Gofinge
commited on
Commit
•
5e25cfa
1
Parent(s):
e1afc8b
Release experiment records
Browse files- .gitattributes +7 -0
- README.md +22 -0
- nuscenes-semseg-pt-v3m1-0-base/config.py +230 -0
- nuscenes-semseg-pt-v3m1-0-base/events.out.tfevents.1704002329.nuscenes-semseg-pt-v3m1-0-base +3 -0
- nuscenes-semseg-pt-v3m1-0-base/model/model_best.pth +3 -0
- nuscenes-semseg-pt-v3m1-0-base/model/model_last.pth +3 -0
- nuscenes-semseg-pt-v3m1-0-base/train.log +3 -0
- s3dis-semseg-pt-v3m1-0-rpe/config.py +244 -0
- s3dis-semseg-pt-v3m1-0-rpe/events.out.tfevents.1703439768.s3dis-semseg-pt-v3m1-0-rpe +3 -0
- s3dis-semseg-pt-v3m1-0-rpe/model/model_best.pth +3 -0
- s3dis-semseg-pt-v3m1-0-rpe/model/model_last.pth +3 -0
- s3dis-semseg-pt-v3m1-0-rpe/train.log +0 -0
- s3dis-semseg-pt-v3m1-1-ppt-extreme/config.py +432 -0
- s3dis-semseg-pt-v3m1-1-ppt-extreme/events.out.tfevents.1708160591.s3dis-semseg-pt-v3m1-1-ppt-extreme +3 -0
- s3dis-semseg-pt-v3m1-1-ppt-extreme/model/model_best.pth +3 -0
- s3dis-semseg-pt-v3m1-1-ppt-extreme/model/model_last.pth +3 -0
- s3dis-semseg-pt-v3m1-1-ppt-extreme/train.log +3 -0
- scannet-semseg-pt-v3m1-0-base/config.py +301 -0
- scannet-semseg-pt-v3m1-0-base/events.out.tfevents.1703049730.scannet-semseg-pt-v3m1-0-base +3 -0
- scannet-semseg-pt-v3m1-0-base/model/model_best.pth +3 -0
- scannet-semseg-pt-v3m1-0-base/model/model_last.pth +3 -0
- scannet-semseg-pt-v3m1-0-base/train.log +3 -0
- scannet-semseg-pt-v3m1-1-ppt-extreme/config.py +381 -0
- scannet-semseg-pt-v3m1-1-ppt-extreme/events.out.tfevents.1706979139.scannet-semseg-pt-v3m1-1-ppt-extreme +3 -0
- scannet-semseg-pt-v3m1-1-ppt-extreme/model/model_best.pth +3 -0
- scannet-semseg-pt-v3m1-1-ppt-extreme/model/model_last.pth +3 -0
- scannet-semseg-pt-v3m1-1-ppt-extreme/test.log +0 -0
- scannet-semseg-pt-v3m1-1-ppt-extreme/train.log +3 -0
- scannet200-semseg-pt-v3m1-0-base/config.py +375 -0
- scannet200-semseg-pt-v3m1-0-base/events.out.tfevents.1703049688.scannet200-semseg-pt-v3m1-0-base +3 -0
- scannet200-semseg-pt-v3m1-0-base/model/model_best.pth +3 -0
- scannet200-semseg-pt-v3m1-0-base/model/model_last.pth +3 -0
- scannet200-semseg-pt-v3m1-0-base/train.log +3 -0
- waymo-semseg-pt-v3m1-0-base/config.py +217 -0
- waymo-semseg-pt-v3m1-0-base/events.out.tfevents.1708353865.waymo-semseg-pt-v3m1-0-base +3 -0
- waymo-semseg-pt-v3m1-0-base/train.log +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
nuscenes-semseg-pt-v3m1-0-base/train.log filter=lfs diff=lfs merge=lfs -text
|
37 |
+
s3dis-semseg-pt-v3m1-0-rpe/train.log filter=lfs diff=lfs merge=lfs -text
|
38 |
+
scannet-semseg-pt-v3m1-0-base/train.log filter=lfs diff=lfs merge=lfs -text
|
39 |
+
scannet200-semseg-pt-v3m1-0-base/train.log filter=lfs diff=lfs merge=lfs -text
|
40 |
+
s3dis-semseg-pt-v3m1-1-ppt-extreme/train.log filter=lfs diff=lfs merge=lfs -text
|
41 |
+
scannet-semseg-pt-v3m1-1-ppt-extreme/train.log filter=lfs diff=lfs merge=lfs -text
|
42 |
+
waymo-semseg-pt-v3m1-0-base/train.log filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,25 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
## Model Zoo
|
6 |
+
### 1. Indoor semantic segmentation
|
7 |
+
| Model | Benchmark | Additional Data | Num GPUs | Val mIoU | Config | Tensorboard | Exp Record |
|
8 |
+
| :---: | :---: |:---------------:| :---: | :---: | :---: | :---: | :---: |
|
9 |
+
| PTv3 | ScanNet | ✗ | 4 | 77.6% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/scannet/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet-semseg-pt-v3m1-0-base) |
|
10 |
+
| PTv3 + PPT | ScanNet | ✓ | 8 | 78.5% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/scannet/semseg-pt-v3m1-1-ppt-extreme.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet-semseg-pt-v3m1-1-ppt-extreme) |
