'''This class serves as a intermediate layer for tensorboard frontend and timeVis backend''' import os import sys import json import time import torch import numpy as np import pickle import shutil import torch.nn from torch.utils.data import DataLoader from torch.utils.data import WeightedRandomSampler import torchvision from scipy.special import softmax # timevis_path = "D:\\code-space\\DLVisDebugger" #limy timevis_path = "../../DLVisDebugger" #xianglin#yvonne sys.path.append(timevis_path) from singleVis.utils import * from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler from singleVis.edge_dataset import DataHandler, HybridDataHandler from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor # kcHybridDenseALSpatialEdgeConstructor,GlobalTemporalEdgeConstructor from singleVis.trajectory_manager import Recommender from singleVis.eval.evaluator import ALEvaluator from singleVis.segmenter import DenseALSegmenter # active_learning_path = "D:\\code-space\\ActiveLearning" # limy active_learning_path = "../../ActiveLearning" sys.path.append(active_learning_path) class TimeVisBackend: def __init__(self, data_provider, projector, vis, evaluator, **hyperparameters) -> None: self.data_provider = data_provider self.projector = projector self.vis = vis self.evaluator = evaluator self.hyperparameters = hyperparameters ################################################################################################################# # # # data Panel # # # ################################################################################################################# def batch_inv_preserve(self, epoch, data): """ get inverse confidence for a single point :param epoch: int :param data: numpy.ndarray :return l: boolean, whether reconstruction data have the same prediction :return conf_diff: float, (0, 1), confidence difference """ embedding = self.projector.batch_project(epoch, data) recon = self.projector.batch_inverse(epoch, embedding) ori_pred = self.data_provider.get_pred(epoch, data) new_pred = self.data_provider.get_pred(epoch, recon) ori_pred = softmax(ori_pred, axis=1) new_pred = softmax(new_pred, axis=1) old_label = ori_pred.argmax(-1) new_label = new_pred.argmax(-1) l = old_label == new_label old_conf = [ori_pred[i, old_label[i]] for i in range(len(old_label))] new_conf = [new_pred[i, old_label[i]] for i in range(len(old_label))] old_conf = np.array(old_conf) new_conf = np.array(new_conf) conf_diff = old_conf - new_conf return l, conf_diff ################################################################################################################# # # # Search Panel # # # ################################################################################################################# # TODO: fix bugs accroding to new api # customized features def filter_label(self, label, epoch_id): try: index = self.data_provider.classes.index(label) except: index = -1 train_labels = self.data_provider.train_labels(epoch_id) test_labels = self.data_provider.test_labels(epoch_id) labels = np.concatenate((train_labels, test_labels), 0) idxs = np.argwhere(labels == index) idxs = np.squeeze(idxs) return idxs def filter_type(self, type, epoch_id): if type == "train": res = self.get_epoch_index(epoch_id) elif type == "test": train_num = self.data_provider.train_num test_num = self.data_provider.test_num res = list(range(train_num, train_num+ test_num, 1)) elif type == "unlabel": labeled = np.array(self.get_epoch_index(epoch_id)) train_num = self.data_provider.train_num all_data = np.arange(train_num) unlabeled = np.setdiff1d(all_data, labeled) res = unlabeled.tolist() else: # all data train_num = self.data_provider.train_num test_num = self.data_provider.test_num res = list(range(0, train_num + test_num, 1)) return res def filter_conf(self, conf_min, conf_max, epoch_id): train_data = self.data_provider.train_representation(epoch_id) test_data =self.data_provider.test_representation(epoch_id) data = np.concatenate((train_data, test_data), axis=0) pred = self.data_provider.get_pred(epoch_id, data) scores = np.amax(softmax(pred, axis=1), axis=1) res = np.argwhere(np.logical_and(scores<=conf_max, scores>=conf_min)).squeeze().tolist() return res ################################################################################################################# # # # Helper