File size: 1,647 Bytes
2358f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
license: cc-by-4.0
pipeline_tag: image-to-image
tags:
- pytorch
- super-resolution
---

[Link to Github Release](https://github.com/Phhofm/models/releases/tag/4xLSDIRCompactC)  

# 4xLSDIRCompactC

Name: 4xLSDIRCompactC  
Author: Philip Hofmann  
Release Date: 17.03.2023  
License: CC BY 4.0  
Network: SRVGGNetCompact  
Scale: 4  
Purpose: 4x photo upscaler that handler jpg compression  

Iterations: 190000  
batch_size: Variable(1-5)  
HR_size: 256  
Dataset: LSDIR  
Dataset_size: 84991  
OTF Training No  
Pretrained_Model_G: 4xLSDIRCompact.pth  

Description: Trying to extend my previous model to be able to handle compression (JPG 100-30) by manually altering the training dataset, since 4xLSDIRCompact cant handle compression. Use this instead of 4xLSDIRCompact if your photo has compression (like an image from the web). 

---

Here is a comparison to show that 4xLSDIRCompact cannot handle compression artifacts, and that these two models will produce better output for that specific scenario. These models are not ‘better’ than the previous one, they are just meant to handle a different use case: https://imgsli.com/MTYyODY3 


![Example1](https://github.com/Phhofm/models/assets/14755670/68be7b9e-472a-4eab-b0ec-a19346f6ac0d)
![Example2](https://github.com/Phhofm/models/assets/14755670/b3f59497-82e5-48d1-a15e-842ebfbcbf8a)
![Example3](https://github.com/Phhofm/models/assets/14755670/c0ddd288-52fe-4786-841a-264fe5098904)
![Example4](https://github.com/Phhofm/models/assets/14755670/292e2c49-5b99-4255-9068-bb1ed33f58cd)
![Example5](https://github.com/Phhofm/models/assets/14755670/bba3fb8c-d3f8-438a-9e9c-a3517a88ab5b)