|
11 |
+
| PTv3 | ScanNet200 | ✗ | 4 | 35.3% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/scannet200/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) |[link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet200-semseg-pt-v3m1-0-base)|
|
12 |
+
| PTv3 + PPT | ScanNet200 | ✓ (f.t.) | 4 | | | | |
|
13 |
+
| PTv3 | S3DIS (Area5) | ✗ | 4 | 73.6% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/s3dis/semseg-pt-v3m1-0-rpe.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/s3dis-semseg-pt-v3m1-0-rpe) |
|
14 |
+
| PTv3 + PPT | S3DIS (Area5) | ✓ | 8 | 75.4% | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/s3dis/semseg-pt-v3m1-1-ppt-extreme.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/s3dis-semseg-pt-v3m1-1-ppt-extreme) |
|
15 |
+
|
16 |
+
### 2. Outdoor semantic segmentation
|
17 |
+
| Model | Benchmark | Additional Data | Num GPUs | Val mIoU | Config | Tensorboard | Exp Record |
|
18 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
19 |
+
| PTv3 | nuScenes | ✗ | 4 | 80.3 | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/nuscenes/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard)|[link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/nuscenes-semseg-pt-v3m1-0-base) |
|
20 |
+
| PTv3 + PPT | nuScenes | ✓ | 8 | | | | |
|
21 |
+
| PTv3 | SemanticKITTI | ✗ | 4 | | | | |
|
22 |
+
| PTv3 + PPT | SemanticKITTI | ✓ | 8 | | | | |
|
23 |
+
| PTv3 | Waymo | ✗ | 4 | 71.2 | [link](https://github.com/Pointcept/Pointcept/blob/main/configs/waymo/semseg-pt-v3m1-0-base.py) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tensorboard) | [link](https://huggingface.co/Pointcept/PointTransformerV3/tree/main/waymo-semseg-pt-v3m1-0-base) (log only) |
|
24 |
+
| PTv3 + PPT | Waymo | ✓ | 8 | | | | |
|
25 |
+
* Model weights trained with Waymo Open Dataset cannot be released due to the regulations.
|
nuscenes-semseg-pt-v3m1-0-base/config.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weight = None
|
2 |
+
resume = False
|
3 |
+
evaluate = True
|
4 |
+
test_only = False
|
5 |
+
seed = 28024989
|
6 |
+
save_path = 'exp/nuscenes/semseg-pt-v3m1-0-base'
|
7 |
+
num_worker = 16
|
8 |
+
batch_size = 12
|
9 |
+
batch_size_val = None
|
10 |
+
batch_size_test = None
|
11 |
+
epoch = 50
|
12 |
+
eval_epoch = 50
|
13 |
+
sync_bn = False
|
14 |
+
enable_amp = True
|
15 |
+
empty_cache = False
|
16 |
+
find_unused_parameters = False
|
17 |
+
mix_prob = 0.8
|
18 |
+
param_dicts = [dict(keyword='block', lr=0.0002)]
|
19 |
+
hooks = [
|
20 |
+
dict(type='CheckpointLoader'),
|
21 |
+
dict(type='IterationTimer', warmup_iter=2),
|
22 |
+
dict(type='InformationWriter'),
|
23 |
+
dict(type='SemSegEvaluator'),
|
24 |
+
dict(type='CheckpointSaver', save_freq=None),
|
25 |
+
dict(type='PreciseEvaluator', test_last=False)
|
26 |
+
]
|
27 |
+
train = dict(type='DefaultTrainer')
|
28 |
+
test = dict(type='SemSegTester', verbose=True)
|
29 |
+
model = dict(
|
30 |
+
type='DefaultSegmentorV2',
|
31 |
+
num_classes=16,
|
32 |
+
backbone_out_channels=64,
|
33 |
+
backbone=dict(
|
34 |
+
type='PT-v3m1',
|
35 |
+
in_channels=4,
|
36 |
+
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'],
|
37 |
+
stride=(2, 2, 2, 2),
|
38 |
+
enc_depths=(2, 2, 2, 6, 2),
|
39 |
+
enc_channels=(32, 64, 128, 256, 512),
|
40 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
41 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
42 |
+
dec_depths=(2, 2, 2, 2),
|
43 |
+
dec_channels=(64, 64, 128, 256),
|
44 |
+
dec_num_head=(4, 4, 8, 16),
|
45 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
46 |
+
mlp_ratio=4,
|
47 |
+
qkv_bias=True,
|
48 |
+
qk_scale=None,
|
49 |
+
attn_drop=0.0,
|
50 |
+
proj_drop=0.0,
|
51 |
+
drop_path=0.3,
