|
from abc import ABC, abstractmethod |
|
|
|
import os |
|
|
|
import matplotlib.pyplot as plt |
|
import matplotlib as mpl |
|
import numpy as np |
|
import base64 |
|
|
|
class VisualizerAbstractClass(ABC): |
|
@abstractmethod |
|
def __init__(self, data_provider, projector, * args, **kawargs): |
|
pass |
|
|
|
@abstractmethod |
|
def _init_plot(self, *args, **kwargs): |
|
pass |
|
|
|
@abstractmethod |
|
def get_epoch_plot_measures(self, *args, **kwargs): |
|
|
|
pass |
|
|
|
@abstractmethod |
|
def get_epoch_decision_view(self, *args, **kwargs): |
|
pass |
|
|
|
@abstractmethod |
|
def savefig(self, *args, **kwargs): |
|
pass |
|
|
|
@abstractmethod |
|
def get_background(self, *args, **kwargs): |
|
pass |
|
|
|
@abstractmethod |
|
def show_grid_embedding(self, *args, **kwargs): |
|
pass |
|
|
|
class visualizer(VisualizerAbstractClass): |
|
def __init__(self, data_provider, projector, resolution, new_pred,cmap='tab10'): |
|
self.data_provider = data_provider |
|
self.projector = projector |
|
self.cmap = plt.get_cmap(cmap) |
|
self.classes = data_provider.classes |
|
self.class_num = len(self.classes) |
|
self.resolution= resolution |
|
self.new_pred = new_pred |
|
|
|
def _init_plot(self, only_img=False): |
|
''' |
|
Initialises matplotlib artists and plots. from DeepView and DVI |
|
''' |
|
plt.ion() |
|
self.fig, self.ax = plt.subplots(1, 1, figsize=(8, 8)) |
|
|
|
if not only_img: |
|
self.ax.set_title("TimeVis visualization") |
|
self.desc = self.fig.text(0.5, 0.02, '', fontsize=8, ha='center') |
|
self.ax.legend() |
|
else: |
|
self.ax.set_axis_off() |
|
self.cls_plot = self.ax.imshow(np.zeros([5, 5, 3]), |
|
interpolation='gaussian', zorder=0, vmin=0, vmax=1) |
|
|
|
self.sample_plots = [] |
|
|
|
for c in range(self.class_num): |
|
color = self.cmap(c/(self.class_num-1)) |
|
plot = self.ax.plot([], [], '.', label=self.classes[c], ms=8, |
|
color=color, zorder=1, picker=mpl.rcParams['lines.markersize']) |
|
self.sample_plots.append(plot[0]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for c in range(self.class_num): |
|
color = self.cmap(c / (self.class_num - 1)) |
|
plot = self.ax.plot([], [], '.', markeredgecolor=color, |
|
fillstyle='full', ms=8, zorder=5) |
|
self.sample_plots.append(plot[0]) |
|
|
|
|
|
|
|
for c in range(self.class_num): |
|
color = self.cmap(c / (self.class_num - 1)) |
|
plot = self.ax.plot([], [], '.', markeredgecolor=color, |
|
fillstyle='full', ms=6, zorder=5) |
|
self.sample_plots.append(plot[0]) |
|
|
|
|
|
for c in range(self.class_num): |
|
color = self.cmap(c / (self.class_num - 1)) |
|
plot = self.ax.plot([], [], '.', label="border", ms=14, |
|
color=color, markeredgecolor=color, zorder=12, picker=mpl.rcParams['lines.markersize']) |
|
self.sample_plots.append(plot[0]) |
|
|
|
for c in range(self.class_num): |
|
color = self.cmap(c/(self.class_num-1)) |
|
plot = self.ax.plot([], [], 'o', markeredgecolor='yellow', |
|
fillstyle='full', ms=9, mew=3, zorder=2) |
|
self.sample_plots.append(plot[0]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
color = (0.0, 0.0, 0.0, 1.0) |
|
plot = self.ax.plot([], [], '.', markeredgecolor=color, |
|
fillstyle='full', ms=20, zorder=1) |
|
self.sample_plots.append(plot[0]) |
|
|
|
|
|
|
|
|
|
self.disable_synth = False |
|
|
|
def _init_default_plot(self, only_img=True): |
|
''' |
|
Initialises matplotlib artists and plots. from DeepView and DVI |
|
''' |
|
plt.ion() |
|
self.fig, self.ax = plt.subplots(1, 1, figsize=(8, 8)) |
|
|
|
if not only_img: |
|
self.ax.set_title("TimeVis visualization") |
|
self.desc = self.fig.text(0.5, 0.02, '', fontsize=8, ha='center') |
|
self.ax.legend() |
|
else: |
|
self.ax.set_axis_off() |
|
self.cls_plot = self.ax.imshow(np.zeros([5, 5, 3]), |
|
interpolation='gaussian', zorder=0, vmin=0, vmax=1) |
|
|
|
self.sample_plots = [] |
|
for c in range(self.class_num): |
|
color = self.cmap(c/(self.class_num-1)) |
|
