SalazarPevelll
be
f291f4a
'''This class serves as a intermediate layer for tensorboard frontend and DeepDebugger backend'''
from abc import ABC, abstractmethod
import os
import sys
import json
import time
import torch
import numpy as np
import pickle
import shutil
import torch.nn
from scipy.special import softmax
from strategy import StrategyAbstractClass
from singleVis.utils import *
from singleVis.trajectory_manager import Recommender
from singleVis.active_sampling import random_sampling, uncerainty_sampling
# active_learning_path = "../../ActiveLearning"
# sys.path.append(active_learning_path)
'''the context for different dataset setting'''
class Context(ABC):
"""
The Context defines the interface of interest to users of our visualization method.
"""
def __init__(self, strategy: StrategyAbstractClass) -> None:
"""
Usually, the Context accepts a visualization strategy through the constructor, but
also provides a setter to change it at runtime.
"""
self._strategy = strategy
@property
def strategy(self) -> StrategyAbstractClass:
return self._strategy
@strategy.setter
def strategy(self, strategy: StrategyAbstractClass) -> None:
self._strategy = strategy
class VisContext(Context):
'''Normal setting'''
#################################################################################################################
# #
# Adapter #
# #
#################################################################################################################
def train_representation_data(self, EPOCH):
return self.strategy.data_provider.train_representation(EPOCH)
def test_representation_data(self, EPOCH):
return self.strategy.data_provider.test_representation(EPOCH)
def train_labels(self, EPOCH):
return self.strategy.data_provider.train_labels(EPOCH)
def test_labels(self, EPOCH):
return self.strategy.data_provider.test_labels(EPOCH)
def suggest_abnormal(self, strategy, acc_idxs, rej_idxs, budget):
ntd = self._init_detection()
if strategy == "TBSampling":
suggest_idxs, scores = ntd.sample_batch_init(acc_idxs, rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, scores = ntd.sample_batch(acc_idxs, rej_idxs, budget)
else:
raise NotImplementedError
suggest_labels = self.clean_labels[suggest_idxs]
return suggest_idxs, scores, suggest_labels
#################################################################################################################
# #
# data Panel #
# #
#################################################################################################################
def batch_inv_preserve(self, epoch, data):
"""
get inverse confidence for a single point
:param epoch: int
:param data: numpy.ndarray
:return l: boolean, whether reconstruction data have the same prediction
:return conf_diff: float, (0, 1), confidence difference
"""
embedding = self.strategy.projector.batch_project(epoch, data)
recon = self.strategy.projector.batch_inverse(epoch, embedding)
ori_pred = self.strategy.data_provider.get_pred(epoch, data)
new_pred = self.strategy.data_provider.get_pred(epoch, recon)
ori_pred = softmax(ori_pred, axis=1)
new_pred = softmax(new_pred, axis=1)
old_label = ori_pred.argmax(-1)
new_label = new_pred.argmax(-1)
l = old_label == new_label
old_conf = [ori_pred[i, old_label[i]] for i in range(len(old_label))]
new_conf = [new_pred[i, old_label[i]] for i in range(len(old_label))]
old_conf = np.array(old_conf)
new_conf = np.array(new_conf)
conf_diff = old_conf - new_conf
return l, conf_diff
#################################################################################################################
# #
# Search Panel #
# #
#################################################################################################################
# TODO: fix bugs accroding to new api
# customized features
def filter_label(self, label, epoch_id):
try:
index = self.strategy.data_provider.classes.index(label)
except:
index = -1
train_labels = self.strategy.data_provider.train_labels(epoch_id)
test_labels = self.strategy.data_provider.test_labels(epoch_id)
labels = np.concatenate((train_labels, test_labels), 0)
idxs = np.argwhere(labels == index)
idxs = np.squeeze(idxs)
return idxs
def filter_type(self, type, epoch_id):
if type == "train":
res = self.get_epoch_index(epoch_id)
elif type == "test":
train_num = self.strategy.data_provider.train_num
test_num = self.strategy.data_provider.test_num
res = list(range(train_num, train_num+ test_num, 1))
elif type == "unlabel":
labeled = np.array(self.get_epoch_index(epoch_id))
train_num = self.strategy.data_provider.train_num
all_data = np.arange(train_num)
unlabeled = np.setdiff1d(all_data, labeled)
res = unlabeled.tolist()
else:
# all data
train_num = self.strategy.data_provider.train_num
test_num = self.strategy.data_provider.test_num
res = list(range(0, train_num + test_num, 1))
return res
def filter_conf(self, conf_min, conf_max, epoch_id):
train_data = self.strategy.data_provider.train_representation(epoch_id)
test_data =self.strategy.data_provider.test_representation(epoch_id)
data = np.concatenate((train_data, test_data), axis=0)
pred = self.strategy.data_provider.get_pred(epoch_id, data)
scores = np.amax(softmax(pred, axis=1), axis=1)
res = np.argwhere(np.logical_and(scores<=conf_max, scores>=conf_min)).squeeze().tolist()
return res
#################################################################################################################
# #
# Helper Functions #
# #
#################################################################################################################
def save_acc_and_rej(self, acc_idxs, rej_idxs, file_name):
d = {
"acc_idxs": acc_idxs,
"rej_idxs": rej_idxs
}
path = os.path.join(self.strategy.data_provider.content_path, "{}_acc_rej.json".format(file_name))
with open(path, "w") as f:
json.dump(d, f)
print("Successfully save the acc and rej idxs selected by user...")