|
52 |
+
shuffle_orders=True,
|
53 |
+
pre_norm=True,
|
54 |
+
enable_rpe=False,
|
55 |
+
enable_flash=True,
|
56 |
+
upcast_attention=False,
|
57 |
+
upcast_softmax=False,
|
58 |
+
cls_mode=False,
|
59 |
+
pdnorm_bn=False,
|
60 |
+
pdnorm_ln=False,
|
61 |
+
pdnorm_decouple=True,
|
62 |
+
pdnorm_adaptive=False,
|
63 |
+
pdnorm_affine=True,
|
64 |
+
pdnorm_conditions=('nuScenes', 'SemanticKITTI', 'Waymo')),
|
65 |
+
criteria=[
|
66 |
+
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1),
|
67 |
+
dict(
|
68 |
+
type='LovaszLoss',
|
69 |
+
mode='multiclass',
|
70 |
+
loss_weight=1.0,
|
71 |
+
ignore_index=-1)
|
72 |
+
])
|
73 |
+
optimizer = dict(type='AdamW', lr=0.002, weight_decay=0.005)
|
74 |
+
scheduler = dict(
|
75 |
+
type='OneCycleLR',
|
76 |
+
max_lr=[0.002, 0.0002],
|
77 |
+
pct_start=0.04,
|
78 |
+
anneal_strategy='cos',
|
79 |
+
div_factor=10.0,
|
80 |
+
final_div_factor=100.0)
|
81 |
+
dataset_type = 'NuScenesDataset'
|
82 |
+
data_root = 'data/nuscenes'
|
83 |
+
ignore_index = -1
|
84 |
+
names = [
|
85 |
+
'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle', 'motorcycle',
|
86 |
+
'pedestrian', 'traffic_cone', 'trailer', 'truck', 'driveable_surface',
|
87 |
+
'other_flat', 'sidewalk', 'terrain', 'manmade', 'vegetation'
|
88 |
+
]
|
89 |
+
data = dict(
|
90 |
+
num_classes=16,
|
91 |
+
ignore_index=-1,
|
92 |
+
names=[
|
93 |
+
'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle',
|
94 |
+
'motorcycle', 'pedestrian', 'traffic_cone', 'trailer', 'truck',
|
95 |
+
'driveable_surface', 'other_flat', 'sidewalk', 'terrain', 'manmade',
|
96 |
+
'vegetation'
|
97 |
+
],
|
98 |
+
train=dict(
|
99 |
+
type='NuScenesDataset',
|
100 |
+
split='train',
|
101 |
+
data_root='data/nuscenes',
|
102 |
+
transform=[
|
103 |
+
dict(
|
104 |
+
type='RandomRotate',
|
105 |
+
angle=[-1, 1],
|
106 |
+
axis='z',
|
107 |
+
center=[0, 0, 0],
|
108 |
+
p=0.5),
|
109 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
110 |
+
dict(type='RandomFlip', p=0.5),
|
111 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
112 |
+
dict(
|
113 |
+
type='GridSample',
|
114 |
+
grid_size=0.05,
|
115 |
+
hash_type='fnv',
|
116 |
+
mode='train',
|
117 |
+
keys=('coord', 'strength', 'segment'),
|
118 |
+
return_grid_coord=True),
|
119 |
+
dict(type='ToTensor'),
|
120 |
+
dict(
|
121 |
+
type='Collect',
|
122 |
+
keys=('coord', 'grid_coord', 'segment'),
|
123 |
+
feat_keys=('coord', 'strength'))
|
124 |
+
],
|
125 |
+
test_mode=False,
|
126 |
+
ignore_index=-1,
|
127 |
+
loop=1),
|
128 |
+
val=dict(
|
129 |
+
type='NuScenesDataset',
|
130 |
+
split='val',
|
131 |
+
data_root='data/nuscenes',
|
132 |
+
transform=[
|
133 |
+
dict(
|
134 |
+
type='GridSample',
|
135 |
+
grid_size=0.05,
|
136 |
+
hash_type='fnv',
|
137 |
+
mode='train',
|
138 |
+
keys=('coord', 'strength', 'segment'),
|
139 |
+
return_grid_coord=True),
|
140 |
+
dict(type='ToTensor'),
|
141 |
+
dict(
|
142 |
+
type='Collect',
|
143 |
+
keys=('coord', 'grid_coord', 'segment'),
|
144 |
+
feat_keys=('coord', 'strength'))
|
145 |
+
],
|
146 |
+
test_mode=False,
|
147 |
+
ignore_index=-1),
|
148 |
+
test=dict(
|
149 |
+
type='NuScenesDataset',
|
150 |
+
split='val',
|
151 |
+
data_root='data/nuscenes',
|
152 |
+
transform=[
|
153 |
+
dict(type='Copy', keys_dict=dict(segment='origin_segment')),
|
154 |
+
dict(
|
155 |
+
type='GridSample',
|
156 |
+
grid_size=0.025,
|
157 |
+
hash_type='fnv',
|
158 |
+
mode='train',
|
159 |
+
keys=('coord', 'strength', 'segment'),
|
160 |
+
return_inverse=True)
|
161 |
+
],
|
162 |
+
test_mode=True,
|
163 |
+
test_cfg=dict(
|
164 |
+
voxelize=dict(
|
165 |
+
type='GridSample',
|
166 |
+
grid_size=0.05,
|
167 |
+
hash_type='fnv',
|
168 |
+
mode='test',
|
169 |
+
