.evaluator.save_epoch_eval(eval_epoch, N_NEIGHBORS, temporal_k=5, file_name="{}".format(EVALUATION_NAME))
def _visualize(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
save_dir = os.path.join(self.data_provider.content_path, "img")
os.makedirs(save_dir, exist_ok=True)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
self.vis.savefig(i, path=os.path.join(save_dir, "{}_{}.png".format(self.VIS_METHOD, i)))
def visualize_embedding(self):
self._preprocess()
self._segment()
self._train()
self._visualize()
self._evaluate()
class DVIAL(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
resume_iter = config["BASE_ITERATION"]
self.VIS_METHOD = "DVIAL"
self._init(resume_iteration=resume_iter)
def _init(self, resume_iteration=-1):
sys.path.append(self.CONTENT_PATH)
# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(self.CONTENT_PATH, now+".txt"), "w")
CLASSES = self.config["CLASSES"]
BASE_ITERATION = self.config["BASE_ITERATION"]
GPU_ID = self.config["GPU"]
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
################################################# VISUALIZATION PARAMETERS ########################################
ENCODER_DIMS = self.config["VISUALIZATION"]["ENCODER_DIMS"]
DECODER_DIMS = self.config["VISUALIZATION"]["DECODER_DIMS"]
VIS_MODEL_NAME = self.config["VISUALIZATION"]["VIS_MODEL_NAME"]
############################################ ACTIVE LEARNING MODEL PARAMETERS ######################################
TRAINING_PARAMETERS = self.config["TRAINING"]
NET = TRAINING_PARAMETERS["NET"]
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self.data_provider = ActiveLearningDataProvider(self.CONTENT_PATH, net, BASE_ITERATION, device=self.DEVICE, classes=CLASSES, iteration_name="Iteration", verbose=1)
self.model = VisModel(ENCODER_DIMS, DECODER_DIMS)
self.projector = ALProjector(vis_model=self.model, content_path=self.CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=self.DEVICE)
if resume_iteration > 0:
self.projector.load(resume_iteration)
self.evaluator = ALEvaluator(self.data_provider, self.projector)
self.vis = visualizer(self.data_provider, self.projector, 200)
def _preprocess(self, iteration):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
B_N_EPOCHS = self.config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = self.config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data(iteration)
LEN = len(self.data_provider.train_labels(iteration))
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(iteration, LEN//10, l_bound=L_BOUND)
def _train(self, iteration):
S_N_EPOCHS = self.config["VISUALIZATION"]["S_N_EPOCHS"]
LAMBDA = self.config["VISUALIZATION"]["LAMBDA"]
MAX_EPOCH = self.config["VISUALIZATION"]["MAX_EPOCH"]
PATIENT = self.config["VISUALIZATION"]["PATIENT"]
VIS_MODEL_NAME = self.config["VISUALIZATION"]["VIS_MODEL_NAME"]
t0 = time.time()
spatial_cons = SingleEpochSpatialEdgeConstructor(self.data_provider, iteration, 5, 0, 15)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
spatial_cons.record_time(self.data_provider.model_path, "time_{}".format(VIS_MODEL_NAME), "complex_construction", t1-t0)
dataset = DataHandler(edge_to, edge_from, feature_vectors, attention)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chosse sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=1024, sampler=sampler)
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, self.DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
criterion = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA)
optimizer = torch.optim.Adam(self.model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
trainer = SingleVisTrainer(self.model, criterion, optimizer, lr_scheduler,edge_loader=edge_loader, DEVICE=self.DEVICE)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = os.path.join(self.data_provider.model_path, "time_{}.json".format(VIS_MODEL_NAME))
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "training" not in evaluation.keys():
evaluation["training"] = dict()
evaluation["training"][str(iteration)] = round(t3-t2, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration))
os.makedirs(save_dir, exist_ok=True)
trainer.save(save_dir=save_dir, file_name=VIS_MODEL_NAME)
def _evaluate(self, iteration):
EVALUATION_NAME = self.config["VISUALIZATION"]["EVALUATION_NAME"]
self.evaluator.save_epoch_eval(iteration, file_name=EVALUATION_NAME)
def _visualize(self, iteration):
save_dir = os.path.join(self.data_provider.content_path, "img")
os.makedirs(save_dir, exist_ok=True)
data = self.data_provider.train_representation(iteration)
pred = self.data_provider.get_pred(iteration, data).argmax(1)
labels = self.data_provider.train_labels(iteration)