plot = self.ax.plot([], [], '.', label=self.classes[c], ms=5, |
|
color=color, zorder=2, picker=mpl.rcParams['lines.markersize']) |
|
self.sample_plots.append(plot[0]) |
|
self.disable_synth = False |
|
|
|
|
|
def get_epoch_plot_measures(self, epoch): |
|
"""get plot measure for visualization""" |
|
data = self.data_provider.train_representation(epoch) |
|
|
|
embedded = self.projector.batch_project(epoch, data) |
|
|
|
ebd_min = np.min(embedded, axis=0) |
|
ebd_max = np.max(embedded, axis=0) |
|
ebd_extent = ebd_max - ebd_min |
|
|
|
x_min, y_min = ebd_min - 0.1 * ebd_extent |
|
x_max, y_max = ebd_max + 0.1 * ebd_extent |
|
|
|
x_min = min(x_min, y_min) |
|
y_min = min(x_min, y_min) |
|
x_max = max(x_max, y_max) |
|
y_max = max(x_max, y_max) |
|
|
|
|
|
|
|
return x_min, y_min, x_max, y_max |
|
|
|
def get_epoch_decision_view(self, epoch, resolution, xy_limit=None, forDetail=False): |
|
''' |
|
get background classifier view |
|
:param epoch_id: epoch that need to be visualized |
|
:param resolution: background resolution |
|
:return: |
|
grid_view : numpy.ndarray, self.resolution,self.resolution, 2 |
|
decision_view : numpy.ndarray, self.resolution,self.resolution, 3 |
|
''' |
|
print('Computing decision regions ...') |
|
|
|
if xy_limit is None: |
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) |
|
else: |
|
x_min, y_min, x_max, y_max = xy_limit |
|
|
|
|
|
xs = np.linspace(x_min, x_max, resolution) |
|
ys = np.linspace(y_min, y_max, resolution) |
|
grid = np.array(np.meshgrid(xs, ys)) |
|
grid = np.swapaxes(grid.reshape(grid.shape[0], -1), 0, 1) |
|
|
|
|
|
grid_samples = self.projector.batch_inverse(epoch, grid) |
|
print("grid_samples",grid_samples.shape) |
|
|
|
mesh_preds = self.data_provider.get_pred(epoch, grid_samples) |
|
mesh_preds = mesh_preds + 1e-8 |
|
|
|
sort_preds = np.sort(mesh_preds, axis=1) |
|
diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0]) |
|
border = np.zeros(len(diff), dtype=np.uint8) + 0.05 |
|
border[diff < 0.15] = 1 |
|
diff[border == 1] = 0. |
|
|
|
diff = diff/(diff.max()+1e-8) |
|
diff = diff*0.9 |
|
|
|
mesh_classes = mesh_preds.argmax(axis=1) |
|
mesh_max_class = max(mesh_classes) |
|
color = self.cmap(mesh_classes / mesh_max_class) |
|
|
|
diff = diff.reshape(-1, 1) |
|
|
|
color = color[:, 0:3] |
|
color = diff * 0.5 * color + (1 - diff) * np.ones(color.shape, dtype=np.uint8) |
|
decision_view = color.reshape(resolution, resolution, 3) |
|
grid_view = grid.reshape(resolution, resolution, 2) |
|
if forDetail == True: |
|
return grid_samples, grid, border |
|
|
|
return grid_view, decision_view |
|
|
|
|
|
|
|
def savefig(self, epoch, path="vis"): |
|
''' |
|
Shows the current plot. |
|
''' |
|
self._init_plot(only_img=True) |
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution) |
|
self.cls_plot.set_data(decision_view) |
|
self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
self.ax.set_xlim((x_min, x_max)) |
|
self.ax.set_ylim((y_min, y_max)) |
|
|
|
|
|
|
|
|
|
|
|
train_data = self.data_provider.train_representation(epoch) |
|
train_labels = self.data_provider.train_labels(epoch) |
|
pred = self.data_provider.get_pred(epoch, train_data) |
|
pred = pred.argmax(axis=1) |
|
|
|
embedding = self.projector.batch_project(epoch, train_data) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, train_labels == pred)] |
|
self.sample_plots[c].set_data(data.transpose()) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, train_labels != pred)] |
|
self.sample_plots[self.class_num+c].set_data(data.transpose()) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(pred == c, train_labels != pred)] |
|
self.sample_plots[2*self.class_num + c].set_data(data.transpose()) |
|
|
|
|
|
|
|
|
|
|
|
plt.savefig(path) |
|
|
|
|
|
def show_grid_embedding(self, epoch, data, embedding, border, label, pred, noOutline=False, path="vis"): |
|
''' |
|
Shows the current plot. |
|
''' |
|
self._init_plot(only_img=True) |
