PierreCounathe commited on
Commit
4a25688
1 Parent(s): 83d6c6a

Push first LunarLander to Hugging Face hub

Browse files
LunarLander-PPO.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e803e78e2a6493688db8be3f37aba14046efeb156f629137290e40e58a5f6e6
3
+ size 147292
LunarLander-PPO/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
LunarLander-PPO/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f10dfe8c0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f10dfe8c160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f10dfe8c1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f10dfe8c280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f10dfe8c310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f10dfe8c3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f10dfe8c430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f10dfe8c4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f10dfe8c550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f10dfe8c5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f10dfe8c670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f10dfe8c700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f10dfe8f180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 114688,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678315706873833094,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAtYi75Nj6k/a32CvjfPib5aaJy+2M73vQAAAAAAAAAAPtMjv8XAlT+b/Ny+Irbyvp1xML+g0i2+AAAAAAAAAAAamnO+0zwhP4aF9L6gLoi/Lpcvvm+bLr4AAAAAAAAAAACH3bw7V7k/LNovv5B5vj5UIfc8/NImPgAAAAAAAAAAmqQWvSlBqD8oN4i9TSr0vtW/c74V5wm+AAAAAAAAAAAaaP69EbyTP77CF77tbAe/EDXNvQo1Fr4AAAAAAAAAAADXMz2158A/5ymQPmGT3z0XXE+9Q69JvQAAAAAAAAAAZra4uuq0pz/tKyO9l5oCv4W9nLuEX8c8AAAAAAAAAABzv689gEa2P2wVHz8jFUu9YEuFvDZx/D0AAAAAAAAAAOBWUr5LHHY/eMIfvz7QPr+2zL09kKEIvAAAAAAAAAAAmlcdPocLbD/uPiI+Hs8qv37u0j37DXu9AAAAAAAAAADNsCC8fCSxP6Yspb07aiW+U/5juyyio70AAAAAAAAAAMDBaL5qW0U/3Yzvvh99U7/mt0u+A7w7vgAAAAAAAAAAE8sdvzZRA75OXLa8xEFUvDuOar20z4A9AACAPwAAgD/ajKM9GDmfPzushD6iN+K+tBUfvqmcNb4AAAAAAAAAAEZYHz7GV4E/OGgJP64KVr+SqJC9elTUOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.1468799999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInn5QFykXUMCUhpRSlIwBbJRLc4