import os import json import numpy as np import pandas as pd import matplotlib as mpl import seaborn as sns import argparse def main(): datasets = ["mnist", "fmnist", "cifar10"] selected_epochs_dict = {"mnist":[4, 12, 20],"fmnist":[10,30,50], "cifar10":[40, 120,200]} k_neighbors = [10, 15, 20] col = np.array(["dataset", "method", "type", "hue", "k", "period", "eval"]) df = pd.DataFrame({}, columns=col) for k in k_neighbors: for i in range(3): # dataset dataset = datasets[i] data = np.array([]) selected_epochs = selected_epochs_dict[dataset] # load data from evaluation.json # DVI content_path = "/home/xianglin/projects/DVI_data/resnet18_{}".format(dataset) for epoch_id in range(3): epoch = selected_epochs[epoch_id] eval_path = os.path.join(content_path, "Model", "Epoch_{}".format(epoch), "evaluation_step2_A.json") with open(eval_path, "r") as f: eval = json.load(f) bound_train = round(eval["bound_train_{}".format(k)], 3) bound_test = round(eval["bound_test_{}".format(k)], 3) if len(data)==0: data = np.array([[dataset, "DVI", "Train", "DVI-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]]) else: data = np.concatenate((data, np.array([[dataset, "DVI", "Train", "DVI-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]])), axis=0) data = np.concatenate((data, np.array([[dataset, "DVI", "Test", "DVI-Test", "{}".format(k), "{}".format(str(epoch_id)), bound_test]])), axis=0) eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_tnn.json".format(dataset) with open(eval_path, "r") as f: eval = json.load(f) for epoch_id in range(3): epoch = selected_epochs[epoch_id] bound_train = round(eval[str(k)]["b_train"][str(epoch)], 3) bound_test = round(eval[str(k)]["b_test"][str(epoch)], 3) data = np.concatenate((data, np.array([[dataset, "TimeVis", "Train", "TimeVis-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]])), axis=0) data = np.concatenate((data, np.array([[dataset, "TimeVis", "Test", "TimeVis-Test", "{}".format(k), "{}".format(str(epoch_id)), bound_test]])), axis=0) eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_hybrid.json".format(dataset) with open(eval_path, "r") as f: eval = json.load(f) for epoch_id in range(3): epoch = selected_epochs[epoch_id] bound_train = round(eval["b_train"][str(epoch)][str(k)], 3) bound_test = round(eval["b_test"][str(epoch)][str(k)], 3) data = np.concatenate((data, np.array([[dataset, "DeepDebugger", "Train", "DeepDebugger-Train", "{}".format(k), "{}".format(str(epoch_id)), bound_train]])), axis=0) data = np.concatenate((data, np.array([[dataset, "DeepDebugger", "Test", "DeepDebugger-Test", "{}".format(k), "{}".format(str(epoch_id)), bound_test]])), axis=0) df_tmp = pd.DataFrame(data, columns=col) df = df.append(df_tmp, ignore_index=True) df[["period"]] = df[["period"]].astype(int) df[["k"]] = df[["k"]].astype(int) df[["eval"]] = df[["eval"]].astype(float) #%% df.to_excel("./plot_results/boundary.xlsx") for k in k_neighbors: df_tmp = df[df["k"] == k] pal20c = sns.color_palette('tab20c', 20) sns.set_theme(style="whitegrid", palette=pal20c) hue_dict = { "DVI-Train": pal20c[0], "TimeVis-Train": pal20c[4], "DeepDebugger-Train": pal20c[8], "DVI-Test": pal20c[3], "TimeVis-Test": pal20c[7], "DeepDebugger-Test":pal20c[11] } sns.palplot([hue_dict[i] for i in hue_dict.keys()]) axes = {'labelsize': 15, 'titlesize': 15,} mpl.rc('axes', **axes) mpl.rcParams['xtick.labelsize'] = 15 hue_list = ["DVI-Train", "DVI-Test", "TimeVis-Train", "TimeVis-Test", "DeepDebugger-Train", "DeepDebugger-Test"] fg = sns.catplot( x="period", y="eval", hue="hue", hue_order=hue_list, # order = [1, 2, 3, 4, 5], # row="method", col="dataset", ci=0.001, height=2.5, #2.65, aspect=1.0,#3, data=df_tmp, kind="bar", palette=[hue_dict[i] for i in hue_list], legend=True ) sns.move_legend(fg, "lower center", bbox_to_anchor=(.42, 0.92), ncol=4, title=None, frameon=False) mpl.pyplot.setp(fg._legend.get_texts(), fontsize='15') axs = fg.axes[0] max_ = df_tmp["eval"].max() # min_ = df["eval"].min() axs[0].set_ylim(0., max_*1.1) axs[0].set_title("MNIST") axs[1].set_title("FMNIST") axs[2].set_title("CIFAR-10") (fg.despine(bottom=False, right=False, left=False, top=False) .set_xticklabels(['Begin', 'Mid', 'End']) .set_axis_labels("", "") ) # fg.fig.suptitle("Boundary preserving property") fg.savefig( "./plot_results/boundary_{}.png".format(k), dpi=300, bbox_inches="tight", pad_inches=0.0, transparent=True, ) if __name__ == "__main__": main()