Functions # # # ################################################################################################################# def save_acc_and_rej(self, acc_idxs, rej_idxs, file_name): d = { "acc_idxs": acc_idxs, "rej_idxs": rej_idxs } path = os.path.join(self.data_provider.content_path, "{}_acc_rej.json".format(file_name)) with open(path, "w") as f: json.dump(d, f) print("Successfully save the acc and rej idxs selected by user...") def get_epoch_index(self, epoch_id): """get the training data index for an epoch""" index_file = os.path.join(self.data_provider.model_path, "Epoch_{:d}".format(epoch_id), "index.json") index = load_labelled_data_index(index_file) return index def reset(self): return class ActiveLearningTimeVisBackend(TimeVisBackend): def __init__(self, data_provider, projector, trainer, vis, evaluator, dense, **hyperparameters) -> None: super().__init__(data_provider, projector, vis, evaluator, **hyperparameters) self.trainer = trainer self.dense = dense def save_acc_and_rej(self, iteration, acc_idxs, rej_idxs, file_name): d = { "acc_idxs": acc_idxs, "rej_idxs": rej_idxs } path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration), "{}_acc_rej.json".format(file_name)) with open(path, "w") as f: json.dump(d, f) print("Successfully save the acc and rej idxs selected by user at Iteration {}...".format(iteration)) def reset(self, iteration): # delete [iteration,...) max_i = self.get_max_iter() for i in range(iteration, max_i+1, 1): path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(i)) shutil.rmtree(path) iter_structure_path = os.path.join(self.data_provider.content_path, "iteration_structure.json") with open(iter_structure_path, "r") as f: i_s = json.load(f) new_is = list() for item in i_s: value = item["value"] if value < iteration: new_is.append(item) with open(iter_structure_path, "w") as f: json.dump(new_is, f) print("Successfully remove cache data!") def get_epoch_index(self, iteration): """get the training data index for an epoch""" index_file = os.path.join(self.data_provider.model_path, "Iteration_{:d}".format(iteration), "index.json") index = load_labelled_data_index(index_file) return index def al_query(self, iteration, budget, strategy, acc_idxs, rej_idxs): """get the index of new selection from different strategies""" CONTENT_PATH = self.data_provider.content_path NUM_QUERY = budget GPU = self.hyperparameters["GPU"] NET = self.hyperparameters["TRAINING"]["NET"] DATA_NAME = self.hyperparameters["DATASET"] sys.path.append(CONTENT_PATH) # record output information now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time())) sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w") # loading neural network import Model.model as subject_model task_model = eval("subject_model.{}()".format(NET)) task_model_type = "pytorch" # start experiment n_pool = self.hyperparameters["TRAINING"]["train_num"] # 50000 n_test = self.hyperparameters["TRAINING"]['test_num'] # 10000 resume_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(iteration)) idxs_lb = np.array(json.load(open(os.path.join(resume_path, "index.json"), "r"))) state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device('cpu')) task_model.load_state_dict(state_dict) NUM_INIT_LB = len(idxs_lb) print('resume from iteration {}'.format(iteration)) print('number of labeled pool: {}'.format(NUM_INIT_LB)) print('number of unlabeled pool: {}'.format(n_pool - NUM_INIT_LB)) print('number of testing pool: {}'.format(n_test)) # here the training handlers and testing handlers are different complete_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=True, transform=self.hyperparameters["TRAINING"]['transform_te']) if strategy == "Random": from query_strategies.random import RandomSampling idxs_selected = np.concatenate((acc_idxs.astype(np.int64), rej_idxs.astype(np.int64)), axis=0) curr_lb = np.concatenate((idxs_lb, idxs_selected), axis=0) q_strategy = RandomSampling(task_model, task_model_type, n_pool, curr_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"]) # print information print(DATA_NAME) print(type(q_strategy).