wBdJRHQF1U7dBSk0t1fZQoaAZoCWgPQwg+srlqnllLwJSGlFKUaBVLWmgWR0BdVTej2zv7dX2UKGgGaAloD0MIL/oK0oxgU8CUhpRSlGgVS2poFkdAXVfzlLeyiXV9lChoBmgJaA9DCBrc1haeGVXAlIaUUpRoFUtnaBZHQF1XrJbMX8B1fZQoaAZoCWgPQwisOqsF9mxSwJSGlFKUaBVLWGgWR0BdWYQBgeA/dX2UKGgGaAloD0MIOEvJchIqR8CUhpRSlGgVS1toFkdAXVo89wFTvXV9lChoBmgJaA9DCPM8uDtrDUPAlIaUUpRoFUuRaBZHQF1aJPZZjhF1fZQoaAZoCWgPQwhLy0i9p7JPwJSGlFKUaBVLe2gWR0BdYdSqEOAidX2UKGgGaAloD0MIaCEBo8uZRcCUhpRSlGgVS2JoFkdAXWWL61stTXV9lChoBmgJaA9DCC/APjp1iFLAlIaUUpRoFUttaBZHQF1mt+TeO4p1fZQoaAZoCWgPQwiCcXDpmBdEwJSGlFKUaBVLeWgWR0BdaEpVjqfOdX2UKGgGaAloD0MIkx6GVifbPMCUhpRSlGgVS2poFkdAXWzj5sTFl3V9lChoBmgJaA9DCNEi2/l+pEPAlIaUUpRoFUtOaBZHQF1uM85jpcJ1fZQoaAZoCWgPQwjZeLDF7pRiwJSGlFKUaBVLeGgWR0BdcJbhWHUMdX2UKGgGaAloD0MIMzUJ3pBWGECUhpRSlGgVS1loFkdAXXP531SOznV9lChoBmgJaA9DCL/S+fAsER7AlIaUUpRoFUtTaBZHQF199m6Gxlh1fZQoaAZoCWgPQwgo84++SSdGwJSGlFKUaBVLcWgWR0BdftbxEv0zdX2UKGgGaAloD0MIoBhZMsfuQMCUhpRSlGgVS4NoFkdAXYBKCg9Ne3V9lChoBmgJaA9DCAYujzUjB0zAlIaUUpRoFUt0aBZHQF2BlnRLK3d1fZQoaAZoCWgPQwgEdcqjGypRwJSGlFKUaBVLjmgWR0Bdgs6FM7EHdX2UKGgGaAloD0MIcSAkC5gEPMCUhpRSlGgVS3loFkdAXYN2JSBK+XV9lChoBmgJaA9DCHR5c7hWS1bAlIaUUpRoFUuDaBZHQF2DvIOpbUx1fZQoaAZoCWgPQwj1DyIZchZHwJSGlFKUaBVLi2gWR0BdhFpXZGrkdX2UKGgGaAloD0MI9N2tLNE4UMCUhpRSlGgVS01oFkdAXYiLl3hXKnV9lChoBmgJaA9DCBghPNo4JjrAlIaUUpRoFUtkaBZHQF2MFB6a9bp1fZQoaAZoCWgPQwifIRyz7MdOwJSGlFKUaBVLgWgWR0Bdk1NpM6BAdX2UKGgGaAloD0MItf6WAPxXSMCUhpRSlGgVS2doFkdAXZOhtcfNinV9lChoBmgJaA9DCO30g7pImSxAlIaUUpRoFUtaaBZHQF2WBg/keZJ1fZQoaAZoCWgPQwh+b9Of/fpPwJSGlFKUaBVLRGgWR0BdmAhbGFSLdX2UKGgGaAloD0MISG5Nui0rS8CUhpRSlGgVS4poFkdAXZjEtNBWxXV9lChoBmgJaA9DCH11VaAWy0TAlIaUUpRoFUt8aBZHQF2fRNATqSp1fZQoaAZoCWgPQwiY+KOoMwM0wJSGlFKUaBVLX2gWR0Bdp5q/M4cWdX2UKGgGaAloD0MIRUseT8vdS8CUhpRSlGgVS3toFkdAXa81/DtPYXV9lChoBmgJaA9DCCeh9IWQUUbAlIaUUpRoFUtoaBZHQF21GcnVoYh1fZQoaAZoCWgPQwhiTWVR2BNMwJSGlFKUaBVLjGgWR0BdtWPcSGrTdX2UKGgGaAloD0MIFVW/0vn8SMCUhpRSlGgVS4ZoFkdAXbanqFAVwnV9lChoBmgJaA9DCBKlvcEX4jDAlIaUUpRoFUuOaBZHQF24u9OARTV1fZQoaAZoCWgPQwjhs3VwsGVEwJSGlFKUaBVLYGgWR0BdujQAuIykdX2UKGgGaAloD0MIpg2HpYFbUMCUhpRSlGgVS5FoFkdAXbyih37k4nV9lChoBmgJaA9DCBdnDHOCtjTAlIaUUpRoFUubaBZHQF3AXTmW+oN1fZQoaAZoCWgPQwgsuYrFb/orwJSGlFKUaBVLk2gWR0Bdwk4m1IAfdX2UKGgGaAloD0MIp1zhXS4UUMCUhpRSlGgVS3FoFkdAXcLdznzQNXV9lChoBmgJaA9DCH2vITgucz3AlIaUUpRoFUt3aBZHQF3DJokAxSJ1fZQoaAZoCWgPQwjOpbiq7Dc2wJSGlFKUaBVLfmgWR0BdyewcHWz4dX2UKGgGaAloD0MITraBO1DfJkCUhpRSlGgVS4BoFkdAXdLg1m8M/nV9lChoBmgJaA9DCMrfvaPGwEHAlIaUUpRoFUtraBZHQF3S4keIVM51fZQoaAZoCWgPQwjaOjjYmzpMwJSGlFKUaBVLZmgWR0Bd2JuEVWS2dX2UKGgGaAloD0MIHRzsTQzxNMCUhpRSlGgVS55oFkdAXdhfoicG1XV9lChoBmgJaA9DCBNJ9DKKITDAlIaUUpRoFUtZaBZHQF3hRuTA31l1fZQoaAZoCWgPQwjeyafHtpxIwJSGlFKUaBVLUmgWR0Bd4b5qM3qBdX2UKGgGaAloD0MI0GT/PA2kMsCUhpRSlGgVS3FoFkdAXeNiPQv6CXV9lChoBmgJaA9DCHQlAtU/iLy/lIaUUpRoFUtnaBZHQF3kKA8Swnp1fZQoaAZoCWgPQwgIkKFjB+0zwJSGlFKUaBVLeWgWR0Bd6dLYf4h2dX2UKGgGaAloD0MIqIx/n3FTQ8CUhpRSlGgVS2VoFkdAXetsoDxLCnV9lChoBmgJaA9DCAgB+RIq6E7AlIaUUpRoFUt1aBZHQF3yMr3Cbc51fZQoaAZoCWgPQwjYuWkzTp89wJSGlFKUaBVLemgWR0Bd9RTS9du6dX2UKGgGaAloD0MInKiluRXiRcCUhpRSlGgVS1NoFkdAXfUi4axX4nV9lChoBmgJaA9DCBYwgVt3YxjAlIaUUpRoFUuZaBZHQF31GqPwNLF1fZQoaAZoCWgPQwhW0opvKAA9wJSGlFKUaBVLnGgWR0Bd9YUSIxgzdX2UKGgGaAloD0MIamtEMA6mLkCUhpRSlGgVS3VoFkdAXfoAaNuLrHV9lChoBmgJaA9DCJM5lnfVAxfAlIaUUpRoFUtYaBZHQF38y2hIvrZ1fZQoaAZoCWgPQwit+IbCZ+FKwJSGlFKUaBVLfGgWR0BeBcRYigTRdX2UKGgGaAloD0MInInpQqxsTcCUhpRSlGgVS2BoFkdAXg0xVQyhz3V9lChoBmgJaA9DCII3pFGBnUrAlIaUUpRoFUtyaBZHQF4T1kDp1Rt1fZQoaAZoCWgPQwiU93E0R/4jQJSGlFKUaBVLjGgWR0BeFj+aScLCdX2UKGgGaAloD0MIfhghPNrkQcCUhpRSlGgVS2BoFkdAXhd0ihWYGHV9lChoBmgJaA9DCL4uw3+6FUzAlIaUUpRoFUtKaBZHQF4YwWFev6l1fZQoaAZoCWgPQwi2upwSEMlLwJSGlFKUaBVLd2gWR0BeGmHpKSPmdX2UKGgGaAloD0MIA3l2+dZPNMCUhpRSlGgVS31oFkdAXhpo8IRh+nV9lChoBmgJaA9DCIzZklURFkDAlIaUUpRoFUtyaBZHQF4d5YHPeHl1fZQoaAZoCWgPQwhAogkUsaJAwJSGlFKUaBVLWGgWR0BeHnyd4FA3dX2UKGgGaAloD0MIINCZtKlSKsCUhpRSlGgVS2FoFkdAXiKTbFjur3V9lChoBmgJaA9DCAPMfAc/NTvAlIaUUpRoFUt5aBZHQF4qCcwxnFp1fZQoaAZoCWgPQwhGJuDXyNlhwJSGlFKUaBVLbmgWR0BeL6sdT5wgdX2UKGgGaAloD0MItf8B1qqTTMCUhpRSlGgVS4BoFkdAXi9yYG+sYHV9lChoBmgJaA9DCF0XfnA+lSNAlIaUUpRoFUtOaBZHQF448ma6ST11fZQoaAZoCWgPQwgTtTS3QsA/wJSGlFKUaBVLZ2gWR0BePPuLJjlQdX2UKGgGaAloD0MIcQFolC5aUcCUhpRSlGgVS51oFkdAXkRjy4FzMnV9lChoBmgJaA9DCL3Fw3sOKEzAlIaUUpRoFUthaBZHQF5GH1e0G/x1fZQoaAZoCWgPQwgG2h1SDDQyQJSGlFKUaBVLWGgWR0BeRh9G7SRbdX2UKGgGaAloD0MIwsO0b+73TcCUhpRSlGgVS2ZoFkdAXkavC/GlynV9lChoBmgJaA9DCPAYHvtZAlPAlIaUUpRoFUtyaBZHQF5LwEhaC+V1fZQoaAZoCWgPQwjZlgFnKX1