def get_epoch_index(self, epoch_id):
"""get the training data index for an epoch"""
index_file = os.path.join(self.strategy.data_provider.model_path, "Epoch_{:d}".format(epoch_id), "index.json")
index = load_labelled_data_index(index_file)
return index
def get_max_iter(self):
EPOCH_START = self.strategy.config["EPOCH_START"]
EPOCH_END = self.strategy.config["EPOCH_END"]
EPOCH_PERIOD = self.strategy.config["EPOCH_PERIOD"]
return int((EPOCH_END-EPOCH_START)/EPOCH_PERIOD)+1
def reset(self):
return
class ActiveLearningContext(VisContext):
'''Active learning dataset'''
def __init__(self, strategy) -> None:
super().__init__(strategy)
'''Active learning setting'''
#################################################################################################################
# #
# Adapter #
# #
#################################################################################################################
def train_representation_data(self, iteration):
return self.strategy.data_provider.train_representation_all(iteration)
def train_labels(self, iteration):
labels = self.strategy.data_provider.train_labels_all()
return labels
def save_acc_and_rej(self, iteration, acc_idxs, rej_idxs, file_name):
d = {
"acc_idxs": acc_idxs,
"rej_idxs": rej_idxs
}
path = os.path.join(self.strategy.data_provider.checkpoint_path(iteration), "{}_acc_rej.json".format(file_name))
with open(path, "w") as f:
json.dump(d, f)
print("Successfully save the acc and rej idxs selected by user at Iteration {}...".format(iteration))
def reset(self, iteration):
# delete [iteration,...)
max_i = self.get_max_iter()
for i in range(iteration, max_i+1, 1):
path = self.strategy.data_provider.checkpoint_path(iteration)
shutil.rmtree(path)
iter_structure_path = os.path.join(self.strategy.data_provider.content_path, "iteration_structure.json")
with open(iter_structure_path, "r") as f:
i_s = json.load(f)
new_is = list()
for item in i_s:
value = item["value"]
if value < iteration:
new_is.append(item)
with open(iter_structure_path, "w") as f:
json.dump(new_is, f)
print("Successfully remove cache data!")
def get_epoch_index(self, iteration):
"""get the training data index for an epoch"""
index_file = os.path.join(self.strategy.data_provider.checkpoint_path(iteration), "index.json")
index = load_labelled_data_index(index_file)
return index
def al_query(self, iteration, budget, strategy, acc_idxs, rej_idxs):
"""get the index of new selection from different strategies"""
CONTENT_PATH = self.strategy.data_provider.content_path
NUM_QUERY = budget
NET = self.strategy.config["TRAINING"]["NET"]
DATA_NAME = self.strategy.config["DATASET"]
TOTAL_EPOCH = self.strategy.config["TRAINING"]["total_epoch"]
sys.path.append(CONTENT_PATH)
# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
# loading neural network
import Model.model as subject_model
task_model = eval("subject_model.{}()".format(NET))
# start experiment
n_pool = self.strategy.config["TRAINING"]["train_num"] # 50000
n_test = self.strategy.config["TRAINING"]['test_num'] # 10000
resume_path = self.strategy.data_provider.checkpoint_path(iteration)
idxs_lb = np.array(json.load(open(os.path.join(resume_path, "index.json"), "r")))
state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device('cpu'))
task_model.load_state_dict(state_dict)
NUM_INIT_LB = len(idxs_lb)
print('resume from iteration {}'.format(iteration))
print('number of labeled pool: {}'.format(NUM_INIT_LB))
print('number of unlabeled pool: {}'.format(n_pool - NUM_INIT_LB))
print('number of testing pool: {}'.format(n_test))
if strategy == "Random":
print(DATA_NAME)
print(strategy)
print('================Round {:d}==============='.format(iteration+1))
# query new samples
t0 = time.time()
# TODO implement active learning
new_indices, scores = random_sampling(n_pool, idxs_lb, acc_idxs, rej_idxs, NUM_QUERY)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