self.vis.savefig_cus(iteration, data, pred, labels, path=os.path.join(save_dir, "{}_al.png".format(iteration)))
def visualize_embedding(self, iteration, resume_iter=-1):
self._init(resume_iter)
self._preprocess(iteration)
self._train(iteration)
self._evaluate(iteration)
self._visualize(iteration)
class DenseAL(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self.VIS_METHOD = "DenseAL"
class tfDVIDenseAL(DenseAL):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self.VIS_METHOD = "tfDVIDenseAL"
self._init(resume_iteration=config["BASE_ITERATION"])
def _init(self, resume_iteration=-1):
sys.path.append(self.CONTENT_PATH)
CLASSES = self.config["CLASSES"]
BASE_ITERATION = self.config["BASE_ITERATION"]
GPU_ID = self.config["GPU"]
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
################################################# VISUALIZATION PARAMETERS ########################################
EPOCH_NUM = self.config["TRAINING"]["total_epoch"]
FLAG = self.config["VISUALIZATION"]["FLAG"]
############################################ ACTIVE LEARNING MODEL PARAMETERS ######################################
TRAINING_PARAMETERS = self.config["TRAINING"]
NET = TRAINING_PARAMETERS["NET"]
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self.data_provider = DenseActiveLearningDataProvider(self.CONTENT_PATH, net, BASE_ITERATION, EPOCH_NUM, device=self.DEVICE, classes=CLASSES, iteration_name="Iteration", epoch_name="Epoch", verbose=1)
self.projector = tfDVIDenseALProjector(content_path=self.CONTENT_PATH, flag=FLAG)
if resume_iteration > 0:
self.projector.load(resume_iteration, EPOCH_NUM)
self.evaluator = DenseALEvaluator(self.data_provider, self.projector)
self.vis = DenseALvisualizer(self.data_provider, self.projector, 200)
def _preprocess(self, iteration):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
B_N_EPOCHS = self.config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = self.config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data(iteration)
LEN = len(self.data_provider.train_labels(iteration))
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(iteration, LEN//10, l_bound=L_BOUND)
def _train(self, iteration):
# TODO
pass
def _evaluate(self, iteration):
EVALUATION_NAME = self.config["VISUALIZATION"]["EVALUATION_NAME"]
self.evaluator.save_epoch_eval(iteration, file_name=EVALUATION_NAME)
def _visualize(self, iteration):
save_dir = os.path.join(self.data_provider.content_path, "img")
os.makedirs(save_dir, exist_ok=True)
data = self.data_provider.train_representation(iteration)
pred = self.data_provider.get_pred(iteration, data).argmax(1)
labels = self.data_provider.train_labels(iteration)
self.vis.savefig_cus(iteration, data, pred, labels, path=os.path.join(save_dir, "{}_al.png".format(iteration)))
def visualize_embedding(self, iteration, resume_iter=-1):
self._init(resume_iter)
self._preprocess(iteration)
self._train(iteration)
self._evaluate(iteration)
self._visualize(iteration)
class TimeVisDenseAL(DenseAL):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self.VIS_METHOD = "TimeVisDenseAL"
self._init(resume_iteration=config["BASE_ITERATION"])
def _init(self, resume_iteration=-1):
sys.path.append(self.CONTENT_PATH)
CLASSES = self.config["CLASSES"]
BASE_ITERATION = self.config["BASE_ITERATION"]
GPU_ID = self.config["GPU"]
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
################################################# VISUALIZATION PARAMETERS ########################################
EPOCH_NUM = self.config["TRAINING"]["total_epoch"]
ENCODER_DIMS = self.config["VISUALIZATION"]["ENCODER_DIMS"]
DECODER_DIMS = self.config["VISUALIZATION"]["DECODER_DIMS"]
VIS_MODEL_NAME = self.config["VISUALIZATION"]["VIS_MODEL_NAME"]
############################################ ACTIVE LEARNING MODEL PARAMETERS ######################################
TRAINING_PARAMETERS = self.config["TRAINING"]
NET = TRAINING_PARAMETERS["NET"]
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self.data_provider = DenseActiveLearningDataProvider(self.CONTENT_PATH, net, BASE_ITERATION, EPOCH_NUM, device=self.DEVICE, classes=CLASSES, iteration_name="Iteration", epoch_name="Epoch", verbose=1)
self.model = VisModel(encoder_dims=ENCODER_DIMS, decoder_dims=DECODER_DIMS)
self.projector = TimeVisDenseALProjector(vis_model=self.model, content_path=self.CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=self.DEVICE)
if resume_iteration > 0:
self.projector.load(resume_iteration, EPOCH_NUM)
self.evaluator = DenseALEvaluator(self.data_provider, self.projector)
self.vis = DenseALvisualizer(self.data_provider, self.projector, 200)
def _preprocess(self, iteration):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
