File size: 11,576 Bytes
eda43d3 ea385eb e61491a ea385eb e61491a ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 092a0fc eda43d3 ea385eb eda43d3 c9742ff 039d3dc e1638e4 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 a843da9 eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb eda43d3 ea385eb c9742ff ea385eb eda43d3 ea385eb c9742ff ea385eb eda43d3 ea385eb c9742ff ea385eb eda43d3 ea385eb eda43d3 d35d94c 195089f d05983f 195089f c9742ff 195089f c9742ff ea385eb d35d94c 195089f 6f137e4 195089f 8ee1665 195089f 1b9f041 ea385eb 195089f 26f5d5c 195089f 1b9f041 ea385eb 195089f ea385eb 4a88fde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- api
- open-api
- swagger
- api doc
- api call
- code
- instruction_tuned
- basemodel
- pytorch
- RL Tuned
- text-generation-inferenc
metrics:
- accuracy
pipeline_tag: text-generation
---
# pip-api-expert
[pipableAi](https://pipable.ai/)
[colab_notebook](https://colab.research.google.com/drive/1r24CjfOlCj-O0tSQYRrTBRLk9YHiHOhC?usp=sharing)
## What have we built?
A 1.3 bn state of the art model for api calling , documentation, testing management.
The tasks that the model can accomplish are the following.
```markdown
1. Convert any bad format text to open api format.
2. Convert any bad format text to mark down format.
3. Given docs and questions in natural language, generate api calls in python.
```
## How we built it?
We used a simulator and a form of policy gradient to train the model to self instruct itself to make documents and then perform executable calls on the document.
## Mock interface
https://app.pipable.ai/
You can try out the features at the above interface by using our hosted model.
## License
The model is open source under apache 2.0. License
## Usage
### Installation
```bash
pip install transformers
pip install accelerate
```
### Prompt
```python
prompt = f"""<question>{}</question>
<doc/code/any tag that explains the task at hand>"""
```
### PyTorch
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
import torch
path = "PipableAI/pip-api-expert"
model =AutoModelForCausalLM.from_pretrained(path,torch_dtype=torch.bfloat16,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(path)
prompt = "<question>Perform api call to do task k</question><python_code>"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1200)
doc = (
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
print(doc)
```
## Examples
### Markdown Documentation Format for Raw API Docs
```python
raw_docs = """
Method access
HTTP
JavaScript
Python
Java
POST
https://slack.com/api/chat.postMessage
Required scopes
Bot tokens
chat:write
User tokens
chat:write
chat:write:user
chat:write:bot
Legacy bot tokens
bot
Content types
application/x-www-form-urlencoded
application/json
Rate limits
Special
Arguments
Required arguments
token
token
·Required
Authentication token bearing required scopes. Tokens should be passed as an HTTP Authorization header or alternatively, as a POST parameter.
Example
xxxx-xxxxxxxxx-xxxx
channel
string
·Required
Channel, private group, or IM channel to send message to. Can be an encoded ID, or a name. See below for more details.
Example
C1234567890
At least one of
attachmentsblockstext
One of these arguments is required to describe the content of the message. If attachments or blocks are included, text will be used as fallback text for notifications only.
attachments
string
blocks
blocks[] as string
text
string
How this field works and whether it is required depends on other fields you use in your API call. See below for more detail.
Example
Hello world
Optional arguments
as_user
boolean
·Optional
(Legacy) Pass true to post the message as the authed user instead of as a bot. Defaults to false. Can only be used by classic Slack apps. See authorship below.
Example
true
icon_emoji
string
·Optional
Emoji to use as the icon for this message. Overrides icon_url.
Example
:chart_with_upwards_trend:
icon_url
string
·Optional
URL to an image to use as the icon for this message.
Example
http://lorempixel.com/48/48
link_names
boolean
·Optional
Find and link user groups. No longer supports linking individual users; use syntax shown in Mentioning Users instead.
Example
true
metadata
string
·Optional
JSON object with event_type and event_payload fields, presented as a URL-encoded string. Metadata you post to Slack is accessible to any app or user who is a member of that workspace.
Example
{"event_type": "task_created", "event_payload": { "id": "11223", "title": "Redesign Homepage"}}
mrkdwn
boolean
·Optional
Disable Slack markup parsing by setting to false. Enabled by default.
Default
true
Example
false
parse
string
·Optional
Change how messages are treated. See below.
Example
full
reply_broadcast
boolean
·Optional
Used in conjunction with thread_ts and indicates whether reply should be made visible to everyone in the channel or conversation. Defaults to false.
Example
true
thread_ts
string
·Optional
Provide another message's ts value to make this message a reply. Avoid using a reply's ts value; use its parent instead.
unfurl_links
boolean
·Optional
Pass true to enable unfurling of primarily text-based content.
