|
from flask import request, Flask, jsonify, make_response |
|
from flask_cors import CORS, cross_origin |
|
import base64 |
|
import os |
|
import sys |
|
import json |
|
import numpy as np |
|
import gc |
|
import shutil |
|
|
|
from timevis_backend.utils import * |
|
from timevis_backend.res_logging import add_line |
|
|
|
|
|
app = Flask(__name__) |
|
cors = CORS(app, supports_credentials=True) |
|
app.config['CORS_HEADERS'] = 'Content-Type' |
|
|
|
session = 5 |
|
API_result_path = "./API_result.csv" |
|
|
|
@app.route('/updateProjection', methods=["POST", "GET"]) |
|
@cross_origin() |
|
def update_projection(): |
|
res = request.get_json() |
|
CONTENT_PATH = os.path.normpath(res['path']) |
|
iteration = int(res['iteration']) |
|
predicates = res["predicates"] |
|
|
|
|
|
sys.path.append(CONTENT_PATH) |
|
timevis = initialize_backend(CONTENT_PATH) |
|
EPOCH = (iteration-1)*timevis.data_provider.p + timevis.data_provider.s |
|
|
|
embedding_2d, grid, decision_view, label_name_dict, label_color_list, label_list, max_iter, training_data_index, \ |
|
testing_data_index, eval_new, prediction_list, selected_points, properties = update_epoch_projection(timevis, EPOCH, predicates) |
|
|
|
sys.path.remove(CONTENT_PATH) |
|
|
|
return make_response(jsonify({'result': embedding_2d, 'grid_index': grid, 'grid_color': 'data:image/png;base64,' + decision_view, |
|
'label_name_dict':label_name_dict, |
|
'label_color_list': label_color_list, 'label_list': label_list, |
|
'maximum_iteration': max_iter, |
|
'training_data': training_data_index, |
|
'testing_data': testing_data_index, 'evaluation': eval_new, |
|
'prediction_list': prediction_list, |
|
"selectedPoints":selected_points.tolist(), |
|
"properties":properties.tolist()}), 200) |
|
|
|
@app.route('/query', methods=["POST"]) |
|
@cross_origin() |
|
def filter(): |
|
res = request.get_json() |
|
CONTENT_PATH = os.path.normpath(res['content_path']) |
|
iteration = int(res['iteration']) |
|
predicates = res["predicates"] |
|
username = res['username'] |
|
|
|
sys.path.append(CONTENT_PATH) |
|
timevis = initialize_backend(CONTENT_PATH) |
|
EPOCH = (iteration-1)*timevis.data_provider.p + timevis.data_provider.s |
|
|
|
training_data_number = timevis.hyperparameters["TRAINING"]["train_num"] |
|
testing_data_number = timevis.hyperparameters["TRAINING"]["test_num"] |
|
|
|
current_index = timevis.get_epoch_index(EPOCH) |
|
selected_points = np.arange(training_data_number)[current_index] |
|
selected_points = np.concatenate((selected_points, np.arange(training_data_number, training_data_number + testing_data_number, 1)), axis=0) |
|
|
|
for key in predicates.keys(): |
|
if key == "label": |
|
tmp = np.array(timevis.filter_label(predicates[key], int(EPOCH))) |
|
elif key == "type": |
|
tmp = np.array(timevis.filter_type(predicates[key], int(EPOCH))) |
|
elif key == "confidence": |
|
tmp = np.array(timevis.filter_conf(predicates[key][0],predicates[key][1],int(EPOCH))) |
|
else: |
|
tmp = np.arange(training_data_number + testing_data_number) |
|
selected_points = np.intersect1d(selected_points, tmp) |
|
sys.path.remove(CONTENT_PATH) |
|
add_line(API_result_path,['SQ',username]) |
|
return make_response(jsonify({"selectedPoints": selected_points.tolist()}), 200) |
|
|
|
|
|
|
|
@app.route('/sprite', methods=["POST","GET"]) |
|
@cross_origin() |
|
def sprite_image(): |
|
path = request.args.get("path") |