__name__) print('================Round {:d}==============='.format(iteration+1)) # query new samples t0 = time.time() new_indices, scores = q_strategy.query(NUM_QUERY) t1 = time.time() print("Query time is {:.2f}".format(t1-t0)) elif strategy == "Uncertainty": from query_strategies.LeastConfidence import LeastConfidenceSampling idxs_selected = np.concatenate((acc_idxs.astype(np.int64), rej_idxs.astype(np.int64)), axis=0) curr_lb = np.concatenate((idxs_lb, idxs_selected), axis=0) q_strategy = LeastConfidenceSampling(task_model, task_model_type, n_pool, curr_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"]) # print information print(DATA_NAME) print(type(q_strategy).__name__) print('================Round {:d}==============='.format(iteration+1)) # query new samples t0 = time.time() new_indices, scores = q_strategy.query(complete_dataset, NUM_QUERY, idxs_selected) t1 = time.time() print("Query time is {:.2f}".format(t1-t0)) # elif strategy == "Diversity": # from query_strategies.coreset import CoreSetSampling # q_strategy = CoreSetSampling(task_model, task_model_type, n_pool, 512, idxs_lb, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"]) # # print information # print(DATA_NAME) # print(type(q_strategy).__name__) # print('================Round {:d}==============='.format(iteration+1)) # embedding = q_strategy.get_embedding(complete_dataset) # # query new samples # t0 = time.time() # new_indices, scores = q_strategy.query(embedding, NUM_QUERY) # t1 = time.time() # print("Query time is {:.2f}".format(t1-t0)) # elif strategy == "Hybrid": # from query_strategies.badge import BadgeSampling # q_strategy = BadgeSampling(task_model, task_model_type, n_pool, 512, idxs_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"]) # # print information # print(DATA_NAME) # print(type(q_strategy).__name__) # print('================Round {:d}==============='.format(iteration+1)) # # query new samples # t0 = time.time() # new_indices, scores = q_strategy.query(complete_dataset, NUM_QUERY) # t1 = time.time() # print("Query time is {:.2f}".format(t1-t0)) elif strategy == "TBSampling": # TODO hard coded parameters... period = 80 print(DATA_NAME) print("TBSampling") print('================Round {:d}==============='.format(iteration+1)) t0 = time.time() new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period) t1 = time.time() print("Query time is {:.2f}".format(t1-t0)) elif strategy == "Feedback": # TODO hard coded parameters...suggest_abnormal period = 80 print(DATA_NAME) print("Feedback") print('================Round {:d}==============='.format(iteration+1)) t0 = time.time() new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period) t1 = time.time() print("Query time is {:.2f}".format(t1-t0)) else: raise NotImplementedError # TODO return the suggest labels, need to develop pesudo label generation technique in the future true_labels = self.data_provider.train_labels(iteration) return new_indices, true_labels[new_indices], scores def al_train(self, iteration, indices): CONTENT_PATH = self.data_provider.content_path # record output information now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time())) sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w") # for reproduce purpose print("New indices:\t{}".format(len(indices))) self.save_human_selection(iteration, indices) lb_idx = self.get_epoch_index(iteration) train_idx = np.hstack((lb_idx, indices)) print("Training indices:\t{}".format(len(train_idx))) print("Valid indices:\t{}".format(len(set(train_idx)))) TOTAL_EPOCH = self.hyperparameters["TRAINING"]["total_epoch"] NET = self.hyperparameters["TRAINING"]["NET"] DEVICE = self.data_provider.DEVICE NEW_ITERATION = self.get_max_iter() + 1 GPU = self.hyperparameters["GPU"] DATA_NAME = self.hyperparameters["DATASET"] sys.path.append(CONTENT_PATH) # loading neural network from Model.model import resnet18 task_model = resnet18() resume_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(iteration)) state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device("cpu")) task_model.load_state_dict(state_dict) self.save_iteration_index(NEW_ITERATION, train_idx) task_model_type = "pytorch" # start experiment n_pool = self.hyperparameters["TRAINING"]["train_num"] # 50000 save_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(NEW_ITERATION)) os.makedirs(save_path, exist_ok=True) from query_strategies.random