elif strategy == "Uncertainty":
print(DATA_NAME)
print(strategy)
print('================Round {:d}==============='.format(iteration+1))
samples = self.strategy.data_provider.train_representation(iteration)
pred = self.strategy.data_provider.get_pred(iteration, samples)
confidence = np.amax(softmax(pred, axis=1), axis=1)
uncertainty = 1-confidence
# query new samples
t0 = time.time()
new_indices, scores = uncerainty_sampling(n_pool, idxs_lb, acc_idxs, rej_idxs, NUM_QUERY, uncertainty=uncertainty)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
elif strategy == "TBSampling":
period = int(2/3*TOTAL_EPOCH)
print(DATA_NAME)
print("TBSampling")
print('================Round {:d}==============='.format(iteration+1))
t0 = time.time()
new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
elif strategy == "Feedback":
period = int(2/3*TOTAL_EPOCH)
print(DATA_NAME)
print("Feedback")
print('================Round {:d}==============='.format(iteration+1))
t0 = time.time()
new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
else:
raise NotImplementedError
true_labels = self.train_labels(iteration)
return new_indices, true_labels[new_indices], scores
def al_train(self, iteration, indices):
# TODO fix
raise NotImplementedError
# # customize ....
# CONTENT_PATH = self.strategy.data_provider.content_path
# # record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
# # for reproduce purpose
# print("New indices:\t{}".format(len(indices)))
# self.save_human_selection(iteration, indices)
# lb_idx = self.get_epoch_index(iteration)
# train_idx = np.hstack((lb_idx, indices))
# print("Training indices:\t{}".format(len(train_idx)))
# print("Valid indices:\t{}".format(len(set(train_idx))))
# TOTAL_EPOCH = self.strategy.config["TRAINING"]["total_epoch"]
# NET = self.strategy.config["TRAINING"]["NET"]
# DEVICE = self.strategy.data_provider.DEVICE
# NEW_ITERATION = self.get_max_iter() + 1
# GPU = self.strategy.config["GPU"]
# DATA_NAME = self.strategy.config["DATASET"]
# sys.path.append(CONTENT_PATH)
# # loading neural network
# from Model.model import resnet18
# task_model = resnet18()
# resume_path = self.strategy.data_provider.checkpoint_path(iteration)
# state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device("cpu"))
# task_model.load_state_dict(state_dict)
# self.save_iteration_index(NEW_ITERATION, train_idx)
# task_model_type = "pytorch"
# # start experiment
# n_pool = self.strategy.config["TRAINING"]["train_num"] # 50000
# save_path = self.strategy.data_provider.checkpoint_path(NEW_ITERATION)
# os.makedirs(save_path, exist_ok=True)
# from query_strategies.random import RandomSampling
# q_strategy = RandomSampling(task_model, task_model_type, n_pool, lb_idx, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# # print information
# print('================Round {:d}==============='.format(NEW_ITERATION))
# # update
# q_strategy.update_lb_idxs(train_idx)
# resnet_model = resnet18()
# train_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=True, transform=self.hyperparameters["TRAINING"]['transform_tr'])
# test_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=False, transform=self.hyperparameters["TRAINING"]['transform_te'])
# t1 = time.time()
# q_strategy.train(total_epoch=TOTAL_EPOCH, task_model=resnet_model, complete_dataset=train_dataset,save_path=None)
# t2 = time.time()
# print("Training time is {:.2f}".format(t2-t1))
# self.save_subject_model(NEW_ITERATION, q_strategy.task_model.state_dict())
# # compute accuracy at each round
# accu = q_strategy.test_accu(test_dataset)
# print('Accuracy {:.3f}'.format(100*accu))
def get_max_iter(self):
path = os.path.join(self.strategy.data_provider.content_path, "Model")
dir_list = os.listdir(path)
iteration_name = self.strategy.data_provider.iteration_name
max_iter = -1
for dir in dir_list:
if "{}_".format(iteration_name) in dir:
i = int(dir.replace("{}_".format(iteration_name),""))
