from abc import ABC, abstractmethod import os import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import base64 class VisualizerAbstractClass(ABC): @abstractmethod def __init__(self, data_provider, projector, * args, **kawargs): pass @abstractmethod def _init_plot(self, *args, **kwargs): pass @abstractmethod def get_epoch_plot_measures(self, *args, **kwargs): # return x_min, y_min, x_max, y_max pass @abstractmethod def get_epoch_decision_view(self, *args, **kwargs): pass @abstractmethod def savefig(self, *args, **kwargs): pass @abstractmethod def get_background(self, *args, **kwargs): pass @abstractmethod def show_grid_embedding(self, *args, **kwargs): pass class visualizer(VisualizerAbstractClass): def __init__(self, data_provider, projector, resolution, cmap='tab10'): self.data_provider = data_provider self.projector = projector self.cmap = plt.get_cmap(cmap) self.classes = data_provider.classes self.class_num = len(self.classes) self.resolution= resolution def _init_plot(self, only_img=False): ''' Initialises matplotlib artists and plots. from DeepView and DVI ''' plt.ion() self.fig, self.ax = plt.subplots(1, 1, figsize=(8, 8)) if not only_img: self.ax.set_title("TimeVis visualization") self.desc = self.fig.text(0.5, 0.02, '', fontsize=8, ha='center') self.ax.legend() else: self.ax.set_axis_off() self.cls_plot = self.ax.imshow(np.zeros([5, 5, 3]), interpolation='gaussian', zorder=0, vmin=0, vmax=1) self.sample_plots = [] # labels = prediction for c in range(self.class_num): color = self.cmap(c/(self.class_num-1)) plot = self.ax.plot([], [], '.', label=self.classes[c], ms=5, color=color, zorder=2, picker=mpl.rcParams['lines.markersize']) self.sample_plots.append(plot[0]) # labels != prediction, labels be a large circle for c in range(self.class_num): color = self.cmap(c/(self.class_num-1)) plot = self.ax.plot([], [], 'o', markeredgecolor=color, fillstyle='full', ms=7, mew=2.5, zorder=3) self.sample_plots.append(plot[0]) # labels != prediction, prediction stays inside of circle for c in range(self.class_num): color = self.cmap(c / (self.class_num - 1)) plot = self.ax.plot([], [], '.', markeredgecolor=color, fillstyle='full', ms=6, zorder=4) self.sample_plots.append(plot[0]) # Initialize white border points for c in range(self.class_num): color = self.cmap(c / (self.class_num - 1)) plot = self.ax.plot([], [], '.', label="border", ms=5, color="yellow", markeredgecolor=color, zorder=6, picker=mpl.rcParams['lines.markersize']) self.sample_plots.append(plot[0]) color = (0.0, 0.0, 0.0, 1.0) plot = self.ax.plot([], [], '.', markeredgecolor=color, fillstyle='full', ms=20, zorder=1) self.sample_plots.append(plot[0]) # set the mouse-event listeners # self.fig.canvas.mpl_connect('pick_event', self.show_sample) # self.fig.canvas.mpl_connect('button_press_event', self.show_sample) self.disable_synth = False def _init_default_plot(self, only_img=True): ''' Initialises matplotlib artists and plots. from DeepView and DVI ''' plt.ion() self.fig, self.ax = plt.subplots(1, 1, figsize=(8, 8)) if not only_img: self.ax.set_title("TimeVis visualization") self.desc = self.fig.text(0.5, 0.02, '', fontsize=8, ha='center') self.ax.legend() else: self.ax.set_axis_off() self.cls_plot = self.ax.imshow(np.zeros([5, 5, 3]), interpolation='gaussian', zorder=0, vmin=0, vmax=1) self.sample_plots = [] for c in range(self.class_num): color = self.cmap(c/(self.class_num-1)) plot = self.ax.plot([], [], '.', label=self.classes[c], ms=5, color=color, zorder=2, picker=mpl.rcParams['lines.markersize']) self.sample_plots.append(plot[0]) self.disable_synth = False def get_epoch_plot_measures(self, epoch): """get plot measure for visualization""" data = self.data_provider.train_representation(epoch) embedded = self.projector.batch_project(epoch, data) ebd_min = np.min(embedded, axis=0) ebd_max = np.max(embedded, axis=0) ebd_extent = ebd_max - ebd_min x_min, y_min = ebd_min - 0.1 * ebd_extent x_max, y_max = ebd_max + 0.1 * ebd_extent x_min = min(x_min, y_min) y_min = min(x_min, y_min) x_max = max(x_max, y_max) y_max = max(x_max, y_max) return x_min, y_min, x_max, y_max def get_epoch_decision_view(self, epoch, resolution, xy_limit=None, forDetail=False): ''' get background classifier view :param epoch_id: epoch that need to be visualized :param resolution: background resolution :return: grid_view : numpy.ndarray, self.resolution,self.resolution, 2 decision_view : numpy.ndarray, self.resolution,self.resolution, 3 ''' print('Computing decision regions ...') if xy_limit is None: x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) else: x_min, y_min, x_max, y_max = xy_limit # create grid xs = np.linspace(x_min, x_max, resolution) ys = np.linspace(y_min, y_max, resolution) grid = np.array(np.meshgrid(xs, ys)) grid = np.swapaxes(grid.reshape(grid.shape[0], -1), 0, 1) # map gridmpoint to images grid_samples = self.projector.batch_inverse(epoch, grid) print("grid_samples",grid_samples.shape) mesh_preds = self.data_provider.get_pred(epoch, grid_samples) mesh_preds = mesh_preds + 1e-8 sort_preds = np.sort(mesh_preds, axis=1) diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0]) border = np.zeros(len(diff), dtype=np.uint8) + 0.05 border[diff < 0.15] = 1 diff[border == 1] = 0. diff = diff/(diff.max()+1e-8) diff = diff*0.9 mesh_classes = mesh_preds.argmax(axis=1) mesh_max_class = max(mesh_classes) color = self.cmap(mesh_classes / mesh_max_class) diff = diff.reshape(-1, 1) color = color[:, 0:3] color = diff * 0.5 * color + (1 - diff) * np.ones(color.shape, dtype=np.uint8) decision_view = color.reshape(resolution, resolution, 3) grid_view = grid.reshape(resolution, resolution, 2) if forDetail == True: return grid_samples, grid, border return grid_view, decision_view def savefig(self, epoch, path="vis"): ''' Shows the current plot. ''' self._init_plot(only_img=True) x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) # with torch.no_grad(): # mu, _ = self.projector. # mu = mu.cpu().numpy() # Convert to numpy array for easier manipulation # Xmin, Ymin = mu.min(axis=0) # Minimum values for each dimension # Xmax, Ymax = mu.max(axis=0) # Maximum values for each dimension _, decision_view = self.get_epoch_decision_view(epoch, self.resolution) self.cls_plot.set_data(decision_view) self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) self.ax.set_xlim((x_min, x_max)) self.ax.set_ylim((y_min, y_max)) # params_str = 'res: %d' # desc = params_str % (self.resolution) # self.desc.set_text(desc) train_data = self.data_provider.train_representation(epoch) train_labels = self.data_provider.train_labels(epoch) pred = self.data_provider.get_pred(epoch, train_data) pred = pred.argmax(axis=1) embedding = self.projector.batch_project(epoch, train_data) for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, train_labels == pred)] self.sample_plots[c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, train_labels != pred)] self.sample_plots[self.class_num+c].set_data(data.transpose()) # for c in range(self.class_num): data = embedding[np.logical_and(pred == c, train_labels != pred)] self.sample_plots[2*self.class_num + c].set_data(data.transpose()) # self.fig.canvas.draw() # self.fig.canvas.flush_events() # plt.text(-8, 8, "test", fontsize=18, style='oblique', ha='center', va='top', wrap=True) plt.savefig(path) def show_grid_embedding(self, epoch, data, embedding, border, noOutline=False, path="vis"): ''' Shows the current plot. ''' self._init_plot(only_img=True) x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) _, decision_view = self.get_epoch_decision_view(epoch, self.resolution) self.cls_plot.set_data(decision_view) self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) self.ax.set_xlim((x_min, x_max)) self.ax.set_ylim((y_min, y_max)) # params_str = 'res: %d' # desc = params_str % (self.resolution) # self.desc.set_text(desc) train_labels = self.data_provider.get_pred(epoch, data) train_labels = train_labels.argmax(axis=1) inv = self.projector.batch_inverse(epoch, embedding) pred = self.data_provider.get_pred(epoch, inv) pred = pred.argmax(axis=1) # mesh_preds = self.data_provider.get_pred(epoch, inv) # mesh_preds = mesh_preds + 1e-8 # sort_preds = np.sort(mesh_preds, axis=1) # diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0]) # border = np.zeros(len(diff), dtype=np.uint8) + 0.05 # border[diff < 0.15] = 1 # mesh_preds = self.data_provider.get_pred(epoch, data) + 1e-8 # sort_preds = np.sort(mesh_preds, axis=1) # diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0]) # border = np.zeros(len(diff), dtype=np.uint8) + 0.05 # border[diff < 0.15] = 1 if noOutline == True: for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, border!=1)] self.sample_plots[c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, border==1)] self.sample_plots[3*self.class_num + c].set_data(data.transpose()) else: for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, train_labels == pred, border!=1)] self.sample_plots[c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, train_labels != pred, border!=1)] self.sample_plots[self.class_num+c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(pred == c, train_labels != pred, border!=1)] self.sample_plots[2*self.class_num + c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, border==1)] self.sample_plots[3*self.class_num+ c].set_data(data.transpose()) # self.fig.canvas.draw() # self.fig.canvas.flush_events() # plt.text(-8, 8, "test", fontsize=18, style='oblique', ha='center', va='top', wrap=True) plt.savefig(path) def save_default_fig(self, epoch, path="vis"): ''' Shows the current plot. ''' self._init_default_plot(only_img=True) x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) _, decision_view = self.get_epoch_decision_view(epoch, self.resolution) self.cls_plot.set_data(decision_view) self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) self.ax.set_xlim((x_min, x_max)) self.ax.set_ylim((y_min, y_max)) train_data = self.data_provider.train_representation(epoch) train_labels = self.data_provider.train_labels(epoch) pred = self.data_provider.get_pred(epoch, train_data) pred = pred.argmax(axis=1) embedding = self.projector.batch_project(epoch, train_data) for c in range(self.class_num): data = embedding[train_labels == c] self.sample_plots[c].set_data(data.transpose()) plt.savefig(path) def savefig_cus(self, epoch, data, pred, labels, path="vis"): ''' Shows the current plot with given data ''' self._init_plot(only_img=True) x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) _, decision_view = self.get_epoch_decision_view(epoch, self.resolution) self.cls_plot.set_data(decision_view) self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) self.ax.set_xlim((x_min, x_max)) self.ax.set_ylim((y_min, y_max)) # params_str = 'res: %d' # desc = params_str % (self.resolution) # self.desc.set_text(desc) embedding = self.projector.batch_project(epoch, data) for c in range(self.class_num): data = embedding[np.logical_and(labels == c, labels == pred)] self.sample_plots[c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(labels == c, labels != pred)] self.sample_plots[self.class_num+c].set_data(data.transpose()) # for c in range(self.class_num): data = embedding[np.logical_and(pred == c, labels != pred)] self.sample_plots[2*self.class_num + c].set_data(data.transpose()) # self.fig.canvas.draw() # self.fig.canvas.flush_events() plt.savefig(path) def savefig_trajectory(self, epoch, xs, ys, xy_limit=None, path="vis"): ''' Shows the current plot with given data ''' self._init_plot(only_img=True) if xy_limit is None: x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) else: x_min, y_min, x_max, y_max = xy_limit _, decision_view = self.get_epoch_decision_view(epoch, self.resolution, xy_limit) self.cls_plot.set_data(decision_view) self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) self.ax.set_xlim((x_min, x_max)) self.ax.set_ylim((y_min, y_max)) self.sample_plots[-1].set_data(np.vstack((xs,ys))) # set data point u = xs[1:] - xs[:-1] v = ys[1:] - ys[:-1] x = xs[:len(u)] # 使得维数和u,v一致 y = ys[:len(v)] # plt.quiver(prev_embedding[:, 0], prev_embedding[:, 1], embedding[:, 0]-prev_embedding[:, 0],embedding[:, 1]-prev_embedding[:, 1], scale_units='xy', angles='xy', scale=1, color='black') plt.quiver(x,y,u,v, angles='xy', scale_units='xy', scale=1, color="black") plt.savefig(path) def get_background(self, epoch, resolution): ''' Initialises matplotlib artists and plots. from DeepView and DVI ''' plt.ion() px = 1/plt.rcParams['figure.dpi'] # pixel in inches fig, ax = plt.subplots(1, 1, figsize=(200*px, 200*px)) ax.set_axis_off() cls_plot = ax.imshow(np.zeros([5, 5, 3]), interpolation='gaussian', zorder=0, vmin=0, vmax=1) # self.disable_synth = False x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(epoch) _, decision_view = self.get_epoch_decision_view(epoch, resolution) cls_plot.set_data(decision_view) cls_plot.set_extent((x_min, x_max, y_max, y_min)) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) # save first and them load fname = "Epoch" if self.data_provider.mode == "normal" else "Iteration" save_path = os.path.join(self.data_provider.model_path, "{}_{}".format(fname, epoch), "bgimg.png") plt.savefig(save_path, format='png',bbox_inches='tight',pad_inches=0.0) with open(save_path, 'rb') as img_f: img_stream = img_f.read() save_file_base64 = base64.b64encode(img_stream) return x_min, y_min, x_max, y_max, save_file_base64 def get_standard_classes_color(self): ''' get the RGB value for 10 classes :return: color : numpy.ndarray, shape (10, 3) ''' # TODO 10 classes? if self.class_num <= 1: # Return a default gray color return np.array([[0.9, 0.9, 0.9]]) # Gray, as an example mesh_max_class = self.class_num - 1 mesh_classes = np.arange(len(self.classes)) color = self.cmap(mesh_classes / mesh_max_class) color = color[:, 0:3] # color = np.concatenate((color, np.zeros((1,3))), axis=0) return color class DenseALvisualizer(visualizer): def __init__(self, data_provider, projector, resolution, cmap='tab10'): super().__init__(data_provider, projector, resolution, cmap) def get_epoch_plot_measures(self, iteration, epoch): """get plot measure for visualization""" data = self.data_provider.train_representation(iteration, epoch) embedded = self.projector.batch_project(iteration, epoch, data) ebd_min = np.min(embedded, axis=0) ebd_max = np.max(embedded, axis=0) ebd_extent = ebd_max - ebd_min x_min, y_min = ebd_min - 0.1 * ebd_extent x_max, y_max = ebd_max + 0.1 * ebd_extent x_min = min(x_min, y_min) y_min = min(x_min, y_min) x_max = max(x_max, y_max) y_max = max(x_max, y_max) return x_min, y_min, x_max, y_max def get_epoch_decision_view(self, iteration, epoch, resolution): ''' get background classifier view :param epoch_id: epoch that need to be visualized :param resolution: background resolution :return: grid_view : numpy.ndarray, self.resolution,self.resolution, 2 decision_view : numpy.ndarray, self.resolution,self.resolution, 3 ''' print('Computing decision regions ...') x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) # create grid xs = np.linspace(x_min, x_max, resolution) ys = np.linspace(y_min, y_max, resolution) grid = np.array(np.meshgrid(xs, ys)) grid = np.swapaxes(grid.reshape(grid.shape[0], -1), 0, 1) # map gridmpoint to images grid_samples = self.projector.batch_inverse(iteration, epoch, grid) mesh_preds = self.data_provider.get_pred(iteration, epoch, grid_samples) mesh_preds = mesh_preds + 1e-8 sort_preds = np.sort(mesh_preds, axis=1) diff = (sort_preds[:, -1] - sort_preds[:, -2]) / (sort_preds[:, -1] - sort_preds[:, 0]) border = np.zeros(len(diff), dtype=np.uint8) + 0.05 border[diff < 0.15] = 1 