File size: 2,498 Bytes
73db495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: cc-by-4.0
pipeline_tag: image-to-image
tags:
- pytorch
- super-resolution
---

[Link to Github Release](https://github.com/Phhofm/models/releases/tag/4xNature_realplksr_dysample) 

# 4xNature_realplksr_dysample
Scale: 4  
Architecture: [RealPLKSR with Dysample](https://github.com/muslll/neosr/?tab=readme-ov-file#supported-archs)  
Architecture Option: [realplksr](https://github.com/muslll/neosr/blob/master/neosr/archs/realplksr_arch.py)  

Author: Philip Hofmann  
License: CC-BY-0.4  
Purpose: Restoration  
Subject: Realistic  
Input Type: Images  
Release Date: 13.08.2024  

Dataset: [Nature](https://github.com/Phhofm/models/releases/tag/nature_dataset)  
Dataset Size: 7'000  
OTF (on the fly augmentations): No  
Pretrained Model: [4xNomos2_realplksr_dysample](https://github.com/Phhofm/models/releases/tag/4xNomos2_realplksr_dysample)  
Iterations: 265'000  
Batch Size: 8  
Patch Size: 64  

Description:  
A Dysample RealPLKSR 4x upscaling model for photographs nature (animals, plants).   
LR prepared with down_up, linear, cubic_mitchell, lanczos, gauss and box scaling with some gaussian blur and jpg compression down to 75 (as released with my dataset, the LRx4 folder).   
Trained with dysample, ea2fpn, ema, eco, adan_sf, mssim, perceptual, color, luma, dists, ldl and ff (see config toml file).  
Based on my [Nature Dataset](https://github.com/Phhofm/models/releases/tag/nature_dataset) which is a curated version of the [iNaturalist 2017 Dataset](https://github.com/visipedia/inat_comp/blob/master/2017/README.md) for the purpose of training single image super resolution models.  

Use the [4xNature_realplksr_dysample.pth](https://github.com/Phhofm/models/releases/download/4xNature_realplksr_dysample/4xNature_realplksr_dysample.pth) file for inference. Also provided is a static onnx conversion with 3 256 256. Config, state, and net_d files are additionally provided for trainers, to maybe create an improved version 2 of this model or to train a similiar model from this state.

Showcase:  
![Example1](https://github.com/user-attachments/assets/cc4c5271-5924-4891-abba-68560d15cc40)
![Example2](https://github.com/user-attachments/assets/b9397c10-f63a-4727-acdb-7f9be6de4566)
![Example3](https://github.com/user-attachments/assets/4676b677-9192-40e2-ab41-7b8dfe09b537)
![Example4](https://github.com/user-attachments/assets/f3660a37-b4b9-43d3-94ac-f1f3016e5b5e)
![Example5](https://github.com/user-attachments/assets/af123969-74ec-485f-8d1a-2d44c0eb3be1)