B_N_EPOCHS = self.config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = self.config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data(iteration)
LEN = len(self.data_provider.train_labels(iteration))
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(iteration, LEN//10, l_bound=L_BOUND)
def _train(self, iteration):
# TODO
pass
def _evaluate(self, iteration):
EVALUATION_NAME = self.config["VISUALIZATION"]["EVALUATION_NAME"]
self.evaluator.save_epoch_eval(iteration, file_name=EVALUATION_NAME)
def _visualize(self, iteration):
save_dir = os.path.join(self.data_provider.content_path, "img")
os.makedirs(save_dir, exist_ok=True)
data = self.data_provider.train_representation(iteration)
pred = self.data_provider.get_pred(iteration, data).argmax(1)
labels = self.data_provider.train_labels(iteration)
self.vis.savefig_cus(iteration, data, pred, labels, path=os.path.join(save_dir, "{}_al.png".format(iteration)))
def visualize_embedding(self, iteration, resume_iter=-1):
self._init(resume_iter)
self._preprocess(iteration)
self._train(iteration)
self._evaluate(iteration)
self._visualize(iteration)
class TrustActiveLearningDVI(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self._init()
self.VIS_METHOD = "DVI"
def _init(self):
sys.path.append(self.CONTENT_PATH)
# # record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(self.CONTENT_PATH, now+".txt"), "w")
CLASSES = self.config["CLASSES"]
GPU_ID = self.config["GPU"]
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
EPOCH_NAME = self.config["EPOCH_NAME"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
# define hyperparameters
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
self._data_provider = NormalDataProvider(self.CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=self.DEVICE, classes=CLASSES, epoch_name=EPOCH_NAME, verbose=1)
self.model = VisModel(ENCODER_DIMS, DECODER_DIMS)
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, self.DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
temporal_loss_fn = DummyTemporalLoss(self.DEVICE)
self.umap_fn = umap_loss_fn
self.recon_fn = recon_loss_fn
self.temporal_fn = temporal_loss_fn
self.single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
self.projector = DVIProjector(vis_model=self.model, content_path=self.CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=self.DEVICE)
self.vis = visualizer(self.data_provider, self.projector, 200, "tab10")
self.evaluator = Evaluator(self.data_provider, self.projector)
def _preprocess(self):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data()
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
def _train(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
start_flag = 1
prev_model = VisModel(ENCODER_DIMS, DECODER_DIMS)
prev_model.load_state_dict(self.model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(self.model.named_parameters())
for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
# Define DVI Loss
if start_flag:
criterion = DVILoss(self.umap_fn, self.recon_fn, self.temporal_fn, lambd1=LAMBDA1, lambd2=0.0, device=self.DEVICE)
start_flag = 0
else:
# TODO AL mode, redefine train_representation
prev_data = self.data_provider.train_representation(iteration-EPOCH_PERIOD)
curr_data = self.data_provider.train_representation(iteration)
npr = find_neighbor_preserving_rate(prev_data, curr_data, N_NEIGHBORS)
self.temporal_fn = TemporalLoss(w_prev, self.DEVICE)
lambd2_tensor = torch.from_numpy(LAMBDA2 * npr).to(self.DEVICE)
criterion = DVILoss(self.umap_fn, self.recon_fn, self.temporal_fn, lambd1=LAMBDA1, lambd2=lambd2_tensor, device=self.DEVICE)
vis = visualizer(self.data_provider, self.projector, 200, "tab10")
grid_high, grid_emd ,border = vis.get_epoch_decision_view(iteration,400,None, True)
train_data_embedding = self.projector.batch_project(iteration, self.data_provider.train_representation(iteration))
from sklearn.neighbors import NearestNeighbors
import numpy as np
# 假设 train_data_embedding 和 grid_emd 都是 numpy arrays,每一行都是一个点
threshold = 5 # hyper-peremeter
# use train_data_embedding initialize NearestNeighbors
nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(train_data_embedding)
# for each grid_emd,find train_data_embedding nearest sample
distances, indices = nbrs.kneighbors(grid_emd)
# filter by distance
mask = distances.ravel() < threshold
selected_indices = np.arange(grid_emd.shape[0])[mask]
grid_high_mask = grid_high[selected_indices]
skeleton_generator = CenterSkeletonGenerator(self.data_provider,iteration,0.5,500)
high_bom, high_rad = skeleton_generator.center_skeleton_genertaion()
