|
|
|
import os |
|
import json |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib as mpl |
|
import seaborn as sns |
|
|
|
|
|
def main(): |
|
|
|
|
|
dataset = "cifar10" |
|
EXP_NUM = 20 |
|
selected_epochs=[24, 100,200] |
|
k=15 |
|
exps = list(range(EXP_NUM)) |
|
col = np.array(["metric", "method", "hue", "period", "eval"]) |
|
data = np.array([]) |
|
|
|
|
|
metric = "NN" |
|
|
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_hybrid.json".format(dataset) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
for epoch_id in range(3): |
|
epoch = selected_epochs[epoch_id] |
|
nn_train = round(eval["nn_train"][str(epoch)][str(k)], 3) |
|
nn_test = round(eval["nn_test"][str(epoch)][str(k)], 3) |
|
|
|
if len(data) == 0: |
|
data = np.array([[metric, "DeepDebugger", "DeepDebugger(Train)", "{}".format(str(epoch_id)), nn_train]]) |
|
else: |
|
data = np.concatenate((data, np.array([[metric, "DeepDebugger", "DeepDebugger(Train)", "{}".format(str(epoch_id)), nn_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[metric, "DeepDebugger", "DeepDebugger(Test)", "{}".format(str(epoch_id)), nn_test]])), axis=0) |
|
|
|
for epoch_id in range(3): |
|
for exp in exps: |
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/exp_{}/test_evaluation_hybrid.json".format(dataset, str(exp)) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
epoch = selected_epochs[epoch_id] |
|
nn_train = round(eval["nn_train"][str(epoch)][str(k)], 3) |
|
nn_test = round(eval["nn_test"][str(epoch)][str(k)], 3) |
|
|
|
data = np.concatenate((data, np.array([[metric, "-OS", "-OS(Train)", "{}".format(str(epoch_id)), nn_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[metric, "-OS", "-OS(Test)", "{}".format(str(epoch_id)), nn_test]])), axis=0) |
|
|
|
|
|
|
|
metric = "INV" |
|
|
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_hybrid.json".format(dataset) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
for epoch_id in range(3): |
|
epoch = selected_epochs[epoch_id] |
|
ppr_train = round(eval["ppr_train"][str(epoch)], 3) |
|
ppr_test = round(eval["ppr_test"][str(epoch)], 3) |
|
|
|
data = np.concatenate((data, np.array([[metric, "DeepDebugger", "DeepDebugger(Train)", "{}".format(str(epoch_id)), ppr_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[metric, "DeepDebugger", "DeepDebugger(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0) |
|
|
|
|
|
for epoch_id in range(3): |
|
for exp in exps: |
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/exp_{}/test_evaluation_hybrid.json".format(dataset, str(exp)) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
epoch = selected_epochs[epoch_id] |
|
nn_train = round(eval["ppr_train"][str(epoch)], 3) |
|
nn_test = round(eval["ppr_test"][str(epoch)], 3) |
|
|
|
data = np.concatenate((data, np.array([[metric, "-OS", "-OS(Train)", "{}".format(str(epoch_id)), nn_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[metric, "-OS", "-OS(Test)", "{}".format(str(epoch_id)), nn_test]])), axis=0) |
|
|
|
|
|
metric= "TLR" |
|
|
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_hybrid.json".format(dataset) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
for epoch_id in range(3): |
|
epoch = selected_epochs[epoch_id] |
|
nn_train = round(eval["tlr_train"][str(epoch)], 3) |
|
nn_test = round(eval["tlr_test"][str(epoch)], 3) |
|
data = np.concatenate((data, np.array([[metric, "DeepDebugger", "DeepDebugger(Train)","{}".format(str(epoch_id)), nn_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[metric, "DeepDebugger", "DeepDebugger(Test)", "{}".format(str(epoch_id)), nn_test]])), axis=0) |
|
|
|
|
|
for epoch_id in range(3): |
|
for exp in exps: |
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/exp_{}/test_evaluation_hybrid.json".format(dataset, str(exp)) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
epoch = selected_epochs[epoch_id] |
|
nn_train = round(eval["tlr_train"][str(epoch)], 3) |
|
nn_test = round(eval["tlr_test"][str(epoch)], 3) |
|
|
|
data = np.concatenate((data, np.array([[metric, "-OS", "-OS(Train)","{}".format(str(epoch_id)), nn_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[metric, "-OS", "-OS(Test)", "{}".format(str(epoch_id)), nn_test]])), axis=0) |
|
|
|
|
|
df = pd.DataFrame(data, columns=col) |
|
df[["period"]] = df[["period"]].astype(int) |
|
df[["eval"]] = df[["eval"]].astype(float) |
|
|
|
|
|
|
|
pal20c = sns.color_palette('tab20c', 20) |
|
sns.set_theme(style="whitegrid", palette=pal20c) |
|
hue_dict = { |
|
"-OS(Train)": pal20c[0], |
|
"DeepDebugger(Train)": pal20c[8], |
|
|
|
"-OS(Test)": pal20c[3], |
|
"DeepDebugger(Test)": pal20c[11], |
|
} |
|
sns.palplot([hue_dict[i] for i in hue_dict.keys()]) |
|
|
|
axes = {'labelsize': 15, |
|
'titlesize': 15,} |
|
mpl.rc('axes', **axes) |
|
mpl.rcParams['xtick.labelsize'] = 15 |
|
|
|
hue_list = ["-OS(Train)", "-OS(Test)", "DeepDebugger(Train)", "DeepDebugger(Test)"] |
|
|
|
fg = sns.catplot( |
|
x="period", |
|
y="eval", |
|
hue="hue", |
|
hue_order=hue_list, |
|
|
|
|
|
col="metric", |
|
ci=0.001, |
|
height=2.5, |
|
aspect=1.0, |
|
data=df, |
|
sharey=False, |
|
kind="box", |
|
palette=[hue_dict[i] for i in hue_list], |
|
legend=True |
|
) |
|
sns.move_legend(fg, "lower center", bbox_to_anchor=(.42, 0.92), ncol=2, title=None, frameon=False) |
|
mpl.pyplot.setp(fg._legend.get_texts(), fontsize='15') |
|
|
|
axs = fg.axes[0] |
|
|
|
|
|
|
|
axs[0].set_title("NN") |
|
axs[1].set_title("INV") |
|
axs[2].set_title("Temporal") |
|
|
|
(fg.despine(bottom=False, right=False, left=False, top=False) |
|
.set_xticklabels(['Early', 'Mid', 'Late']) |
|
.set_axis_labels("", "") |
|
) |
|
|
|
|
|
fg.savefig( |
|
"./plot_results/cifar10_segment.png", |
|
dpi=300, |
|
bbox_inches="tight", |
|
pad_inches=0.0, |
|
transparent=True, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|