max_iter = max(max_iter, i)
return max_iter
def save_human_selection(self, iteration, indices):
"""
save the selected index message from DVI frontend
:param epoch_id:
:param indices: list, selected indices
:return:
"""
save_location = os.path.join(self.strategy.data_provider.checkpoint_path(iteration), "human_select.json")
with open(save_location, "w") as f:
json.dump(indices, f)
def save_iteration_index(self, iteration, idxs):
new_iteration_dir = self.strategy.data_provider.checkpoint_path(iteration)
os.makedirs(new_iteration_dir, exist_ok=True)
save_location = os.path.join(new_iteration_dir, "index.json")
with open(save_location, "w") as f:
json.dump(idxs.tolist(), f)
def save_subject_model(self, iteration, state_dict):
new_iteration_dir = self.strategy.data_provider.checkpoint_path(iteration)
model_path = os.path.join(new_iteration_dir, "subject_model.pth")
torch.save(state_dict, model_path)
def vis_train(self, iteration, resume_iter):
self.strategy.visualize_embedding(iteration, resume_iter)
#################################################################################################################
# #
# Sample Selection #
# #
#################################################################################################################
def _save(self, iteration, ftm):
with open(os.path.join(self.strategy.data_provider.checkpoint_path(iteration), '{}_sample_recommender.pkl'.format(self.strategy.VIS_METHOD)), 'wb') as f:
pickle.dump(ftm, f, pickle.HIGHEST_PROTOCOL)
def _init_detection(self, iteration, lb_idxs, period=80):
# must be in the dense setting
assert "Dense" in self.strategy.VIS_METHOD
# prepare high dimensional trajectory
embedding_path = os.path.join(self.strategy.data_provider.checkpoint_path(iteration),'trajectory_embeddings.npy')
if os.path.exists(embedding_path):
trajectories = np.load(embedding_path)
print("Load trajectories from cache!")
else:
# extract samples
TOTAL_EPOCH = self.strategy.config["TRAINING"]["total_epoch"]
EPOCH_START = self.strategy.config["TRAINING"]["epoch_start"]
EPOCH_END = self.strategy.config["TRAINING"]["epoch_end"]
EPOCH_PERIOD = self.strategy.config["TRAINING"]["epoch_period"]
train_num = len(self.train_labels(None))
# change epoch_NUM
embeddings_2d = np.zeros((TOTAL_EPOCH, train_num, 2))
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
id = (i - EPOCH_START)//EPOCH_PERIOD
embeddings_2d[id] = self.strategy.projector.batch_project(iteration, i, self.strategy.data_provider.train_representation_all(iteration, i))
trajectories = np.transpose(embeddings_2d, [1,0,2])
np.save(embedding_path, trajectories)
# prepare uncertainty
uncertainty_path = os.path.join(self.strategy.data_provider.checkpoint_path(iteration), 'uncertainties.npy')
if os.path.exists(uncertainty_path):
uncertainty = np.load(uncertainty_path)
else:
TOTAL_EPOCH = self.strategy.config["TRAINING"]["total_epoch"]
EPOCH_START = self.strategy.config["TRAINING"]["epoch_start"]
EPOCH_END = self.strategy.config["TRAINING"]["epoch_end"]
EPOCH_PERIOD = self.strategy.config["TRAINING"]["epoch_period"]
train_num = len(self.train_labels(None))
samples = self.strategy.data_provider.train_representation_all(iteration, EPOCH_END)
pred = self.strategy.data_provider.get_pred(iteration, EPOCH_END, samples)
uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1)
np.save(uncertainty_path, uncertainty)
ulb_idxs = self.strategy.data_provider.get_unlabeled_idx(len(uncertainty), lb_idxs)
# prepare sampling manager
ntd_path = os.path.join(self.strategy.data_provider.checkpoint_path(iteration), '{}_sample_recommender.pkl'.format(self.strategy.VIS_METHOD))
if os.path.exists(ntd_path):
with open(ntd_path, 'rb') as f:
ntd = pickle.load(f)
else:
ntd = Recommender(uncertainty[ulb_idxs], trajectories[ulb_idxs], 30, period=period)
print("Detecting abnormal....")
ntd.clustered()
print("Finish detection!")