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) |
|
|
|
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution) |
|
self.cls_plot.set_data(decision_view) |
|
self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
self.ax.set_xlim((x_min, x_max)) |
|
self.ax.set_ylim((y_min, y_max)) |
|
|
|
|
|
|
|
|
|
train_labels = self.data_provider.get_pred(epoch, data) |
|
train_labels = train_labels.argmax(axis=1) |
|
print("train_labels",train_labels) |
|
train_labels = label |
|
print("train_labels",train_labels) |
|
|
|
|
|
pred = pred |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if noOutline == True: |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, border!=1,border!=2)] |
|
self.sample_plots[c].set_data(data.transpose()) |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, border==1)] |
|
self.sample_plots[3*self.class_num + c].set_data(data.transpose()) |
|
else: |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, border!=1,border!=2)] |
|
self.sample_plots[c].set_data(data.transpose()) |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, border>1)] |
|
self.sample_plots[self.class_num+ c].set_data(data.transpose()) |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, border>1)] |
|
self.sample_plots[2*self.class_num+ c].set_data(data.transpose()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, border==1)] |
|
self.sample_plots[3*self.class_num+ c].set_data(data.transpose()) |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, border==3)] |
|
self.sample_plots[4*self.class_num+ c].set_data(data.transpose()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.savefig(path) |
|
|
|
def save_default_fig(self, epoch, path="vis"): |
|
''' |
|
Shows the current plot. |
|
''' |
|
self._init_default_plot(only_img=True) |
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) |
|
|
|
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution) |
|
self.cls_plot.set_data(decision_view) |
|
self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
self.ax.set_xlim((x_min, x_max)) |
|
self.ax.set_ylim((y_min, y_max)) |
|
|
|
train_data = self.data_provider.train_representation(epoch) |
|
train_labels = self.data_provider.train_labels(epoch) |
|
pred = self.data_provider.get_pred(epoch, train_data) |
|
pred = pred.argmax(axis=1) |
|
|
|
embedding = self.projector.batch_project(epoch, train_data) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[train_labels == c] |
|
self.sample_plots[c].set_data(data.transpose()) |
|
plt.savefig(path) |
|
|
|
def savefig_cus(self, epoch, data, pred, labels, path="vis"): |
|
''' |
|
Shows the current plot with given data |
|
''' |
|
self._init_plot(only_img=True) |
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) |
|
|
|
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution) |
|
self.cls_plot.set_data(decision_view) |
|
self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
self.ax.set_xlim((x_min, x_max)) |
|
self.ax.set_ylim((y_min, y_max)) |
|
|
|
|
|
|
|
|
|
embedding = self.projector.batch_project(epoch, data) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(labels == c, labels == pred)] |
|
self.sample_plots[c].set_data(data.transpose()) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(labels == c, labels != pred)] |
|
self.sample_plots[self.class_num+c].set_data(data.transpose()) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(pred == c, labels != pred)] |
|
self.sample_plots[2*self.class_num + c].set_data(data.transpose()) |
|
|
|
|
|
|
|
plt.savefig(path) |
|
|
|
|
|
def savefig_trajectory(self, epoch, xs, ys, xy_limit=None, path="vis"): |
|
''' |
|
Shows the current plot with given data |
|
''' |
|
self._init_plot(only_img=True) |
|
|
|
if xy_limit is None: |
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) |
|
else: |
|
x_min, y_min, x_max, y_max = xy_limit |
|
|
|
_, decision_view = self.get_epoch_decision_view(epoch, self.resolution, xy_limit) |