diff[border == 1] = 0. diff = diff/(diff.max()+1e-8) diff = diff*0.9 mesh_classes = mesh_preds.argmax(axis=1) mesh_max_class = max(mesh_classes) color = self.cmap(mesh_classes / mesh_max_class) diff = diff.reshape(-1, 1) color = color[:, 0:3] color = diff * 0.5 * color + (1 - diff) * np.ones(color.shape, dtype=np.uint8) decision_view = color.reshape(resolution, resolution, 3) grid_view = grid.reshape(resolution, resolution, 2) return grid_view, decision_view def savefig(self, iteration, epoch, path="vis"): ''' Shows the current plot. ''' self._init_plot(only_img=True) x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) _, decision_view = self.get_epoch_decision_view(iteration, epoch, self.resolution) self.cls_plot.set_data(decision_view) self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) self.ax.set_xlim((x_min, x_max)) self.ax.set_ylim((y_min, y_max)) # params_str = 'res: %d' # desc = params_str % (self.resolution) # self.desc.set_text(desc) train_data = self.data_provider.train_representation(iteration, epoch) train_labels = self.data_provider.train_labels(epoch) pred = self.data_provider.get_pred(iteration, epoch, train_data) pred = pred.argmax(axis=1) embedding = self.projector.batch_project(iteration, epoch, train_data) for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, train_labels == pred)] self.sample_plots[c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(train_labels == c, train_labels != pred)] self.sample_plots[self.class_num+c].set_data(data.transpose()) # for c in range(self.class_num): data = embedding[np.logical_and(pred == c, train_labels != pred)] self.sample_plots[2*self.class_num + c].set_data(data.transpose()) # self.fig.canvas.draw() # self.fig.canvas.flush_events() # plt.text(-8, 8, "test", fontsize=18, style='oblique', ha='center', va='top', wrap=True) plt.savefig(path) def savefig_cus(self, iteration, epoch, data, pred, labels, path="vis"): ''' Shows the current plot with given data ''' self._init_plot(only_img=True) x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) _, decision_view = self.get_epoch_decision_view(iteration, epoch, self.resolution) self.cls_plot.set_data(decision_view) self.cls_plot.set_extent((x_min, x_max, y_max, y_min)) self.ax.set_xlim((x_min, x_max)) self.ax.set_ylim((y_min, y_max)) embedding = self.projector.batch_project(iteration, epoch, data) for c in range(self.class_num): data = embedding[np.logical_and(labels == c, labels == pred)] self.sample_plots[c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(labels == c, labels != pred)] self.sample_plots[self.class_num+c].set_data(data.transpose()) for c in range(self.class_num): data = embedding[np.logical_and(pred == c, labels != pred)] self.sample_plots[2*self.class_num + c].set_data(data.transpose()) plt.savefig(path) def get_background(self, iteration, epoch, resolution): ''' Initialises matplotlib artists and plots. from DeepView and DVI ''' plt.ion() px = 1/plt.rcParams['figure.dpi'] # pixel in inches fig, ax = plt.subplots(1, 1, figsize=(200*px, 200*px)) ax.set_axis_off() cls_plot = ax.imshow(np.zeros([5, 5, 3]), interpolation='gaussian', zorder=0, vmin=0, vmax=1) # self.disable_synth = False x_min, y_min, x_max, y_max = self.get_epoch_plot_measures(iteration, epoch) _, decision_view = self.get_epoch_decision_view(iteration, epoch, resolution) cls_plot.set_data(decision_view) cls_plot.set_extent((x_min, x_max, y_max, y_min)) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) # save first and them load fname = "Epoch" if self.data_provider.mode == "normal" else "Iteration" save_path = os.path.join(self.data_provider.model_path, "{}_{}".format(fname, epoch), "bgimg.png") plt.savefig(save_path, format='png',bbox_inches='tight',pad_inches=0.0) with open(save_path, 'rb') as img_f: img_stream = img_f.read() save_file_base64 = base64.b64encode(img_stream) return x_min, y_min, x_max, y_max, save_file_base64