IwJSGlFKUaBVLlGgWR0BeTGig00m/dX2UKGgGaAloD0MIl+MViJ64NkCUhpRSlGgVS1xoFkdAXkxtj0+TvHV9lChoBmgJaA9DCLh1N091JlbAlIaUUpRoFUtmaBZHQF5M/Pw/gR91fZQoaAZoCWgPQwgurYbEPadawJSGlFKUaBVLn2gWR0BeYedGy5ZsdX2UKGgGaAloD0MIxt6LL9qvScCUhpRSlGgVS5RoFkdAXmLF2mpEQXV9lChoBmgJaA9DCLbbLjTX7UnAlIaUUpRoFUuKaBZHQF5z2U0Nz8x1fZQoaAZoCWgPQwhoWfePhdxHwJSGlFKUaBVLV2gWR0BeeoKMNtqIdX2UKGgGaAloD0MI/I9Mh06xRcCUhpRSlGgVS4loFkdAXnxOnEVFhHV9lChoBmgJaA9DCEkO2NXkGRrAlIaUUpRoFUt6aBZHQF5/sny/bj91fZQoaAZoCWgPQwgPDCB8KE9JwJSGlFKUaBVLVGgWR0BegZkf9xZMdX2UKGgGaAloD0MIWvJ4Wn6aR8CUhpRSlGgVS2RoFkdAXoI71ZkkKXV9lChoBmgJaA9DCADmWrQAjTnAlIaUUpRoFUtbaBZHQF6FjT8YQ8R1fZQoaAZoCWgPQwjfqBWm719QwJSGlFKUaBVLmmgWR0Beh0QoTfzjdX2UKGgGaAloD0MIEfxvJTv2SMCUhpRSlGgVS4xoFkdAXo7e3x4IKXV9lChoBmgJaA9DCKzj+KHSOkzAlIaUUpRoFUtuaBZHQF6QuL74zrN1fZQoaAZoCWgPQwjRJLGk3P3lP5SGlFKUaBVLgGgWR0Bek8qWkadddX2UKGgGaAloD0MIzc6idypAGsCUhpRSlGgVS4RoFkdAXpPD0lJHy3V9lChoBmgJaA9DCHRhpBe1mFTAlIaUUpRoFUt5aBZHQF6Whc7hegN1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 32,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
LunarLander-PPO/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9054928bf8c4a4e92140ebf73c266155620a8c1cef48e6f2349f23c7fef8242
3
+ size 87929
LunarLander-PPO/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cc7372bdd1ea37f281062e395512c522e3464c0d08768e2ffcb2f71cf987472
3
+ size 43393
LunarLander-PPO/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-PPO/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -208.75 +/- 62.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f10dfe8c0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f10dfe8c160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f10dfe8c1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f10dfe8c280>", "_build": "<function ActorCriticPolicy._build at 0x7f10dfe8c310>", "forward": "<function ActorCriticPolicy.forward at 