|
index = request.args.get("index") |
|
username = request.args.get("username") |
|
|
|
CONTENT_PATH = os.path.normpath(path) |
|
print('index', index) |
|
idx = int(index) |
|
pic_save_dir_path = os.path.join(CONTENT_PATH, "sprites", "{}.png".format(idx)) |
|
img_stream = '' |
|
with open(pic_save_dir_path, 'rb') as img_f: |
|
img_stream = img_f.read() |
|
img_stream = base64.b64encode(img_stream).decode() |
|
add_line(API_result_path,['SI',username]) |
|
return make_response(jsonify({"imgUrl":'data:image/png;base64,' + img_stream}), 200) |
|
|
|
|
|
@app.route('/spriteList', methods=["POST"]) |
|
@cross_origin() |
|
def sprite_list_image(): |
|
data = request.get_json() |
|
indices = data["index"] |
|
path = data["path"] |
|
|
|
|
|
CONTENT_PATH = os.path.normpath(path) |
|
length = len(indices) |
|
urlList = {} |
|
|
|
for i in range(length): |
|
idx = indices[i] |
|
pic_save_dir_path = os.path.join(CONTENT_PATH, "sprites", "{}.png".format(idx)) |
|
img_stream = '' |
|
with open(pic_save_dir_path, 'rb') as img_f: |
|
img_stream = img_f.read() |
|
img_stream = base64.b64encode(img_stream).decode() |
|
urlList[idx] = 'data:image/png;base64,' + img_stream |
|
|
|
return make_response(jsonify({"urlList":urlList}), 200) |
|
|
|
|
|
@app.route('/al_query', methods=["POST"]) |
|
@cross_origin() |
|
def al_query(): |
|
data = request.get_json() |
|
CONTENT_PATH = os.path.normpath(data['content_path']) |
|
iteration = data["iteration"] |
|
strategy = data["strategy"] |
|
budget = int(data["budget"]) |
|
acc_idxs = data["accIndices"] |
|
rej_idxs = data["rejIndices"] |
|
user_name = data["username"] |
|
isRecommend = data["isRecommend"] |
|
|
|
|
|
sys.path.append(CONTENT_PATH) |
|
timevis = initialize_backend(CONTENT_PATH, dense_al=True) |
|
|
|
indices, labels, scores = timevis.al_query(iteration, budget, strategy, np.array(acc_idxs).astype(np.int64), np.array(rej_idxs).astype(np.int64)) |
|
|
|
sort_i = np.argsort(-scores) |
|
indices = indices[sort_i] |
|
labels = labels[sort_i] |
|
scores = scores[sort_i] |
|
|
|
sys.path.remove(CONTENT_PATH) |
|
if not isRecommend: |
|
add_line(API_result_path,['Feedback', user_name]) |
|
else: |
|
add_line(API_result_path,['Recommend', user_name]) |
|
return make_response(jsonify({"selectedPoints": indices.tolist(), "scores": scores.tolist(), "suggestLabels":labels.tolist()}), 200) |
|
|
|
@app.route('/anomaly_query', methods=["POST"]) |
|
@cross_origin() |
|
def anomaly_query(): |
|
data = request.get_json() |
|
CONTENT_PATH = os.path.normpath(data['content_path']) |
|
budget = int(data["budget"]) |
|
strategy = data["strategy"] |
|
acc_idxs = data["accIndices"] |
|
rej_idxs = data["rejIndices"] |
|
user_name = data["username"] |
|
isRecommend = data["isRecommend"] |
|
|
|
sys.path.append(CONTENT_PATH) |
|
|
|
timevis = initialize_backend(CONTENT_PATH) |
|
timevis.save_acc_and_rej(acc_idxs, rej_idxs, user_name) |
|
indices, scores, labels = timevis.suggest_abnormal(strategy, np.array(acc_idxs).astype(np.int64), np.array(rej_idxs).astype(np.int64), budget) |
|
clean_list,_ = timevis.suggest_normal(strategy, np.array(acc_idxs).astype(np.int64), np.array(rej_idxs).astype(np.int64), 1) |
|
|
|
sort_i = np.argsort(-scores) |
|
indices = indices[sort_i] |
|
labels = labels[sort_i] |
|
scores = scores[sort_i] |
|
|
|
sys.path.remove(CONTENT_PATH) |
|
if not isRecommend: |
|