# Define training parameters
optimizer = torch.optim.Adam(self.model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
# Define Edge dataset
t0 = time.time()
spatial_cons = OriginSingleEpochSpatialEdgeConstructor(self.data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
dataset = DVIDataHandler(edge_to, edge_from, feature_vectors, attention, w_prev)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chose sampler based on the number of dataset
if len(edge_to) > pow(2,24):
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)
########################################################################################################################
# TRAIN #
########################################################################################################################
file_path = os.path.join(self.data_provider.content_path, "Model", "Epoch_{}".format(iteration), "{}.pth".format(VIS_MODEL_NAME))
save_model = torch.load(file_path, map_location="cpu")
self.model.load_state_dict(save_model["state_dict"])
trainer = DVIALMODITrainer(self.model, criterion, optimizer,
lr_scheduler, edge_loader=edge_loader, DEVICE=self.DEVICE,
grid_high_mask=grid_high_mask, high_bom=high_bom, high_rad=high_rad,
iteration=iteration, data_provider=self.data_provider, prev_model=prev_model,
S_N_EPOCHS=S_N_EPOCHS, B_N_EPOCHS=B_N_EPOCHS, N_NEIGHBORS=N_NEIGHBORS)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = self.data_provider.model_path
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
save_dir = os.path.join(self.data_provider.model_path, "Epoch_{}".format(iteration))
trainer.save(save_dir=save_dir, file_name="{}".format(VIS_MODEL_NAME))
prev_model.load_state_dict(self.model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(prev_model.named_parameters())
def _visualize(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
save_dir = os.path.join(self.data_provider.content_path, "img")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
self.vis.savefig(i, path=os.path.join(save_dir, "{}_{}_{}.png".format(VIS_MODEL_NAME, i, VIS_METHOD)))
def _evaluate(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
eval_epochs = list(range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD))
for eval_epoch in eval_epochs:
self.evaluator.save_epoch_eval(eval_epoch, N_NEIGHBORS, temporal_k=5, file_name="{}".format(EVALUATION_NAME))
def visualize_embedding(self):
self._preprocess()
self._train()
self._visualize()
self._evaluate()
class TrustProxyDVI(StrategyAbstractClass):
def __init__(self, CONTENT_PATH, config):
super().__init__(CONTENT_PATH, config)
self._init()
self.VIS_METHOD = "DVI"
def _init(self):
sys.path.append(self.CONTENT_PATH)
# # record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(self.CONTENT_PATH, now+".txt"), "w")
CLASSES = self.config["CLASSES"]
GPU_ID = self.config["GPU"]
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
EPOCH_NAME = self.config["EPOCH_NAME"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
VIS_MODEL_NAME = "proxy"
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
# define hyperparameters
self.DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
self.net = eval("subject_model.{}()".format(NET))
self._data_provider = NormalDataProvider(self.CONTENT_PATH, self.net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=self.DEVICE, classes=CLASSES, epoch_name=EPOCH_NAME, verbose=1)
self.model = VisModel(ENCODER_DIMS, DECODER_DIMS)
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, self.DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
temporal_loss_fn = DummyTemporalLoss(self.DEVICE)
self.umap_fn = umap_loss_fn
self.recon_fn = recon_loss_fn
self.temporal_fn = temporal_loss_fn
self.single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
self.projector = DVIProjector(vis_model=self.model, content_path=self.CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=self.DEVICE)
self.vis = visualizer(self.data_provider, self.projector, 200, "tab10")
self.evaluator = Evaluator(self.data_provider, self.projector)
def _preprocess(self):
PREPROCESS = self.config["VISUALIZATION"]["PREPROCESS"]
# Training parameter (subject model)
TRAINING_PARAMETER = self.config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data()
if B_N_EPOCHS >0:
self.data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
def _train(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = "proxy"
start_flag = 1
prev_model = VisModel(ENCODER_DIMS, DECODER_DIMS)
prev_model.load_state_dict(self.model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(self.model.named_parameters())
for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
# Define DVI Loss
if start_flag:
criterion = DVILoss(self.umap_fn, self.recon_fn, self.temporal_fn, lambd1=LAMBDA1, lambd2=0.0, device=self.DEVICE)
start_flag = 0
else:
# TODO AL mode, redefine train_representation
prev_data = self.data_provider.train_representation(iteration-EPOCH_PERIOD)
curr_data = self.data_provider.train_representation(iteration)
npr = find_neighbor_preserving_rate(prev_data, curr_data, N_NEIGHBORS)
self.temporal_fn = TemporalLoss(w_prev, self.DEVICE)
lambd2_tensor = torch.from_numpy(LAMBDA2 * npr).to(self.DEVICE)
criterion = DVILoss(self.umap_fn, self.recon_fn, self.temporal_fn, lambd1=LAMBDA1, lambd2=lambd2_tensor, device=self.DEVICE)
# Define training parameters
optimizer = torch.optim.Adam(self.model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
# Define Edge dataset
t0 = time.time()
###### generate the skeleton
skeleton_generator = SkeletonGenerator(self.data_provider,EPOCH_START,base_num_samples=250)
#TODO different strategy
# high_bom2 = skeleton_generator.skeleton_gen()
# high_bom = skeleton_generator.skeleton_gen_use_perturb()
# high_bom = skeleton_generator.skeleton_gen_use_perturb(_epsilon=1e-5, _per=0.7)
skeleton_generator = CenterSkeletonGenerator(self.data_provider,EPOCH_START,1)
## gennerate skeleton
high_bom,_ = skeleton_generator.center_skeleton_genertaion()
spatial_cons = ProxyBasedSpatialEdgeConstructor(self.data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS, self.net,high_bom)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
dataset = DVIDataHandler(edge_to, edge_from, feature_vectors, attention, w_prev)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chose sampler based on the number of dataset
if len(edge_to) > pow(2,24):
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)
########################################################################################################################
# TRAIN #
########################################################################################################################
trainer = DVITrainer(self.model, criterion, optimizer, lr_scheduler, edge_loader=edge_loader, DEVICE=self.DEVICE)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = self.data_provider.model_path
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
trainer.record_time(save_dir, "time_{}.json".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
save_dir = os.path.join(self.data_provider.model_path, "Epoch_{}".format(iteration))
trainer.save(save_dir=save_dir, file_name="{}".format(VIS_MODEL_NAME))
prev_model.load_state_dict(self.model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(prev_model.named_parameters())
def _visualize(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
vis = visualizer(self.data_provider, self.projector, 200, "tab10")
save_dir = os.path.join(self.data_provider.content_path, "img")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
vis.savefig(i, path=os.path.join(save_dir, "{}_{}_{}_{}.png".format(VIS_MODEL_NAME, i, VIS_METHOD,now)))
def _evaluate(self):
EPOCH_START = self.config["EPOCH_START"]
EPOCH_END = self.config["EPOCH_END"]
EPOCH_PERIOD = self.config["EPOCH_PERIOD"]
VISUALIZATION_PARAMETER = self.config["VISUALIZATION"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
eval_epochs = list(range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD))
for eval_epoch in eval_epochs:
self.evaluator.save_epoch_eval(eval_epoch, N_NEIGHBORS, temporal_k=5, file_name="{}".format(EVALUATION_NAME))
def visualize_embedding(self):
self._preprocess()
self._train()
self._visualize()
self._evaluate()
if __name__ == "__main__":
import json
CONTENT_PATH = "/home/xiangling/data/speech_comment"
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
config = json.load(f)
#------------------------DVI-----------------------------------
VIS_METHOD = "DVI"
dvi_config = config[VIS_METHOD]
dvi = DeepVisualInsight(CONTENT_PATH, dvi_config)
dvi.visualize_embedding()
#------------------------TimeVis-------------------------------
VIS_METHOD = "TimeVis"
timevis_config = config[VIS_METHOD]
timevis = TimeVis(CONTENT_PATH, timevis_config)
timevis.visualize_embedding()
#------------------------DeepDebugger--------------------------
VIS_METHOD = "DeepDebugger"
deepdebugger_config = config[VIS_METHOD]
deepdebugger = DeepDebugger(CONTENT_PATH, deepdebugger_config)
deepdebugger.visualize_embedding()
#------------------------DVI for AL----------------------------
VIS_METHOD = "DVIAL"
dvi_al_config = config[VIS_METHOD]
dvi_al = DVIAL(CONTENT_PATH, dvi_al_config)
start_i = 1
for iteration in range(1,5,1):
resume_iter = iteration-1 if iteration > start_i else -1
dvi_al.visualize_embedding(iteration, resume_iter)