0x7f10dfe8c3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f10dfe8c430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f10dfe8c4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f10dfe8c550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f10dfe8c5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f10dfe8c670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f10dfe8c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f10dfe8f180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678315706873833094, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAtYi75Nj6k/a32CvjfPib5aaJy+2M73vQAAAAAAAAAAPtMjv8XAlT+b/Ny+Irbyvp1xML+g0i2+AAAAAAAAAAAamnO+0zwhP4aF9L6gLoi/Lpcvvm+bLr4AAAAAAAAAAACH3bw7V7k/LNovv5B5vj5UIfc8/NImPgAAAAAAAAAAmqQWvSlBqD8oN4i9TSr0vtW/c74V5wm+AAAAAAAAAAAaaP69EbyTP77CF77tbAe/EDXNvQo1Fr4AAAAAAAAAAADXMz2158A/5ymQPmGT3z0XXE+9Q69JvQAAAAAAAAAAZra4uuq0pz/tKyO9l5oCv4W9nLuEX8c8AAAAAAAAAABzv689gEa2P2wVHz8jFUu9YEuFvDZx/D0AAAAAAAAAAOBWUr5LHHY/eMIfvz7QPr+2zL09kKEIvAAAAAAAAAAAmlcdPocLbD/uPiI+Hs8qv37u0j37DXu9AAAAAAAAAADNsCC8fCSxP6Yspb07aiW+U/5juyyio70AAAAAAAAAAMDBaL5qW0U/3Yzvvh99U7/mt0u+A7w7vgAAAAAAAAAAE8sdvzZRA75OXLa8xEFUvDuOar20z4A9AACAPwAAgD/ajKM9GDmfPzushD6iN+K+tBUfvqmcNb4AAAAAAAAAAEZYHz7GV4E/OGgJP64KVr+SqJC9elTUOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInn5QFykXUMCUhpRSlIwBbJRLc4wBdJRHQF1U7dBSk0t1fZQoaAZoCWgPQwg+srlqnllLwJSGlFKUaBVLWmgWR0BdVTej2zv7dX2UKGgGaAloD0MIL/oK0oxgU8CUhpRSlGgVS2poFkdAXVfzlLeyiXV9lChoBmgJaA9DCBrc1haeGVXAlIaUUpRoFUtnaBZHQF1XrJbMX8B1fZQoaAZoCWgPQwisOqsF9mxSwJSGlFKUaBVLWGgWR0BdWYQBgeA/dX2UKGgGaAloD0MIOEvJchIqR8CUhpRSlGgVS1toFkdAXVo89wFTvXV9lChoBmgJaA9DCPM8uDtrDUPAlIaUUpRoFUuRaBZHQF1aJPZZjhF1fZQoaAZoCWgPQwhLy0i9p7JPwJSGlFKUaBVLe2gWR0BdYdSqEOAidX2UKGgGaAloD0MIaCEBo8uZRcCUhpRSlGgVS2JoFkdAXWWL61stTXV9lChoBmgJaA9DCC/APjp1iFLAlIaUUpRoFUttaBZHQF1mt+TeO4p1fZQoaAZoCWgPQwiCcXDpmBdEwJSGlFKUaBVLeWgWR0BdaEpVjqfOdX2UKGgGaAloD0MIkx6GVifbPMCUhpRSlGgVS2poFkdAXWzj5sTFl3V9lChoBmgJaA9DCNEi2/l+pEPAlIaUUpRoFUtOaBZHQF1uM85jpcJ1fZQoaAZoCWgPQwjZeLDF7pRiwJSGlFKUaBVLeGgWR0BdcJbhWHUMdX2UKGgGaAloD0MIMzUJ3pBWGECUhpRSlGgVS1loFkdAXXP531SOznV9lChoBmgJaA9DCL/S+fAsER7AlIaUUpRoFUtTaBZHQF199m6Gxlh1fZQoaAZoCWgPQwgo84++SSdGwJSGlFKUaBVLcWgWR0BdftbxEv0zdX2UKGgGaAloD0MIoBhZMsfuQMCUhpRSlGgVS4NoFkdAXYBKCg9Ne3V9lChoBmgJaA9DCAYujzUjB0zAlIaUUpRoFUt0aBZHQF2BlnRLK3d1fZQoaAZoCWgPQwgEdcqjGypRwJSGlFKUaBVLjmgWR0Bdgs6FM7EHdX2UKGgGaAloD0MIcSAkC5gEPMCUhpRSlGgVS3loFkdAXYN2JSBK+XV9lChoBmgJaA9DCHR5c7hWS1bAlIaUUpRoFUuDaBZHQF2DvIOpbUx1fZQoaAZoCWgPQwj1DyIZchZHwJSGlFKUaBVLi2gWR0BdhFpXZGrkdX2UKGgGaAloD0MI9N2tLNE4UMCUhpRSlGgVS01oFkdAXYiLl3hXKnV9lChoBmgJaA9DCBghPNo4JjrAlIaUUpRoFUtkaBZHQF2MFB6a9bp1fZQoaAZoCWgPQwifIRyz7MdOwJSGlFKUaBVLgWgWR0Bdk1NpM6BAdX2UKGgGaAloD0MItf6WAPxXSMCUhpRSlGgVS2doFkdAXZOhtcfNinV9lChoBmgJaA9DCO30g7pImSxAlIaUUpRoFUtaaBZHQF2WBg/keZJ1fZQoaAZoCWgPQwh+b9Of/fpPwJSGlFKUaBVLRGgWR0BdmAhbGFSLdX2UKGgGaAloD0MISG5Nui0rS8CUhpRSlGgVS4poFkdAXZjEtNBWxXV9lChoBmgJaA9DCH11VaAWy0TAlIaUUpRoFUt8aBZHQF2fRNATqSp1fZQoaAZoCWgPQwiY+KOoMwM0wJSGlFKUaBVLX2gWR0Bdp5q/M4cWdX2UKGgGaAloD0MIRUseT8vdS8CUhpRSlGgVS3toFkdAXa81/DtPYXV9lChoBmgJaA9DCCeh9IWQUUbAlIaUUpRoFUtoaBZHQF21GcnVoYh1fZQoaAZoCWgPQwhiTWVR2BNMwJSGlFKUaBVLjGgWR0BdtWPcSGrTdX2UKGgGaAloD0MIFVW/0vn8SMCUhpRSlGgVS4ZoFkdAXbanqFAVwnV9lChoBmgJaA9DCBKlvcEX4jDAlIaUUpRoFUuOaBZHQF24u9OARTV1fZQoaAZoCWgPQwjhs3VwsGVEwJSGlFKUaBVLYGgWR0BdujQAuIykdX2UKGgGaAloD0MIpg2HpYFbUMCUhpRSlGgVS5FoFkdAXbyih37k4nV9lChoBmgJaA9DCBdnDHOCtjTAlIaUUpRoFUubaBZHQF3AXTmW+oN1fZQoaAZoCWgPQwgsuYrFb/orwJSGlFKUaBVLk2gWR0Bdwk4m1IAfdX2UKGgGaAloD0MIp1zhXS4UUMCUhpRSlGgVS3FoFkdAXcLdznzQNXV9lChoBmgJaA9DCH2vITgucz3AlIaUUpRoFUt3aBZHQF3DJokAxSJ1fZQoaAZoCWgPQwjOpbiq7Dc2wJSGlFKUaBVLfmgWR0BdyewcHWz4dX2UKGgGaAloD0MITraBO1DfJkCUhpRSlGgVS4BoFkdAXdLg1m8M/nV9lChoBmgJaA9DCMrfvaPGwEHAlIaUUpRoFUtraBZHQF3S4keIVM51fZQoaAZoCWgPQwjaOjjYmzpMwJSGlFKUaBVLZmgWR0Bd2JuEVWS2dX2UKGgGaAloD0MIHRzsTQzxNMCUhpRSlGgVS55oFkdAXdhfoicG1XV9lChoBmgJaA9DCBNJ9DKKITDAlIaUUpRoFUtZaBZHQF3hRuTA31l1fZQoaAZoCWgPQwjeyafHtpxIwJSGlFKUaBVLUmgWR0Bd4b5qM3qBdX2UKGgGaAloD0MI0GT/PA2kMsCUhpRSlGgVS3FoFkdAXeNiPQv6CXV9lChoBmgJaA9DCHQlAtU/iLy/lIaUUpRoFUtnaBZHQF3kKA8Swnp1fZQoaAZoCWgPQwgIkKFjB+0zwJSGlFKUaBVLeWgWR0Bd6dLYf4h2dX2UKGgGaAloD0MIqIx/n3FTQ8CUhpRSlGgVS2VoFkdAXetsoDxLCnV9lChoBmgJaA9DCAgB+RIq6E7AlIaUUpRoFUt1aBZHQF3yMr3Cbc51fZQoaAZoCWgPQwjYuWkzTp89wJSGlFKUaBVLemgWR0Bd9RTS9du6dX2UKGgGaAloD0MInKiluRXiRcCUhpRSlGgVS1NoFkdAXfUi4axX4nV9lChoBmgJaA9DCBYwgVt3YxjAlIaUUpRoFUuZaBZHQF31GqPwNLF1fZQoaAZoCWgPQwhW0opvKAA9wJSGlFKUaBVLnGgWR0Bd9YUSIxgzdX2UKGgGaAloD0MIamtEMA6mLkCUhpRSlGgVS3VoFkdAXfoAaNuLrHV9lChoBmgJaA9DCJM5lnfVAxfAlIaUUpRoFUtYaBZHQF38y2hIvrZ1fZQoaAZoCWgPQwit+IbCZ+FKwJSGlFKUaBVLfGgWR0BeBcRYigTRdX2UKGgGaAloD0MInInpQqxsTcCUhpRSlGgVS2BoFkdAXg0xVQyhz3V9lChoBmgJaA9DCII3pFGBnUrAlIaUUpRoFUtyaBZHQF4T1kDp1Rt1fZQoaAZoCWgPQwiU93E0R/4jQJSGlFKUaBVLjGgWR0BeFj+aScLCdX2UKGgGaAloD0MIfhghPNrkQcCUhpRSlGgVS2BoFkdAXhd0ihWYGHV9lChoBmgJaA9DCL4uw3+6FUzAlIaUUpRoFUtKaBZHQF4YwWFev6l1fZQoaAZoCWgPQwi2upwSEMlLwJSGlFKUaBVLd2gWR0BeGmHpKSPmdX2UKGgGaAloD0MIA3l2+dZPNMCUhpRSlGgVS31oFkdAXhpo8IRh+nV9lChoBmgJaA9DCIzZklURFkDAlIaUUpRoFUtyaBZHQF4d5YHPeHl1fZQoaAZoCWgPQwhAogkUsaJAwJSGlFKUaBVLWGgWR0BeHnyd4FA3dX2UKGgGaAloD0MIINCZtKlSKsCUhpRSlGgVS2FoFkdAXiKTbFjur3V9lChoBmgJaA9DCAPMfAc/NTvAlIaUUpRoFUt5aBZHQF4qCcwxnFp1fZQoaAZoCWgPQwhGJuDXyNlhwJSGlFKUaBVLbmgWR0BeL6sdT5wgdX2UKGgGaAloD0MItf8B1qqTTMCUhpRSlGgVS4BoFkdAXi9yYG+sYHV9lChoBmgJaA9DCF0XfnA+lSNAlIaUUpRoFUtOaBZHQF448ma6ST11fZQoaAZoCWgPQwgTtTS3QsA/wJSGlFKUaBVLZ2gWR0BePPuLJjlQdX2UKGgGaAloD0MIcQFolC5aUcCUhpRSlGgVS51oFkdAXkRjy4FzMnV9lChoBmgJaA9DCL3Fw3sOKEzAlIaUUpRoFUthaBZHQF5GH1e0G/x1fZQoaAZoCWgPQwgG2h1SDDQyQJSGlFKUaBVLWGgWR0BeRh9G7SRbdX2UKGgGaAloD0MIwsO0b+73TcCUhpRSlGgVS2ZoFkdAXkavC/GlynV9lChoBmgJaA9DCPAYHvtZAlPAlIaUUpRoFUtyaBZHQF5LwEhaC+V1fZQoaAZoCWgPQwjZlgFnKX1IwJSGlFKUaBVLlGgWR0BeTGig00m/dX2UKGgGaAloD0MIl+MViJ64NkCUhpRSlGgVS1xoFkdAXkxtj0+TvHV9lChoBmgJaA9DCLh1N091JlbAlIaUUpRoFUtmaBZHQF5M/Pw/gR91fZQoaAZoCWgPQwgurYbEPadawJSGlFKUaBVLn2gWR0BeYedGy5ZsdX2UKGgGaAloD0MIxt6LL9qvScCUhpRSlGgVS5RoFkdAXmLF2mpEQXV9lChoBmgJaA9DCLbbLjTX7UnAlIaUUpRoFUuKaBZHQF5z2U0Nz8x1fZQoaAZoCWgPQwhoWfePhdxHwJSGlFKUaBVLV2gWR0BeeoKMNtqIdX2UKGgGaAloD0MI/I9Mh06xRcCUhpRSlGgVS4loFkdAXnxOnEVFhHV9lChoBmgJaA9DCEkO2NXkGRrAlIaUUpRoFUt6aBZHQF5/sny/bj91fZQoaAZoCWgPQwgPDCB8KE9JwJSGlFKUaBVLVGgWR0BegZkf9xZMdX2UKGgGaAloD0MIWvJ4Wn6aR8CUhpRSlGgVS2RoFkdAXoI71ZkkKXV9lChoBmgJaA9DCADmWrQAjTnAlIaUUpRoFUtbaBZHQF6FjT8YQ8R1fZQoaAZoCWgPQwjfqBWm719QwJSGlFKUaBVLmmgWR0Beh0QoTfzjdX2UKGgGaAloD0MIEfxvJTv2SMCUhpRSlGgVS4xoFkdAXo7e3x4IKXV9lChoBmgJaA9DCKzj+KHSOkzAlIaUUpRoFUtuaBZHQF6QuL74zrN1fZQoaAZoCWgPQwjRJLGk3P3lP5SGlFKUaBVLgGgWR0Bek8qWkadddX2UKGgGaAloD0MIzc6idypAGsCUhpRSlGgVS4RoFkdAXpPD0lJHy3V9lChoBmgJaA9DCHRhpBe1mFTAlIaUUpRoFUt5aBZHQF6Whc7hegN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (267 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -208.75367657907447, "std_reward": 62.610037427444965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T22:51:00.937258"}