add_line(API_result_path,['Feedback', user_name]) |
|
else: |
|
add_line(API_result_path,['Recommend', user_name]) |
|
return make_response(jsonify({"selectedPoints": indices.tolist(), "scores": scores.tolist(), "suggestLabels":labels.tolist(),"cleanList":clean_list.tolist()}), 200) |
|
|
|
@app.route('/al_train', methods=["POST"]) |
|
@cross_origin() |
|
def al_train(): |
|
data = request.get_json() |
|
CONTENT_PATH = os.path.normpath(data['content_path']) |
|
acc_idxs = data["accIndices"] |
|
rej_idxs = data["rejIndices"] |
|
iteration = data["iteration"] |
|
user_name = data["username"] |
|
sys.path.append(CONTENT_PATH) |
|
|
|
|
|
|
|
timevis = initialize_backend(CONTENT_PATH, dense_al=False) |
|
timevis.save_acc_and_rej(iteration, acc_idxs, rej_idxs, user_name) |
|
timevis.al_train(iteration, acc_idxs) |
|
|
|
from config import config |
|
NEW_ITERATION = timevis.get_max_iter() |
|
timevis.vis_train(NEW_ITERATION, **config) |
|
|
|
|
|
embedding_2d, grid, decision_view, label_name_dict, label_color_list, label_list, _, training_data_index, \ |
|
testing_data_index, eval_new, prediction_list, selected_points, properties = update_epoch_projection(timevis, NEW_ITERATION, dict()) |
|
|
|
|
|
res_json_path = os.path.join(CONTENT_PATH, "iteration_structure.json") |
|
with open(res_json_path,encoding='utf8')as fp: |
|
json_data = json.load(fp) |
|
|
|
json_data.append({'value': NEW_ITERATION, 'name': 'iteration', 'pid': iteration}) |
|
print('json_data',json_data) |
|
with open(res_json_path,'w')as r: |
|
json.dump(json_data, r) |
|
r.close() |
|
|
|
|
|
del config |
|
gc.collect() |
|
|
|
sys.path.remove(CONTENT_PATH) |
|
|
|
add_line(API_result_path,['al_train', user_name]) |
|
return make_response(jsonify({'result': embedding_2d, 'grid_index': grid, 'grid_color': 'data:image/png;base64,' + decision_view, |
|
'label_name_dict': label_name_dict, |
|
'label_color_list': label_color_list, 'label_list': label_list, |
|
'maximum_iteration': NEW_ITERATION, 'training_data': training_data_index, |
|
'testing_data': testing_data_index, 'evaluation': eval_new, |
|
'prediction_list': prediction_list, |
|
"selectedPoints":selected_points.tolist(), |
|
"properties":properties.tolist()}), 200) |
|
|
|
def clear_cache(con_paths): |
|
for CONTENT_PATH in con_paths.values(): |
|
ac_flag = False |
|
target_path = os.path.join(CONTENT_PATH, "Model") |
|
dir_list = os.listdir(target_path) |
|
for dir in dir_list: |
|
if "Iteration_" in dir: |
|
ac_flag=True |
|
i = int(dir.replace("Iteration_", "")) |
|
if i > 2: |
|
shutil.rmtree(os.path.join(target_path, dir)) |
|
if ac_flag: |
|
iter_structure_path = os.path.join(CONTENT_PATH, "iteration_structure.json") |
|
with open(iter_structure_path, "r") as f: |
|
i_s = json.load(f) |
|
new_is = list() |
|
for item in i_s: |
|
value = item["value"] |
|
if value < 3: |
|
new_is.append(item) |
|
with open(iter_structure_path, "w") as f: |
|
json.dump(new_is, f) |
|
print("Successfully remove cache data!") |
|
|
|
|
|
|
|
@app.route('/login', methods=["POST"]) |
|
@cross_origin() |
|
def login(): |
|
data = request.get_json() |
|
username = data["username"] |
|
password = data["password"] |
|
content_path = data["content_path"] |
|
|
|
|
|
|
|
if username == 'admin-e' and password == '123qwe': |
|
|
|
|
|
return make_response(jsonify({"normal_content_path": content_path, "unormaly_content_path": content_path}), 200) |
|