return_grid_coord=True,
|
170 |
+
keys=('coord', 'strength')),
|
171 |
+
crop=None,
|
172 |
+
post_transform=[
|
173 |
+
dict(type='ToTensor'),
|
174 |
+
dict(
|
175 |
+
type='Collect',
|
176 |
+
keys=('coord', 'grid_coord', 'index'),
|
177 |
+
feat_keys=('coord', 'strength'))
|
178 |
+
],
|
179 |
+
aug_transform=[[{
|
180 |
+
'type': 'RandomScale',
|
181 |
+
'scale': [0.9, 0.9]
|
182 |
+
}], [{
|
183 |
+
'type': 'RandomScale',
|
184 |
+
'scale': [0.95, 0.95]
|
185 |
+
}], [{
|
186 |
+
'type': 'RandomScale',
|
187 |
+
'scale': [1, 1]
|
188 |
+
}], [{
|
189 |
+
'type': 'RandomScale',
|
190 |
+
'scale': [1.05, 1.05]
|
191 |
+
}], [{
|
192 |
+
'type': 'RandomScale',
|
193 |
+
'scale': [1.1, 1.1]
|
194 |
+
}],
|
195 |
+
[{
|
196 |
+
'type': 'RandomScale',
|
197 |
+
'scale': [0.9, 0.9]
|
198 |
+
}, {
|
199 |
+
'type': 'RandomFlip',
|
200 |
+
'p': 1
|
201 |
+
}],
|
202 |
+
[{
|
203 |
+
'type': 'RandomScale',
|
204 |
+
'scale': [0.95, 0.95]
|
205 |
+
}, {
|
206 |
+
'type': 'RandomFlip',
|
207 |
+
'p': 1
|
208 |
+
}],
|
209 |
+
[{
|
210 |
+
'type': 'RandomScale',
|
211 |
+
'scale': [1, 1]
|
212 |
+
}, {
|
213 |
+
'type': 'RandomFlip',
|
214 |
+
'p': 1
|
215 |
+
}],
|
216 |
+
[{
|
217 |
+
'type': 'RandomScale',
|
218 |
+
'scale': [1.05, 1.05]
|
219 |
+
}, {
|
220 |
+
'type': 'RandomFlip',
|
221 |
+
'p': 1
|
222 |
+
}],
|
223 |
+
[{
|
224 |
+
'type': 'RandomScale',
|
225 |
+
'scale': [1.1, 1.1]
|
226 |
+
}, {
|
227 |
+
'type': 'RandomFlip',
|
228 |
+
'p': 1
|
229 |
+
}]]),
|
230 |
+
ignore_index=-1))
|
nuscenes-semseg-pt-v3m1-0-base/events.out.tfevents.1704002329.nuscenes-semseg-pt-v3m1-0-base
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b38774a53b3d6f928435752c1c73a17c49dd255e0df429e7bf3dc3482eb874f3
|
3 |
+
size 11464320
|
nuscenes-semseg-pt-v3m1-0-base/model/model_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2774d2fa1dd33e640a514afe0bd1e5af94eb08be19d08d1f9402f20dfd6db94
|
3 |
+
size 554519016
|
nuscenes-semseg-pt-v3m1-0-base/model/model_last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc0f0baac5b2eb4d85dbf935d25f2d7728b79644eb300c49cd5daa63b9add694
|
3 |
+
size 554519016
|
nuscenes-semseg-pt-v3m1-0-base/train.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48faa94d19ebc48509ae271b149fe1a2bf86b3b5438cb3a9610fe026606db068
|
3 |
+
size 41929069
|
s3dis-semseg-pt-v3m1-0-rpe/config.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weight = None
|
2 |
+
resume = False
|
3 |
+
evaluate = True
|
4 |
+
test_only = False
|
5 |
+
seed = 25326354
|
6 |
+
save_path = 'exp/s3dis/semseg-pt-v3m1-0-rpe'
|
7 |
+
num_worker = 24
|
8 |
+
batch_size = 12
|
9 |
+
batch_size_val = None
|
10 |
+
batch_size_test = None
|
11 |
+
epoch = 3000
|
12 |
+
eval_epoch = 100
|
13 |
+
sync_bn = False
|
14 |
+
enable_amp = True
|
15 |
+
empty_cache = False
|
16 |
+
find_unused_parameters = False
|
17 |
+
mix_prob = 0.8
|
18 |
+
param_dicts = [dict(keyword='block', lr=0.0006)]
|
19 |
+
hooks = [
|
20 |
+
dict(type='CheckpointLoader'),
|
21 |
+
dict(type='IterationTimer', warmup_iter=2),
|
22 |
+
dict(type='InformationWriter'),
|
23 |
+
dict(type='SemSegEvaluator'),
|
24 |
+
dict(type='CheckpointSaver', save_freq=None),
|
25 |
+
dict(type='PreciseEvaluator', test_last=False)
|
26 |
+
]
|
27 |
+
train = dict(type='DefaultTrainer')
|
28 |
+
test = dict(type='SemSegTester', verbose=True)
|
29 |
+
model = dict(
|
30 |
+
type='DefaultSegmentorV2',
|
31 |
+
num_classes=13,
|
32 |
+
backbone_out_channels=64,
|
33 |
+
backbone=dict(
|
34 |
+
type='PT-v3m1',
|
35 |
+
in_channels=6,
|
36 |
+
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'],
|
37 |
+
stride=(2, 2, 2, 2),
|
38 |
+
enc_depths=(2, 2, 2, 6, 2),
|
39 |
+
enc_channels=(32, 64, 128, 256, 512),
|