|
self.cls_plot.set_data(decision_view) |
|
self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
self.ax.set_xlim((x_min, x_max)) |
|
self.ax.set_ylim((y_min, y_max)) |
|
|
|
self.sample_plots[-1].set_data(np.vstack((xs,ys))) |
|
|
|
|
|
u = xs[1:] - xs[:-1] |
|
v = ys[1:] - ys[:-1] |
|
|
|
x = xs[:len(u)] |
|
y = ys[:len(v)] |
|
|
|
|
|
plt.quiver(x,y,u,v, angles='xy', scale_units='xy', scale=1, color="black") |
|
plt.savefig(path) |
|
|
|
def get_background(self, epoch, resolution): |
|
''' |
|
Initialises matplotlib artists and plots. from DeepView and DVI |
|
''' |
|
plt.ion() |
|
px = 1/plt.rcParams['figure.dpi'] |
|
fig, ax = plt.subplots(1, 1, figsize=(200*px, 200*px)) |
|
ax.set_axis_off() |
|
cls_plot = ax.imshow(np.zeros([5, 5, 3]), |
|
interpolation='gaussian', zorder=0, vmin=0, vmax=1) |
|
|
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) |
|
_, decision_view = self.get_epoch_decision_view(epoch, resolution) |
|
|
|
cls_plot.set_data(decision_view) |
|
cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
ax.set_xlim((x_min, x_max)) |
|
ax.set_ylim((y_min, y_max)) |
|
|
|
|
|
fname = "Epoch" if self.data_provider.mode == "normal" else "Iteration" |
|
save_path = os.path.join(self.data_provider.model_path, "{}_{}".format(fname, epoch), "bgimg.png") |
|
plt.savefig(save_path, format='png',bbox_inches='tight',pad_inches=0.0) |
|
with open(save_path, 'rb') as img_f: |
|
img_stream = img_f.read() |
|
save_file_base64 = base64.b64encode(img_stream) |
|
|
|
return x_min, y_min, x_max, y_max, save_file_base64 |
|
|
|
def get_standard_classes_color(self): |
|
''' |
|
get the RGB value for 10 classes |
|
:return: |
|
color : numpy.ndarray, shape (10, 3) |
|
''' |
|
|
|
|
|
mesh_max_class = self.class_num - 1 |
|
mesh_classes = np.arange(len(self.classes)) |
|
color = self.cmap(mesh_classes / mesh_max_class) |
|
color = color[:, 0:3] |
|
|
|
|
|
return color |
|
|
|
class DenseALvisualizer(visualizer): |
|
def __init__(self, data_provider, projector, resolution, cmap='tab10'): |
|
super().__init__(data_provider, projector, resolution, cmap) |
|
|
|
def get_epoch_plot_measures(self, iteration, epoch): |
|
"""get plot measure for visualization""" |
|
data = self.data_provider.train_representation(iteration, epoch) |
|
embedded = self.projector.batch_project(iteration, epoch, data) |
|
|
|
ebd_min = np.min(embedded, axis=0) |
|
ebd_max = np.max(embedded, axis=0) |
|
ebd_extent = ebd_max - ebd_min |
|
|
|
x_min, y_min = ebd_min - 0.1 * ebd_extent |
|
x_max, y_max = ebd_max + 0.1 * ebd_extent |
|
|
|
x_min = min(x_min, y_min) |
|
y_min = min(x_min, y_min) |
|
x_max = max(x_max, y_max) |
|
y_max = max(x_max, y_max) |
|
|
|
return x_min, y_min, x_max, y_max |
|
|
|
def get_epoch_decision_view(self, iteration, epoch, resolution): |
|
''' |
|
get background classifier view |
|
:param epoch_id: epoch that need to be visualized |
|
:param resolution: background resolution |
|
:return: |
|
grid_view : numpy.ndarray, self.resolution,self.resolution, 2 |
|
decision_view : numpy.ndarray, self.resolution,self.resolution, 3 |
|
''' |
|
print('Computing decision regions ...') |
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) |
|
|
|
|
|
|
|
xs = np.linspace(x_min, x_max, resolution) |
|
ys = np.linspace(y_min, y_max, resolution) |
|
grid = np.array(np.meshgrid(xs, ys)) |
|
grid = np.swapaxes(grid.reshape(grid.shape[0], -1), 0, 1) |
|
|
|
|
|
grid_samples = self.projector.batch_inverse(iteration, epoch, grid) |
|
|
|
mesh_preds = self.data_provider.get_pred(iteration, epoch, grid_samples) |
|
mesh_preds = mesh_preds + 1e-8 |
|
|
|
sort_preds = np.sort(mesh_preds, axis=1) |
|
diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0]) |
|
border = np.zeros(len(diff), dtype=np.uint8) + 0.05 |
|
border[diff < 0.15] = 1 |
|
diff[border == 1] = 0. |
|
|
|
diff = diff/(diff.max()+1e-8) |
|
diff = diff*0.9 |
|
|
|