else: |
|
return make_response(jsonify({"message":"username or password is wrong"}), 200) |
|
|
|
@app.route('/boundingbox_record', methods=["POST"]) |
|
@cross_origin() |
|
def record_bb(): |
|
data = request.get_json() |
|
username = data['username'] |
|
add_line(API_result_path,['boundingbox', username]) |
|
return make_response(jsonify({}), 200) |
|
|
|
@app.route('/all_result_list', methods=["POST"]) |
|
@cross_origin() |
|
def get_res(): |
|
data = request.get_json() |
|
CONTENT_PATH = os.path.normpath(data['content_path']) |
|
|
|
|
|
predicates = dict() |
|
|
|
results = dict() |
|
imglist = dict() |
|
gridlist = dict() |
|
|
|
sys.path.append(CONTENT_PATH) |
|
|
|
username = data["username"] |
|
|
|
from config import config |
|
EPOCH_START = config["EPOCH_START"] |
|
EPOCH_PERIOD = config["EPOCH_PERIOD"] |
|
EPOCH_END = config["EPOCH_END"] |
|
|
|
|
|
epoch_num = (EPOCH_END - EPOCH_START)// EPOCH_PERIOD + 1 |
|
|
|
for i in range(1, epoch_num+1, 1): |
|
EPOCH = (i-1)*EPOCH_PERIOD + EPOCH_START |
|
|
|
timevis = initialize_backend(CONTENT_PATH) |
|
|
|
|
|
fname = "Epoch" if timevis.data_provider.mode == "normal" or timevis.data_provider.mode == "abnormal" else "Iteration" |
|
bgimg_path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH), "bgimg.png") |
|
embedding_path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH), "embedding.npy") |
|
grid_path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH), "grid.pkl") |
|
if os.path.exists(bgimg_path) and os.path.exists(embedding_path) and os.path.exists(grid_path): |
|
path = os.path.join(timevis.data_provider.model_path, "{}_{}".format(fname, EPOCH)) |
|
result_path = os.path.join(path,"embedding.npy") |
|
results[str(i)] = np.load(result_path).tolist() |
|
with open(os.path.join(path, "grid.pkl"), "rb") as f: |
|
grid = pickle.load(f) |
|
gridlist[str(i)] = grid |
|
else: |
|
embedding_2d, grid, _, _, _, _, _, _, _, _, _, _, _ = update_epoch_projection(timevis, EPOCH, predicates) |
|
results[str(i)] = embedding_2d |
|
gridlist[str(i)] = grid |
|
|
|
with open(bgimg_path, 'rb') as img_f: |
|
img_stream = img_f.read() |
|
img_stream = base64.b64encode(img_stream).decode() |
|
imglist[str(i)] = 'data:image/png;base64,' + img_stream |
|
|
|
sys.path.remove(CONTENT_PATH) |
|
|
|
del config |
|
gc.collect() |
|
|
|
add_line(API_result_path,['animation', username]) |
|
return make_response(jsonify({"results":results,"bgimgList":imglist, "grid": gridlist}), 200) |
|
|
|
@app.route('/get_itertaion_structure', methods=["POST", "GET"]) |
|
@cross_origin() |
|
def get_tree(): |
|
CONTENT_PATH = request.args.get("path") |
|
res_json_path = os.path.join(CONTENT_PATH, "iteration_structure.json") |
|
|
|
|
|
with open(res_json_path,encoding='utf8')as fp: |
|
json_data = json.load(fp) |
|
return make_response(jsonify({"structure":json_data}), 200) |
|
|
|
def check_port_inuse(port, host): |
|
try: |
|
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) |
|
s.settimeout(1) |
|
s.connect((host, port)) |
|
return True |
|
except socket.error: |
|
return False |
|
finally: |
|
if s: |
|
s.close() |
|
|
|
if __name__ == "__main__": |
|
import socket |
|
hostname = socket.gethostname() |
|
ip_address = socket.gethostbyname(hostname) |
|
|
|
|
|
|
|
|
|
port = 5000 |
|
while check_port_inuse(port, ip_address): |
|
port = port + 1 |
|
app.run(host=ip_address, port=int(port)) |
|
|