40 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
41 |
+
enc_patch_size=(128, 128, 128, 128, 128),
|
42 |
+
dec_depths=(2, 2, 2, 2),
|
43 |
+
dec_channels=(64, 64, 128, 256),
|
44 |
+
dec_num_head=(4, 4, 8, 16),
|
45 |
+
dec_patch_size=(128, 128, 128, 128),
|
46 |
+
mlp_ratio=4,
|
47 |
+
qkv_bias=True,
|
48 |
+
qk_scale=None,
|
49 |
+
attn_drop=0.0,
|
50 |
+
proj_drop=0.0,
|
51 |
+
drop_path=0.3,
|
52 |
+
shuffle_orders=True,
|
53 |
+
pre_norm=True,
|
54 |
+
enable_rpe=True,
|
55 |
+
enable_flash=False,
|
56 |
+
upcast_attention=True,
|
57 |
+
upcast_softmax=True,
|
58 |
+
cls_mode=False,
|
59 |
+
pdnorm_bn=False,
|
60 |
+
pdnorm_ln=False,
|
61 |
+
pdnorm_decouple=True,
|
62 |
+
pdnorm_adaptive=False,
|
63 |
+
pdnorm_affine=True,
|
64 |
+
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')),
|
65 |
+
criteria=[
|
66 |
+
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1),
|
67 |
+
dict(
|
68 |
+
type='LovaszLoss',
|
69 |
+
mode='multiclass',
|
70 |
+
loss_weight=1.0,
|
71 |
+
ignore_index=-1)
|
72 |
+
])
|
73 |
+
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05)
|
74 |
+
scheduler = dict(
|
75 |
+
type='OneCycleLR',
|
76 |
+
max_lr=[0.006, 0.0006],
|
77 |
+
pct_start=0.05,
|
78 |
+
anneal_strategy='cos',
|
79 |
+
div_factor=10.0,
|
80 |
+
final_div_factor=1000.0)
|
81 |
+
dataset_type = 'S3DISDataset'
|
82 |
+
data_root = 'data/s3dis'
|
83 |
+
data = dict(
|
84 |
+
num_classes=13,
|
85 |
+
ignore_index=-1,
|
86 |
+
names=[
|
87 |
+
'ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
|
88 |
+
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter'
|
89 |
+
],
|
90 |
+
train=dict(
|
91 |
+
type='S3DISDataset',
|
92 |
+
split=('Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_6'),
|
93 |
+
data_root='data/s3dis',
|
94 |
+
transform=[
|
95 |
+
dict(type='CenterShift', apply_z=True),
|
96 |
+
dict(
|
97 |
+
type='RandomDropout',
|
98 |
+
dropout_ratio=0.2,
|
99 |
+
dropout_application_ratio=0.2),
|
100 |
+
dict(
|
101 |
+
type='RandomRotate',
|
102 |
+
angle=[-1, 1],
|
103 |
+
axis='z',
|
104 |
+
center=[0, 0, 0],
|
105 |
+
p=0.5),
|
106 |
+
dict(
|
107 |
+
type='RandomRotate',
|
108 |
+
angle=[-0.015625, 0.015625],
|
109 |
+
axis='x',
|
110 |
+
p=0.5),
|
111 |
+
dict(
|
112 |
+
type='RandomRotate',
|
113 |
+
angle=[-0.015625, 0.015625],
|
114 |
+
axis='y',
|
115 |
+
p=0.5),
|
116 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
117 |
+
dict(type='RandomFlip', p=0.5),
|
118 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
119 |
+
dict(type='ChromaticAutoContrast', p=0.2, blend_factor=None),
|
120 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
121 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
122 |
+
dict(
|
123 |
+
type='GridSample',
|
124 |
+
grid_size=0.02,
|
125 |
+
hash_type='fnv',
|
126 |
+
mode='train',
|
127 |
+
return_grid_coord=True),
|
128 |
+
dict(type='SphereCrop', sample_rate=0.6, mode='random'),
|
129 |
+
dict(type='SphereCrop', point_max=204800, mode='random'),
|
130 |
+
dict(type='CenterShift', apply_z=False),
|
131 |
+
dict(type='NormalizeColor'),
|
132 |
+
dict(type='ToTensor'),
|
133 |
+
dict(
|
134 |
+
type='Collect',
|
135 |
+
keys=('coord', 'grid_coord', 'segment'),
|
136 |
+
feat_keys=('color', 'normal'))
|
137 |
+
],
|
138 |
+
test_mode=False,
|
139 |
+
loop=30),
|
140 |
+
val=dict(
|
141 |
+
type='S3DISDataset',
|
142 |
+
split='Area_5',
|
143 |
+
data_root='data/s3dis',
|
144 |
+
transform=[
|
145 |
+
dict(type='CenterShift', apply_z=True),
|
146 |
+
dict(
|
147 |
+
type='Copy',
|
148 |
+
keys_dict=dict(coord='origin_coord',
|
149 |
+
segment='origin_segment')),
|
150 |
+
dict(
|
151 |
+
type='GridSample',
|
152 |
+
grid_size=0.02,
|
153 |
+
hash_type='fnv',
|
154 |