import RandomSampling q_strategy = RandomSampling(task_model, task_model_type, n_pool, lb_idx, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"]) # print information print('================Round {:d}==============='.format(NEW_ITERATION)) # update q_strategy.update_lb_idxs(train_idx) resnet_model = resnet18() train_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=True, transform=self.hyperparameters["TRAINING"]['transform_tr']) test_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=False, transform=self.hyperparameters["TRAINING"]['transform_te']) t1 = time.time() q_strategy.train(total_epoch=TOTAL_EPOCH, task_model=resnet_model, complete_dataset=train_dataset,save_path=None) t2 = time.time() print("Training time is {:.2f}".format(t2-t1)) self.save_subject_model(NEW_ITERATION, q_strategy.task_model.state_dict()) # compute accuracy at each round accu = q_strategy.test_accu(test_dataset) print('Accuracy {:.3f}'.format(100*accu)) def get_max_iter(self): path = os.path.join(self.data_provider.content_path, "Model") dir_list = os.listdir(path) max_iter = -1 for dir in dir_list: if "Iteration_" in dir: i = int(dir.replace("Iteration_","")) max_iter = max(max_iter, i) return max_iter def save_human_selection(self, iteration, indices): """ save the selected index message from DVI frontend :param epoch_id: :param indices: list, selected indices :return: """ save_location = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "human_select.json") with open(save_location, "w") as f: json.dump(indices, f) def save_iteration_index(self, iteration, idxs): new_iteration_dir = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration)) os.makedirs(new_iteration_dir, exist_ok=True) save_location = os.path.join(new_iteration_dir, "index.json") with open(save_location, "w") as f: json.dump(idxs.tolist(), f) def save_subject_model(self, iteration, state_dict): new_iteration_dir = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration)) model_path = os.path.join(new_iteration_dir, "subject_model.pth") torch.save(state_dict, model_path) def vis_train(self, iteration, **config): # preprocess PREPROCESS = config["VISUALIZATION"]["PREPROCESS"] B_N_EPOCHS = config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"] L_BOUND = config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"] if PREPROCESS: self.data_provider._meta_data(iteration) if B_N_EPOCHS != 0: LEN = len(self.data_provider.train_labels(iteration)) self.data_provider._estimate_boundary(iteration, LEN//10, l_bound=L_BOUND) # train visualization model CLASSES = config["CLASSES"] DATASET = config["DATASET"] # DEVICE = torch.device("cuda:{:}".format(GPU_ID) if torch.cuda.is_available() else "cpu") ################################################# VISUALIZATION PARAMETERS ######################################## PREPROCESS = config["VISUALIZATION"]["PREPROCESS"] B_N_EPOCHS = config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"] L_BOUND = config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"] LAMBDA = config["VISUALIZATION"]["LAMBDA"] HIDDEN_LAYER = config["VISUALIZATION"]["HIDDEN_LAYER"] N_NEIGHBORS = config["VISUALIZATION"]["N_NEIGHBORS"] MAX_EPOCH = config["VISUALIZATION"]["MAX_EPOCH"] S_N_EPOCHS = config["VISUALIZATION"]["S_N_EPOCHS"] PATIENT = config["VISUALIZATION"]["PATIENT"] VIS_MODEL_NAME = config["VISUALIZATION"]["VIS_MODEL_NAME"] RESOLUTION = config["VISUALIZATION"]["RESOLUTION"] EVALUATION_NAME = config["VISUALIZATION"]["EVALUATION_NAME"] NET = config["TRAINING"]["NET"] if self.dense: # TODO test this part raise NotImplementedError epoch_num = config["TRAINING"]["total_epoch"] INIT_NUM = config["VISUALIZATION"]["INIT_NUM"] MAX_HAUSDORFF = config["VISUALIZATION"]["MAX_HAUSDORFF"] ALPHA = config["VISUALIZATION"]["ALPHA"] BETA = config["VISUALIZATION"]["BETA"] T_N_EPOCHS = config["VISUALIZATION"]["T_N_EPOCHS"] segmenter = DenseALSegmenter(data_provider=self.data_provider, threshold=78.5, epoch_num=epoch_num) # segment epoch t0 = time.time() SEGMENTS = segmenter.segment(iteration) t1 = time.time() print(SEGMENTS) segment_path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration),"segments.json") with open(segment_path, "w") as f: json.dump(SEGMENTS, f) LEN = self.data_provider.label_num(iteration) prev_selected = np.random.choice(np.arange(LEN), size=INIT_NUM, replace=False) prev_embedding = None start_point = len(SEGMENTS)-1 c0=None d0=None for seg in range(start_point,-1,-1): epoch_start, epoch_end = SEGMENTS[seg] self.data_provider.update_interval(epoch_s=epoch_start, epoch_e=epoch_end) optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1) t2 = time.time() spatial_cons = kcHybridDenseALSpatialEdgeConstructor(data_provider=self.data_provider, init_num=INIT_NUM, s_n_epochs=S_N_EPOCHS, b_n_epochs=B_N_EPOCHS, n_neighbors=N_NEIGHBORS, MAX_HAUSDORFF=MAX_HAUSDORFF, ALPHA=ALPHA, BETA=BETA, iteration=iteration, init_idxs=prev_selected, init_embeddings=prev_embedding, c0=c0, d0=d0) s_edge_to, s_edge_from, s_probs, feature_vectors, embedded, coefficient, time_step_nums, time_step_idxs_list, knn_indices, sigmas, rhos, attention, (c0,d0) = spatial_cons.construct() temporal_cons = GlobalTemporalEdgeConstructor(X=feature_vectors, time_step_nums=time_step_nums, sigmas=sigmas, rhos=rhos, n_neighbors=N_NEIGHBORS, n_epochs=T_N_EPOCHS) t_edge_to, t_edge_from, t_probs = temporal_cons.construct() t3 = time.time() edge_to = np.concatenate((s_edge_to, t_edge_to),axis=0) edge_from = np.concatenate((s_edge_from, t_edge_from), axis=0) probs = np.concatenate((s_probs, t_probs), axis=0) probs = probs / (probs.max()+1e-3) eliminate_zeros = probs>1e-3 edge_to = edge_to[eliminate_zeros] edge_from = edge_from[eliminate_zeros] probs = probs[eliminate_zeros] # save result save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "SV_time_al_hybrid.json") if not os.path.exists(save_dir): evaluation = dict() else: f = open(save_dir, "r") evaluation = json.load(f) f.close() if "complex_construction" not in evaluation.keys(): evaluation["complex_construction"] = dict() evaluation["complex_construction"][str(seg)] = round(t3-t2, 3) with open(save_dir, 'w') as f: json.dump(evaluation, f) print("constructing timeVis complex for {}-th segment in {:.1f} seconds.".format(seg, t3-t2)) dataset = HybridDataHandler(edge_to, edge_from, feature_vectors, attention, embedded, coefficient) n_samples = int(np.sum(S_N_EPOCHS * probs) // 1) # chosse sampler based on the number of dataset if len(edge_to) > 2^24: sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True) else: sampler = WeightedRandomSampler(probs, n_samples, replacement=True) edge_loader = DataLoader(dataset, batch_size=1000, sampler=sampler) self.trainer.update_vis_model(model) self.trainer.update_optimizer(optimizer) self.trainer.update_lr_scheduler(lr_scheduler) self.trainer.update_edge_loader(edge_loader) t2=time.time() self.trainer.train(PATIENT, MAX_EPOCH) t3 = time.time() # save result save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "SV_time_al_hybrid.json") if not os.path.exists(save_dir): evaluation = dict() else: f = open(save_dir, "r") evaluation = json.load(f) f.close() if "training" not in evaluation.keys(): evaluation["training"] = dict() evaluation["training"][str(seg)] = round(t3-t2, 3) with open(save_dir, 'w') as f: json.dump(evaluation, f) self.trainer.save(save_dir=os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration)), file_name="{}_{}".format(VIS_MODEL_NAME, seg)) model = self.trainer.model # update prev_idxs and prev_embedding prev_selected = time_step_idxs_list[0] prev_data = torch.from_numpy(feature_vectors[:len(prev_selected)]).to(dtype=torch.float32, device=self.data_provider.DEVICE) model.to(device=self.data_provider.DEVICE) prev_embedding = model.encoder(prev_data).cpu().detach().numpy() # raise NotImplementedError print("Successful train all visualization models!") else: t0 = time.time() spatial_cons = SingleEpochSpatialEdgeConstructor(self.data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, 15) edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct() t1 = time.time() probs = probs / (probs.max()+1e-3) eliminate_zeros = probs>1e-3 edge_to = edge_to[eliminate_zeros] edge_from = edge_from[eliminate_zeros] probs = probs[eliminate_zeros] # save result save_dir = os.path.join(self.data_provider.model_path, "SV_time_al.json") if not os.path.exists(save_dir): evaluation = dict() else: f = open(save_dir, "r") evaluation = json.load(f) f.close() if "complex_construction" not in