|
weight = None |
|
resume = False |
|
evaluate = True |
|
test_only = False |
|
seed = 28024989 |
|
save_path = 'exp/nuscenes/semseg-pt-v3m1-0-base' |
|
num_worker = 16 |
|
batch_size = 12 |
|
batch_size_val = None |
|
batch_size_test = None |
|
epoch = 50 |
|
eval_epoch = 50 |
|
sync_bn = False |
|
enable_amp = True |
|
empty_cache = False |
|
find_unused_parameters = False |
|
mix_prob = 0.8 |
|
param_dicts = [dict(keyword='block', lr=0.0002)] |
|
hooks = [ |
|
dict(type='CheckpointLoader'), |
|
dict(type='IterationTimer', warmup_iter=2), |
|
dict(type='InformationWriter'), |
|
dict(type='SemSegEvaluator'), |
|
dict(type='CheckpointSaver', save_freq=None), |
|
dict(type='PreciseEvaluator', test_last=False) |
|
] |
|
train = dict(type='DefaultTrainer') |
|
test = dict(type='SemSegTester', verbose=True) |
|
model = dict( |
|
type='DefaultSegmentorV2', |
|
num_classes=16, |
|
backbone_out_channels=64, |
|
backbone=dict( |
|
type='PT-v3m1', |
|
in_channels=4, |
|
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'], |
|
stride=(2, 2, 2, 2), |
|
enc_depths=(2, 2, 2, 6, 2), |
|
enc_channels=(32, 64, 128, 256, 512), |
|
enc_num_head=(2, 4, 8, 16, 32), |
|
enc_patch_size=(1024, 1024, 1024, 1024, 1024), |
|
dec_depths=(2, 2, 2, 2), |
|
dec_channels=(64, 64, 128, 256), |
|
dec_num_head=(4, 4, 8, 16), |
|
dec_patch_size=(1024, 1024, 1024, 1024), |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
drop_path=0.3, |
|
shuffle_orders=True, |
|
pre_norm=True, |
|
enable_rpe=False, |
|
enable_flash=True, |
|
upcast_attention=False, |
|
upcast_softmax=False, |
|
cls_mode=False, |
|
pdnorm_bn=False, |
|
pdnorm_ln=False, |
|
pdnorm_decouple=True, |
|
pdnorm_adaptive=False, |
|
pdnorm_affine=True, |
|
pdnorm_conditions=('nuScenes', 'SemanticKITTI', 'Waymo')), |
|
criteria=[ |
|
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1), |
|
dict( |
|
type='LovaszLoss', |
|
mode='multiclass', |
|
loss_weight=1.0, |
|
ignore_index=-1) |
|
]) |
|
optimizer = dict(type='AdamW', lr=0.002, weight_decay=0.005) |
|
scheduler = dict( |
|
type='OneCycleLR', |
|
max_lr=[0.002, 0.0002], |
|
pct_start=0.04, |
|
anneal_strategy='cos', |
|
div_factor=10.0, |
|
final_div_factor=100.0) |
|
dataset_type = 'NuScenesDataset' |
|
data_root = 'data/nuscenes' |
|
ignore_index = -1 |
|
names = [ |
|
'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle', 'motorcycle', |
|
'pedestrian', 'traffic_cone', 'trailer', 'truck', 'driveable_surface', |
|
'other_flat', 'sidewalk', 'terrain', 'manmade', 'vegetation' |
|
] |
|
data = dict( |
|
num_classes=16, |
|
ignore_index=-1, |
|
names=[ |
|
'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle', |
|
'motorcycle', 'pedestrian', 'traffic_cone', 'trailer', 'truck', |
|
'driveable_surface', 'other_flat', 'sidewalk', 'terrain', 'manmade', |
|
'vegetation' |
|
], |
|
train=dict( |
|
type='NuScenesDataset', |
|
split='train', |
|
data_root='data/nuscenes', |
|
transform=[ |
|
dict( |
|
type='RandomRotate', |
|
angle=[-1, 1], |
|
axis='z', |
|
center=[0, 0, 0], |
|
p=0.5), |
|
dict(type='RandomScale', scale=[0.9, 1.1]), |
|
dict(type='RandomFlip', p=0.5), |
|
dict(type='RandomJitter', sigma=0.005, clip=0.02), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.05, |
|
hash_type='fnv', |
|
mode='train', |
|
keys=('coord', 'strength', 'segment'), |
|
return_grid_coord=True), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment'), |
|
feat_keys=('coord', 'strength')) |
|
], |
|
test_mode=False, |
|
ignore_index=-1, |
|
loop=1), |
|
val=dict( |
|
type='NuScenesDataset', |
|
split='val', |
|
data_root='data/nuscenes', |
|
transform=[ |
|
dict( |
|
type='GridSample', |
|
grid_size=0.05, |
|
hash_type='fnv', |
|
mode='train', |
|
keys=('coord', 'strength', 'segment'), |
|
return_grid_coord=True), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment'), |
|
feat_keys=('coord', 'strength')) |
|
], |
|
test_mode=False, |
|
ignore_index=-1), |
|
test=dict( |
|
type='NuScenesDataset', |
|
split='val', |
|
data_root='data/nuscenes', |
|
transform=[ |
|
dict(type='Copy', keys_dict=dict(segment='origin_segment')), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.025, |
|
hash_type='fnv', |
|
mode='train', |
|
keys=('coord', 'strength', 'segment'), |
|
return_inverse=True) |
|
], |
|
test_mode=True, |
|
test_cfg=dict( |
|
voxelize=dict( |
|
type='GridSample', |
|
grid_size=0.05, |
|
hash_type='fnv', |
|
mode='test', |
|
return_grid_coord=True, |
|
keys=('coord', 'strength')), |
|
crop=None, |
|
post_transform=[ |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'index'), |
|
feat_keys=('coord', 'strength')) |
|
], |
|
aug_transform=[[{ |
|
'type': 'RandomScale', |
|
'scale': [0.9, 0.9] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [1, 1] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [1.1, 1.1] |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [0.9, 0.9] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [1, 1] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [1.1, 1.1] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}]]), |
|
ignore_index=-1)) |
|
|