+
mode='train',
|
155 |
+
return_grid_coord=True),
|
156 |
+
dict(type='CenterShift', apply_z=False),
|
157 |
+
dict(type='NormalizeColor'),
|
158 |
+
dict(type='ToTensor'),
|
159 |
+
dict(
|
160 |
+
type='Collect',
|
161 |
+
keys=('coord', 'grid_coord', 'origin_coord', 'segment',
|
162 |
+
'origin_segment'),
|
163 |
+
offset_keys_dict=dict(
|
164 |
+
offset='coord', origin_offset='origin_coord'),
|
165 |
+
feat_keys=('color', 'normal'))
|
166 |
+
],
|
167 |
+
test_mode=False),
|
168 |
+
test=dict(
|
169 |
+
type='S3DISDataset',
|
170 |
+
split='Area_5',
|
171 |
+
data_root='data/s3dis',
|
172 |
+
transform=[
|
173 |
+
dict(type='CenterShift', apply_z=True),
|
174 |
+
dict(type='NormalizeColor')
|
175 |
+
],
|
176 |
+
test_mode=True,
|
177 |
+
test_cfg=dict(
|
178 |
+
voxelize=dict(
|
179 |
+
type='GridSample',
|
180 |
+
grid_size=0.02,
|
181 |
+
hash_type='fnv',
|
182 |
+
mode='test',
|
183 |
+
keys=('coord', 'color', 'normal'),
|
184 |
+
return_grid_coord=True),
|
185 |
+
crop=None,
|
186 |
+
post_transform=[
|
187 |
+
dict(type='CenterShift', apply_z=False),
|
188 |
+
dict(type='ToTensor'),
|
189 |
+
dict(
|
190 |
+
type='Collect',
|
191 |
+
keys=('coord', 'grid_coord', 'index'),
|
192 |
+
feat_keys=('color', 'normal'))
|
193 |
+
],
|
194 |
+
aug_transform=[[{
|
195 |
+
'type': 'RandomScale',
|
196 |
+
'scale': [0.9, 0.9]
|
197 |
+
}], [{
|
198 |
+
'type': 'RandomScale',
|
199 |
+
'scale': [0.95, 0.95]
|
200 |
+
}], [{
|
201 |
+
'type': 'RandomScale',
|
202 |
+
'scale': [1, 1]
|
203 |
+
}], [{
|
204 |
+
'type': 'RandomScale',
|
205 |
+
'scale': [1.05, 1.05]
|
206 |
+
}], [{
|
207 |
+
'type': 'RandomScale',
|
208 |
+
'scale': [1.1, 1.1]
|
209 |
+
}],
|
210 |
+
[{
|
211 |
+
'type': 'RandomScale',
|
212 |
+
'scale': [0.9, 0.9]
|
213 |
+
}, {
|
214 |
+
'type': 'RandomFlip',
|
215 |
+
'p': 1
|
216 |
+
}],
|
217 |
+
[{
|
218 |
+
'type': 'RandomScale',
|
219 |
+
'scale': [0.95, 0.95]
|
220 |
+
}, {
|
221 |
+
'type': 'RandomFlip',
|
222 |
+
'p': 1
|
223 |
+
}],
|
224 |
+
[{
|
225 |
+
'type': 'RandomScale',
|
226 |
+
'scale': [1, 1]
|
227 |
+
}, {
|
228 |
+
'type': 'RandomFlip',
|
229 |
+
'p': 1
|
230 |
+
}],
|
231 |
+
[{
|
232 |
+
'type': 'RandomScale',
|
233 |
+
'scale': [1.05, 1.05]
|
234 |
+
}, {
|
235 |
+
'type': 'RandomFlip',
|
236 |
+
'p': 1
|
237 |
+
}],
|
238 |
+
[{
|
239 |
+
'type': 'RandomScale',
|
240 |
+
'scale': [1.1, 1.1]
|
241 |
+
}, {
|
242 |
+
'type': 'RandomFlip',
|
243 |
+
'p': 1
|
244 |
+
}]])))
|
s3dis-semseg-pt-v3m1-0-rpe/events.out.tfevents.1703439768.s3dis-semseg-pt-v3m1-0-rpe
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbc8fe362763a5f22fcae4a88544c410fe13d450a8575c72b2e3876b9c0c9cce
|
3 |
+
size 4988420
|
s3dis-semseg-pt-v3m1-0-rpe/model/model_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef2c6232b34f73e76c88d7b151e24294b2e8e61536428fd48f8f81371e796b69
|
3 |
+
size 554922616
|
s3dis-semseg-pt-v3m1-0-rpe/model/model_last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3386f90bd37089d8dae0c1b932bb5b79339bbdae536249677df88959642099ab
|
3 |
+
size 554922616
|
s3dis-semseg-pt-v3m1-0-rpe/train.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
s3dis-semseg-pt-v3m1-1-ppt-extreme/config.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weight = None
|
2 |
+
resume = False
|
3 |
+
evaluate = True
|
4 |
+
test_only = False
|
5 |
+
seed = 36123202
|
6 |
+
save_path = 'exp/s3dis/semseg-pt-v3m1-1-ppt-extreme'
|
7 |
+
num_worker = 48
|
8 |
+
batch_size = 24
|
9 |
+
batch_size_val = None
|
10 |
+
batch_size_test = None
|
11 |
+
epoch = 100
|
12 |
+
eval_epoch = 100
|
13 |
+
sync_bn = False
|
14 |
+
enable_amp = True
|
15 |
+
empty_cache = False
|
16 |
+
find_unused_parameters = True
|
17 |
+
mix_prob = 0.8
|