mesh_classes = mesh_preds.argmax(axis=1) |
|
mesh_max_class = max(mesh_classes) |
|
color = self.cmap(mesh_classes / mesh_max_class) |
|
|
|
diff = diff.reshape(-1, 1) |
|
|
|
color = color[:, 0:3] |
|
color = diff * 0.5 * color + (1 - diff) * np.ones(color.shape, dtype=np.uint8) |
|
decision_view = color.reshape(resolution, resolution, 3) |
|
grid_view = grid.reshape(resolution, resolution, 2) |
|
return grid_view, decision_view |
|
|
|
def savefig(self, iteration, epoch, path="vis"): |
|
''' |
|
Shows the current plot. |
|
''' |
|
self._init_plot(only_img=True) |
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) |
|
|
|
_, decision_view = self.get_epoch_decision_view(iteration, epoch, self.resolution) |
|
self.cls_plot.set_data(decision_view) |
|
self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
self.ax.set_xlim((x_min, x_max)) |
|
self.ax.set_ylim((y_min, y_max)) |
|
|
|
|
|
|
|
|
|
|
|
train_data = self.data_provider.train_representation(iteration, epoch) |
|
train_labels = self.data_provider.train_labels(epoch) |
|
pred = self.data_provider.get_pred(iteration, epoch, train_data) |
|
pred = pred.argmax(axis=1) |
|
|
|
embedding = self.projector.batch_project(iteration, epoch, train_data) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, train_labels == pred)] |
|
self.sample_plots[c].set_data(data.transpose()) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(train_labels == c, train_labels != pred)] |
|
self.sample_plots[self.class_num+c].set_data(data.transpose()) |
|
|
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(pred == c, train_labels != pred)] |
|
self.sample_plots[2*self.class_num + c].set_data(data.transpose()) |
|
|
|
|
|
|
|
|
|
|
|
plt.savefig(path) |
|
|
|
|
|
def savefig_cus(self, iteration, epoch, data, pred, labels, path="vis"): |
|
''' |
|
Shows the current plot with given data |
|
''' |
|
self._init_plot(only_img=True) |
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) |
|
|
|
_, decision_view = self.get_epoch_decision_view(iteration, epoch, self.resolution) |
|
self.cls_plot.set_data(decision_view) |
|
self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
self.ax.set_xlim((x_min, x_max)) |
|
self.ax.set_ylim((y_min, y_max)) |
|
|
|
embedding = self.projector.batch_project(iteration, epoch, data) |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(labels == c, labels == pred)] |
|
self.sample_plots[c].set_data(data.transpose()) |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(labels == c, labels != pred)] |
|
self.sample_plots[self.class_num+c].set_data(data.transpose()) |
|
for c in range(self.class_num): |
|
data = embedding[np.logical_and(pred == c, labels != pred)] |
|
self.sample_plots[2*self.class_num + c].set_data(data.transpose()) |
|
|
|
plt.savefig(path) |
|
|
|
def get_background(self, iteration, epoch, resolution): |
|
''' |
|
Initialises matplotlib artists and plots. from DeepView and DVI |
|
''' |
|
plt.ion() |
|
px = 1/plt.rcParams['figure.dpi'] |
|
fig, ax = plt.subplots(1, 1, figsize=(200*px, 200*px)) |
|
ax.set_axis_off() |
|
cls_plot = ax.imshow(np.zeros([5, 5, 3]), |
|
interpolation='gaussian', zorder=0, vmin=0, vmax=1) |
|
|
|
|
|
x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) |
|
_, decision_view = self.get_epoch_decision_view(iteration, epoch, resolution) |
|
|
|
cls_plot.set_data(decision_view) |
|
cls_plot.set_extent((x_min, x_max, y_max, y_min)) |
|
ax.set_xlim((x_min, x_max)) |
|
ax.set_ylim((y_min, y_max)) |
|
|
|
|
|
fname = "Epoch" if self.data_provider.mode == "normal" else "Iteration" |
|
save_path = os.path.join(self.data_provider.model_path, "{}_{}".format(fname, epoch), "bgimg.png") |
|
plt.savefig(save_path, format='png',bbox_inches='tight',pad_inches=0.0) |
|
with open(save_path, 'rb') as img_f: |
|
img_stream = img_f.read() |
|
save_file_base64 = base64.b64encode(img_stream) |
|
|
|
return x_min, y_min, x_max, y_max, save_file_base64 |
|
|
|
|