evaluation.keys(): evaluation["complex_construction"] = dict() evaluation["complex_construction"][str(iteration)] = round(t1-t0, 3) with open(save_dir, 'w') as f: json.dump(evaluation, f) print("constructing timeVis complex in {:.1f} seconds.".format(t1-t0)) dataset = DataHandler(edge_to, edge_from, feature_vectors, attention) n_samples = int(np.sum(S_N_EPOCHS * probs) // 1) # chosse sampler based on the number of dataset if len(edge_to) > 2^24: sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True) else: sampler = WeightedRandomSampler(probs, n_samples, replacement=True) edge_loader = DataLoader(dataset, batch_size=512, sampler=sampler) self.trainer.update_edge_loader(edge_loader) t2=time.time() self.trainer.train(PATIENT, MAX_EPOCH) t3 = time.time() # save result save_dir = os.path.join(self.data_provider.model_path, "SV_time_al.json") if not os.path.exists(save_dir): evaluation = dict() else: f = open(save_dir, "r") evaluation = json.load(f) f.close() if "training" not in evaluation.keys(): evaluation["training"] = dict() evaluation["training"][str(iteration)] = round(t3-t2, 3) with open(save_dir, 'w') as f: json.dump(evaluation, f) save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration)) os.makedirs(save_dir, exist_ok=True) self.trainer.save(save_dir=save_dir, file_name=VIS_MODEL_NAME) # TODO evaluate visualization model, train and test evaluator = ALEvaluator(self.data_provider, self.projector) evaluator.save_epoch_eval(iteration, file_name=EVALUATION_NAME) ################################################################################################################# # # # Sample Selection # # # ################################################################################################################# def _save(self, iteration, ftm): with open(os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'sample_recommender.pkl'), 'wb') as f: pickle.dump(ftm, f, pickle.HIGHEST_PROTOCOL) def _init_detection(self, iteration, lb_idxs, period=80): # prepare trajectory embedding_path = os.path.join(self.data_provider.content_path,"Model", "Iteration_{}".format(iteration),'trajectory_embeddings.npy') if os.path.exists(embedding_path): trajectories = np.load(embedding_path) print("Load trajectories from cache!") else: # extract samples train_num = self.data_provider.train_num # change epoch_NUM epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1 embeddings_2d = np.zeros((epoch_num, train_num, 2)) for i in range(self.data_provider.s, self.data_provider.e+1, self.data_provider.p): # for i in range(self.data_provider.e - self.data_provider.p*(self.period-1), self.data_provider.e+1, self.data_provider.p): # id = (i-(self.data_provider.e - (self.data_provider.p-1)*self.period))//self.data_provider.p id = (i - self.data_provider.s)//self.data_provider.p embeddings_2d[id] = self.projector.batch_project(iteration, i, self.data_provider.train_representation(iteration, i)) trajectories = np.transpose(embeddings_2d, [1,0,2]) np.save(embedding_path, trajectories) # prepare uncertainty uncertainty_path = os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'uncertainties.npy') if os.path.exists(uncertainty_path): uncertainty = np.load(uncertainty_path) else: samples = self.data_provider.train_representation(iteration, epoch_num) pred = self.data_provider.get_pred(iteration, epoch_num, samples) uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1) np.save(uncertainty_path, uncertainty) ulb_idxs = self.data_provider.get_unlabeled_idx(len(uncertainty), lb_idxs) # prepare sampling manager ntd_path = os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'sample_recommender.pkl') if os.path.exists(ntd_path): with open(ntd_path, 'rb') as f: ntd = pickle.load(f) else: ntd = Recommender(uncertainty[ulb_idxs], trajectories[ulb_idxs], 30, period=period,metric="a") print("Detecting abnormal....") ntd.clustered() print("Finish detection!") self._save(iteration, ntd) return ntd, ulb_idxs def _suggest_abnormal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period): ntd,ulb_idxs = self._init_detection(iteration, lb_idxs, period) map_ulb = ulb_idxs.tolist() map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32) map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32) if strategy == "TBSampling": suggest_idxs, scores = ntd.sample_batch_init(map_acc_idxs, map_rej_idxs, budget) elif strategy == "Feedback": suggest_idxs, scores = ntd.sample_batch(map_acc_idxs, map_rej_idxs, budget) else: raise NotImplementedError return ulb_idxs[suggest_idxs], scores def _suggest_normal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period): ntd, ulb_idxs = self._init_detection(iteration, lb_idxs, period) map_ulb = ulb_idxs.tolist() map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32) map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32) if strategy == "TBSampling": suggest_idxs, _ = ntd.sample_batch_normal_init(map_acc_idxs, map_rej_idxs, budget) elif strategy == "Feedback": suggest_idxs, _ = ntd.sample_batch_normal(map_acc_idxs, map_rej_idxs, budget) else: raise NotImplementedError return ulb_idxs[suggest_idxs] class AnormalyTimeVisBackend(TimeVisBackend): def __init__(self, data_provider, projector, vis, evaluator, period, **hyperparameters) -> None: super().__init__(data_provider, projector, vis, evaluator, **hyperparameters) self.period = period file_path = os.path.join(self.data_provider.content_path, 'clean_label.json') with open(file_path, "r") as f: self.clean_labels = np.array(json.load(f)) def reset(self): return ################################################################################################################# # # # Anormaly Detection # # # ################################################################################################################# def _save(self, ntd): with open(os.path.join(self.data_provider.content_path, 'sample_recommender.pkl'), 'wb') as f: pickle.dump(ntd, f, pickle.HIGHEST_PROTOCOL) def _init_detection(self): # prepare trajectories embedding_path = os.path.join(self.data_provider.content_path, 'trajectory_embeddings.npy') if os.path.exists(embedding_path): trajectories = np.load(embedding_path) else: # extract samples train_num = self.data_provider.train_num # change epoch_NUM epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1 embeddings_2d = np.zeros((epoch_num, train_num, 2)) for i in range(self.data_provider.s, self.data_provider.e+1, self.data_provider.p): # for i in range(self.data_provider.e - self.data_provider.p*(self.period-1), self.data_provider.e+1, self.data_provider.p): # id = (i-(self.data_provider.e - (self.data_provider.p-1)*self.period))//self.data_provider.p id = (i - self.data_provider.s)//self.data_provider.p embeddings_2d[id] = self.projector.batch_project(i, self.data_provider.train_representation(i)) trajectories = np.transpose(embeddings_2d, [1,0,2]) np.save(embedding_path, trajectories) # prepare uncertainty scores uncertainty_path = os.path.join(self.data_provider.content_path, 'uncertainties.npy') if os.path.exists(uncertainty_path): uncertainty = np.load(uncertainty_path) else: epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1 samples = self.data_provider.train_representation(epoch_num) pred = self.data_provider.get_pred(epoch_num, samples) uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1) np.save(uncertainty_path, uncertainty) # prepare sampling manager ntd_path = os.path.join(self.data_provider.content_path, 'sample_recommender.pkl') if os.path.exists(ntd_path): with open(ntd_path, 'rb') as f: ntd = pickle.load(f) else: ntd = Recommender(uncertainty, trajectories, 30,period=self.period,metric="a") print("Detecting abnormal....") ntd.clustered() print("Finish detection!") self._save(ntd) return ntd def suggest_abnormal(self, strategy, acc_idxs, rej_idxs, budget): ntd = self._init_detection() if strategy == "TBSampling": suggest_idxs, scores = ntd.sample_batch_init(acc_idxs, rej_idxs, budget) elif strategy == "Feedback": suggest_idxs, scores = ntd.sample_batch(acc_idxs, rej_idxs, budget) else: raise NotImplementedError suggest_labels = self.clean_labels[suggest_idxs] return suggest_idxs, scores, suggest_labels def suggest_normal(self, strategy, acc_idxs, rej_idxs, budget): ntd = self._init_detection() if strategy == "TBSampling": suggest_idxs, _ = ntd.sample_batch_normal_init(acc_idxs, rej_idxs, budget) elif strategy == "Feedback": suggest_idxs, _ = ntd.sample_batch_normal(acc_idxs, rej_idxs, budget) else: raise NotImplementedError suggest_labels = self.clean_labels[suggest_idxs] return suggest_idxs, suggest_labels