18 |
+
param_dicts = [dict(keyword='block', lr=0.0005)]
|
19 |
+
hooks = [
|
20 |
+
dict(type='CheckpointLoader'),
|
21 |
+
dict(type='IterationTimer', warmup_iter=2),
|
22 |
+
dict(type='InformationWriter'),
|
23 |
+
dict(type='SemSegEvaluator'),
|
24 |
+
dict(type='CheckpointSaver', save_freq=None),
|
25 |
+
dict(type='PreciseEvaluator', test_last=False)
|
26 |
+
]
|
27 |
+
train = dict(type='MultiDatasetTrainer')
|
28 |
+
test = dict(type='SemSegTester', verbose=True)
|
29 |
+
model = dict(
|
30 |
+
type='PPT-v1m1',
|
31 |
+
backbone=dict(
|
32 |
+
type='PT-v3m1',
|
33 |
+
in_channels=6,
|
34 |
+
order=('z', 'z-trans', 'hilbert', 'hilbert-trans'),
|
35 |
+
stride=(2, 2, 2, 2),
|
36 |
+
enc_depths=(2, 2, 2, 6, 2),
|
37 |
+
enc_channels=(32, 64, 128, 256, 384),
|
38 |
+
enc_num_head=(2, 4, 8, 16, 24),
|
39 |
+
enc_patch_size=(128, 128, 128, 128, 128),
|
40 |
+
dec_depths=(2, 2, 2, 2),
|
41 |
+
dec_channels=(64, 64, 128, 256),
|
42 |
+
dec_num_head=(4, 4, 8, 16),
|
43 |
+
dec_patch_size=(128, 128, 128, 128),
|
44 |
+
mlp_ratio=4,
|
45 |
+
qkv_bias=True,
|
46 |
+
qk_scale=None,
|
47 |
+
attn_drop=0.0,
|
48 |
+
proj_drop=0.0,
|
49 |
+
drop_path=0.3,
|
50 |
+
shuffle_orders=True,
|
51 |
+
pre_norm=True,
|
52 |
+
enable_rpe=True,
|
53 |
+
enable_flash=False,
|
54 |
+
upcast_attention=True,
|
55 |
+
upcast_softmax=True,
|
56 |
+
cls_mode=False,
|
57 |
+
pdnorm_bn=True,
|
58 |
+
pdnorm_ln=True,
|
59 |
+
pdnorm_decouple=True,
|
60 |
+
pdnorm_adaptive=False,
|
61 |
+
pdnorm_affine=True,
|
62 |
+
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')),
|
63 |
+
criteria=[
|
64 |
+
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1),
|
65 |
+
dict(
|
66 |
+
type='LovaszLoss',
|
67 |
+
mode='multiclass',
|
68 |
+
loss_weight=1.0,
|
69 |
+
ignore_index=-1)
|
70 |
+
],
|
71 |
+
backbone_out_channels=64,
|
72 |
+
context_channels=256,
|
73 |
+
conditions=('Structured3D', 'ScanNet', 'S3DIS'),
|
74 |
+
template='[x]',
|
75 |
+
clip_model='ViT-B/16',
|
76 |
+
class_name=('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
|
77 |
+
'door', 'window', 'bookshelf', 'bookcase', 'picture',
|
78 |
+
'counter', 'desk', 'shelves', 'curtain', 'dresser', 'pillow',
|
79 |
+
'mirror', 'ceiling', 'refrigerator', 'television',
|
80 |
+
'shower curtain', 'nightstand', 'toilet', 'sink', 'lamp',
|
81 |
+
'bathtub', 'garbagebin', 'board', 'beam', 'column', 'clutter',
|
82 |
+
'otherstructure', 'otherfurniture', 'otherprop'),
|
83 |
+
valid_index=((0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19,
|
84 |
+
20, 21, 23, 25, 26, 33, 34, 35),
|
85 |
+
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25,
|
86 |
+
27, 34), (0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32)),
|
87 |
+
backbone_mode=False)
|
88 |
+
optimizer = dict(type='AdamW', lr=0.005, weight_decay=0.05)
|
89 |
+
scheduler = dict(
|
90 |
+
type='OneCycleLR',
|
91 |
+
max_lr=[0.005, 0.0005],
|
92 |
+
pct_start=0.05,
|
93 |
+
anneal_strategy='cos',
|
94 |
+
div_factor=10.0,
|
95 |
+
final_div_factor=1000.0)
|
96 |
+
data = dict(
|
97 |
+
num_classes=13,
|
98 |
+
ignore_index=-1,
|
99 |
+
names=[
|
100 |
+
'ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
|
101 |
+
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter'
|
102 |
+
],
|
103 |
+
train=dict(
|
104 |
+
type='ConcatDataset',
|
105 |
+
datasets=[
|
106 |
+
dict(
|
107 |
+
type='Structured3DDataset',
|
108 |
+
split=['train', 'val', 'test'],
|
109 |
+
data_root='data/structured3d',
|
110 |
+
transform=[
|
111 |
+
dict(type='CenterShift', apply_z=True),
|
112 |
+
dict(
|
113 |
+
type='RandomDropout',
|
114 |
+
dropout_ratio=0.2,
|
115 |
+
dropout_application_ratio=0.2),
|
116 |
+
dict(
|
117 |
+
type='RandomRotate',
|
118 |
