import torch import torch.nn as nn import os __all__ = [ "ResNet", "resnet18_with_dropout", "resnet18", "dropout_resnet18" ] def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, ): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class BasicBlock_withDropout(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, ): super(BasicBlock_withDropout, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.dropout = nn.Dropout(p=0.5) self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride # print('with_dropout',self.with_dropout) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, ): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block, layers, with_dropout, num_classes=10, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, ): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.with_dropout = with_dropout self.groups = groups self.base_width = width_per_group # CIFAR10: kernel_size 7 -> 3, stride 2 -> 1, padding 3->1 self.conv1 = nn.Conv2d( 3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False ) # END self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] ) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] ) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2] ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) if self.with_dropout: self.fc = nn.Sequential(nn.Flatten(),nn.Dropout(0.5),nn.Linear(512 * block.expansion, num_classes)) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, ) ) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.reshape(x.size(0), -1) x = self.fc(x) return x def feature(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.reshape(x.size(0), -1) return x def prediction(self,x): x = self.fc(x) return x # def gap(self, x): # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # x = self.maxpool(x) # x = self.layer1(x) # x = self.layer2(x) # x = self.layer3(x) # x = self.layer4(x) # x = self.avgpool(x) # x = x.reshape(x.size(0), -1) # return x def _resnet(arch, block, layers, pretrained, progress, device, with_dropout, **kwargs): model = ResNet(block, layers, with_dropout, **kwargs) if pretrained: script_dir = os.path.dirname(__file__) state_dict = torch.load( script_dir + "/state_dicts/" + arch + ".pt", map_location=device ) model.load_state_dict(state_dict) return model def resnet18_with_dropout(pretrained=False, progress=True, device="cpu", **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet( "resnet18", BasicBlock_withDropout, [2, 2, 2, 2], pretrained, progress, device, with_dropout = True, **kwargs ) def resnet18(pretrained=False, progress=True, device="cpu", **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet( "resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, device, with_dropout = False, **kwargs ) def resnet34(pretrained=False, progress=True, device="cpu", **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet( "resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, device, **kwargs ) def resnet50(pretrained=False, progress=True, device="cpu", **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet( "resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, device, **kwargs ) # class dropout_residual(nn.Module): # def __init__(self, input_channels, num_channels, dropout_rate, dropout_type, init_dict, use_1x1conv=False, strides=1, **kwargs): # super().__init__(**kwargs) # self.conv1 = Dropout_Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict) # self.conv2 = Dropout_Conv2D(num_channels, num_channels, kernel_size=3, padding=1, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict) # if use_1x1conv: # self.conv3 = Dropout_Conv2D(input_channels, num_channels, kernel_size=1, stride=strides, dropout_rate=dropout_rate, dropout_type=dropout_type) # else: # self.conv3 = None # self.bn1 = nn.BatchNorm2d(num_channels) # self.bn2 = nn.BatchNorm2d(num_channels) # def dropout_resnet_block(input_channels, num_channels, num_residuals, dropout_rate, dropout_type, init_dict, first_block=False): # blk = [] # for i in range(num_residuals): # if i == 0 and not first_block: # blk.append(dropout_residual(input_channels, num_channels, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict, use_1x1conv=True, strides=2)) # else: # blk.append(dropout_residual(num_channels, num_channels, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict)) # return blk # def dropout_resnet18(dropout_rate=0.5, dropout_type="w", init_dict=dict()): # b1 = nn.Sequential( # Dropout_Conv2D(1, 64, kernel_size=7, stride=2, padding=3, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict), # nn.BatchNorm2d(64), # nn.ReLU(), # nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # ) # b2 = nn.Sequential(*dropout_resnet_block(64, 64, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict, first_block=True)) # b3 = nn.Sequential(*dropout_resnet_block(64, 128, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict)) # b4 = nn.Sequential(*dropout_resnet_block(128, 256, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict)) # b5 = nn.Sequential(*dropout_resnet_block(256, 512, 2, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict)) # return nn.Sequential(b1, b2, b3, b4, b5, # nn.AdaptiveAvgPool2d((1,1)), # nn.Flatten(), # Dropout_Linear(512, 20, dropout_rate=dropout_rate, dropout_type=dropout_type, init_dict=init_dict))