Example
true
unfurl_media
boolean
·Optional
Pass false to disable unfurling of media content.
Example
false
username
string
·Optional
Set your bot's user name.
Example
My Bot
"""
question = """
Convert the above docs to markdown format.
"""
prompt = f"""
<api_doc>
{raw_docs}
</api_doc>
<question>
{question}
</question>
<response>
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1800)
doc = (
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
print(doc)
```
### OpenAPI Documentation Format for Raw API Docs
```python
raw_docs = """
Method access
HTTP
JavaScript
Python
Java
GET
https://slack.com/api/users.list
Required scopes
Bot tokens
users:read
User tokens
users:read
Legacy bot tokens
bot
Content types
application/x-www-form-urlencoded
Rate limits
Tier 2
Arguments
Required arguments
token
token
·Required
Authentication token bearing required scopes. Tokens should be passed as an HTTP Authorization header or alternatively, as a POST parameter.
Example
xxxx-xxxxxxxxx-xxxx
Optional arguments
cursor
string
·Optional
Paginate through collections of data by setting the cursor parameter to a next_cursor attribute returned by a previous request's response_metadata. Default value fetches the first "page" of the collection. See pagination for more detail.
Example
dXNlcjpVMDYxTkZUVDI=
include_locale
boolean
·Optional
Set this to true to receive the locale for users. Defaults to false
Example
true
limit
number
·Optional
The maximum number of items to return. Fewer than the requested number of items may be returned, even if the end of the users list hasn't been reached. Providing no limit value will result in Slack attempting to deliver you the entire result set. If the collection is too large you may experience limit_required or HTTP 500 errors.
Default
0
Example
20
team_id
string
·Optional
encoded team id to list users in, required if org token is used
Example
T1234567890
"""
question = """
Parse the docs to detailed openapi format, do not include reponse.
"""
prompt = f"""
<api_doc>
{raw_docs}
</api_doc>
<question>
{question}
</question>
<json>
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1800)
doc = (
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
print(doc)
```
### Python code to call an API based on the documentation and the question.
```python
docs = """
{
"openapi": "3.0.0",
"info": {
"version": "1.0.0",
"title": "Slack API",
"description": "API for Slack",
"termsOfService": "https://slack.com/terms-of-service",
"contact": {
"name": "Slack",
"url": "https://slack.com",
"email": "support@slack.com"
},
"license": {
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0"
}
},
"servers": [
{
"url": "https://slack.com/api",
"description": "API server"
}
],
"paths": {
"/chat/postMessage": {
"post": {
"description": "Send a message to a channel or user",
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"description": "Bot token or user token",
"schema": {
"type": "string"
}
},
{
"name": "channel",
"in": "query",
"required": true,
"description": "The ID of the channel or user to send the message to",
"schema": {
"type": "string"
}
},
{
"name": "text",
"in": "query",
"required": true,
"description": "The message content",
"schema": {
"type": "string"
}
},
{
"name": "as_user",
"in": "query",
"required": false,
"description": "Pass true to post the message as the authed user instead of as a bot",
"schema": {
"type": "boolean"
}
},
{
"name": "icon_emoji",
"in": "query",
"required": false,
"description": "Emoji to use as the icon for this message",
"schema": {
"type": "string"
}
},
{
"name": "icon_url",
"in": "query",
"required": false,
"description": "URL to an image to use as the icon for this message",
"schema": {
"type": "string"
}
},
{
"name": "link_names",
"in": "query",
"required": false,
"description": "Find and link user groups. No longer supports linking individual users; use syntax shown in Mentioning Users instead",
"schema": {
"type": "boolean"
}
},
{
"name": "unfurl_links",
"in": "query",
"required": false,
"description": "Pass true to enable unfurling of primarily text-based content",
"schema": {
"type": "boolean"
}
},
{
"name": "unfurl_media",
"in": "query",
"required": false,
"description": "Pass false to disable unfurling of media content",
"schema": {
"type": "boolean"
}
},
{
"name": "username",
"in": "query",
"required": false,
"description": "Set your bot's user name",
"schema": {
"type": "string"
}
}
],
"responses": {
"200": {
"description": "OK",
"schema": {
"type": "string"
}
}
}
}
}
}
}
"""
instructions = f"""
- Use base url: "https://slack.com/api"
- Use above api docs.
- Use and import requests library.
- strictly show the reponse in code.
"""
question = """
Send message 'Hi, please check out https://pipable.ai.', to channel '@general'.
Use token as 'xoxb-123123123123-12312312312312-XxxxxxXXxxxx'
"""
prompt = f"""
<docs>
{docs}
</docs>
<instructions>
{instructions}
</instructions>
<question>
Write a python code for question:
{question}
</question>
<python_code>
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=500)
code = (
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
print(code)
```
### Team
Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Soham Acharya , Gyan Ranjan |