self._save(iteration, ntd)
return ntd, ulb_idxs
def _suggest_abnormal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period):
ntd,ulb_idxs = self._init_detection(iteration, lb_idxs, period)
map_ulb = ulb_idxs.tolist()
map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32)
map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32)
if strategy == "TBSampling":
suggest_idxs, scores = ntd.sample_batch_init(map_acc_idxs, map_rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, scores = ntd.sample_batch(map_acc_idxs, map_rej_idxs, budget)
else:
raise NotImplementedError
return ulb_idxs[suggest_idxs], scores
def _suggest_normal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period):
ntd, ulb_idxs = self._init_detection(iteration, lb_idxs, period)
map_ulb = ulb_idxs.tolist()
map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32)
map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32)
if strategy == "TBSampling":
suggest_idxs, _ = ntd.sample_batch_normal_init(map_acc_idxs, map_rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, _ = ntd.sample_batch_normal(map_acc_idxs, map_rej_idxs, budget)
else:
raise NotImplementedError
return ulb_idxs[suggest_idxs]
class AnormalyContext(VisContext):
def __init__(self, strategy) -> None:
super().__init__(strategy)
EPOCH_START = self.strategy.config["EPOCH_START"]
EPOCH_END = self.strategy.config["EPOCH_END"]
EPOCH_PERIOD = self.strategy.config["EPOCH_PERIOD"]
self.period = int(2/3*((EPOCH_END-EPOCH_START)/EPOCH_PERIOD+1))
file_path = os.path.join(self.strategy.data_provider.content_path, 'clean_label.json')
with open(file_path, "r") as f:
self.clean_labels = np.array(json.load(f))
def reset(self):
return
#################################################################################################################
# #
# Anormaly Detection #
# #
#################################################################################################################
def _save(self, ntd):
with open(os.path.join(self.strategy.data_provider.content_path, '{}_sample_recommender.pkl'.format(self.strategy.VIS_METHOD)), 'wb') as f:
pickle.dump(ntd, f, pickle.HIGHEST_PROTOCOL)
def _init_detection(self):
# prepare trajectories
embedding_path = os.path.join(self.strategy.data_provider.content_path, 'trajectory_embeddings.npy')
if os.path.exists(embedding_path):
trajectories = np.load(embedding_path)
else:
# extract samples
train_num = self.strategy.data_provider.train_num
# change epoch_NUM
epoch_num = (self.strategy.data_provider.e - self.strategy.data_provider.s)//self.strategy.data_provider.p + 1
embeddings_2d = np.zeros((epoch_num, train_num, 2))
for i in range(self.strategy.data_provider.s, self.strategy.data_provider.e+1, self.strategy.data_provider.p):
id = (i - self.strategy.data_provider.s)//self.strategy.data_provider.p
embeddings_2d[id] = self.strategy.projector.batch_project(i, self.strategy.data_provider.train_representation(i))
trajectories = np.transpose(embeddings_2d, [1,0,2])
np.save(embedding_path, trajectories)
# prepare uncertainty scores
uncertainty_path = os.path.join(self.strategy.data_provider.content_path, 'uncertainties.npy')
if os.path.exists(uncertainty_path):
uncertainty = np.load(uncertainty_path)
else:
epoch_num = (self.strategy.data_provider.e - self.strategy.data_provider.s)//self.strategy.data_provider.p + 1
samples = self.strategy.data_provider.train_representation(epoch_num)
pred = self.strategy.data_provider.get_pred(epoch_num, samples)
uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1)
np.save(uncertainty_path, uncertainty)
# prepare sampling manager
ntd_path = os.path.join(self.strategy.data_provider.content_path, '{}_sample_recommender.pkl'.format(self.strategy.VIS_METHOD))
if os.path.exists(ntd_path):
with open(ntd_path, 'rb') as f:
ntd = pickle.load(f)
else:
ntd = Recommender(uncertainty, trajectories, 30, self.period)
print("Detecting abnormal....")
ntd.clustered()
print("Finish detection!")
self._save(ntd)
return ntd
def suggest_abnormal(self, strategy, acc_idxs, rej_idxs, budget):
ntd = self._init_detection()
if strategy == "TBSampling":
suggest_idxs, scores = ntd.sample_batch_init(acc_idxs, rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, scores = ntd.sample_batch(acc_idxs, rej_idxs, budget)
else:
raise NotImplementedError
suggest_labels = self.clean_labels[suggest_idxs]
return suggest_idxs, scores, suggest_labels
def suggest_normal(self, strategy, acc_idxs, rej_idxs, budget):
ntd = self._init_detection()
if strategy == "TBSampling":
suggest_idxs, _ = ntd.sample_batch_normal_init(acc_idxs, rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, _ = ntd.sample_batch_normal(acc_idxs, rej_idxs, budget)
else:
raise NotImplementedError
suggest_labels = self.clean_labels[suggest_idxs]
return suggest_idxs, suggest_labels