+
angle=[-1, 1],
|
119 |
+
axis='z',
|
120 |
+
center=[0, 0, 0],
|
121 |
+
p=0.5),
|
122 |
+
dict(
|
123 |
+
type='RandomRotate',
|
124 |
+
angle=[-0.015625, 0.015625],
|
125 |
+
axis='x',
|
126 |
+
p=0.5),
|
127 |
+
dict(
|
128 |
+
type='RandomRotate',
|
129 |
+
angle=[-0.015625, 0.015625],
|
130 |
+
axis='y',
|
131 |
+
p=0.5),
|
132 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
133 |
+
dict(type='RandomFlip', p=0.5),
|
134 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
135 |
+
dict(
|
136 |
+
type='ChromaticAutoContrast', p=0.2,
|
137 |
+
blend_factor=None),
|
138 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
139 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
140 |
+
dict(
|
141 |
+
type='GridSample',
|
142 |
+
grid_size=0.02,
|
143 |
+
hash_type='fnv',
|
144 |
+
mode='train',
|
145 |
+
return_grid_coord=True),
|
146 |
+
dict(type='SphereCrop', sample_rate=0.8, mode='random'),
|
147 |
+
dict(type='SphereCrop', point_max=204800, mode='random'),
|
148 |
+
dict(type='CenterShift', apply_z=False),
|
149 |
+
dict(type='NormalizeColor'),
|
150 |
+
dict(type='Add', keys_dict=dict(condition='Structured3D')),
|
151 |
+
dict(type='ToTensor'),
|
152 |
+
dict(
|
153 |
+
type='Collect',
|
154 |
+
keys=('coord', 'grid_coord', 'segment', 'condition'),
|
155 |
+
feat_keys=('color', 'normal'))
|
156 |
+
],
|
157 |
+
test_mode=False,
|
158 |
+
loop=4),
|
159 |
+
dict(
|
160 |
+
type='ScanNetDataset',
|
161 |
+
split='train',
|
162 |
+
data_root='data/scannet',
|
163 |
+
transform=[
|
164 |
+
dict(type='CenterShift', apply_z=True),
|
165 |
+
dict(
|
166 |
+
type='RandomDropout',
|
167 |
+
dropout_ratio=0.2,
|
168 |
+
dropout_application_ratio=0.2),
|
169 |
+
dict(
|
170 |
+
type='RandomRotate',
|
171 |
+
angle=[-1, 1],
|
172 |
+
axis='z',
|
173 |
+
center=[0, 0, 0],
|
174 |
+
p=0.5),
|
175 |
+
dict(
|
176 |
+
type='RandomRotate',
|
177 |
+
angle=[-0.015625, 0.015625],
|
178 |
+
axis='x',
|
179 |
+
p=0.5),
|
180 |
+
dict(
|
181 |
+
type='RandomRotate',
|
182 |
+
angle=[-0.015625, 0.015625],
|
183 |
+
axis='y',
|
184 |
+
p=0.5),
|
185 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
186 |
+
dict(type='RandomFlip', p=0.5),
|
187 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
188 |
+
dict(
|
189 |
+
type='ChromaticAutoContrast', p=0.2,
|
190 |
+
blend_factor=None),
|
191 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
192 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
193 |
+
dict(
|
194 |
+
type='GridSample',
|
195 |
+
grid_size=0.02,
|
196 |
+
hash_type='fnv',
|
197 |
+
mode='train',
|
198 |
+
return_grid_coord=True),
|
199 |
+
dict(type='SphereCrop', point_max=102400, mode='random'),
|
200 |
+
dict(type='CenterShift', apply_z=False),
|
201 |
+
dict(type='NormalizeColor'),
|
202 |
+
dict(type='Add', keys_dict=dict(condition='ScanNet')),
|
203 |
+
dict(type='ToTensor'),
|
204 |
+
dict(
|
205 |
+
type='Collect',
|
206 |
+
keys=('coord', 'grid_coord', 'segment', 'condition'),
|
207 |
+
feat_keys=('color', 'normal'))
|
208 |
+
],
|
209 |
+
test_mode=False,
|
210 |
+
loop=2),
|
211 |
+
dict(
|
212 |
+
type='S3DISDataset',
|
213 |
+
split=('Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_6'),
|
214 |
+
data_root='data/s3dis',
|
215 |
+
transform=[
|
216 |
+
dict(type='CenterShift', apply_z=True),
|
217 |
+
dict(
|
218 |
+
type='RandomDropout',
|
219 |
+
dropout_ratio=0.2,
|
220 |
+
dropout_application_ratio=0.2),
|
221 |
+
dict(
|
222 |
+
type='RandomRotate',
|
223 |
+
angle=[-1, 1],
|
224 |
+
axis='z',
|
225 |
+
center=[0, 0, 0],
|
226 |
+
p=0.5),
|
227 |
+
dict(
|
228 |
+
type='RandomRotate',
|
229 |
+
angle=[-0.015625, 0.015625],
|
230 |
+
axis='x',
|
231 |
+
p=0.5),
|
232 |
+
dict(
|
233 |
+
type='RandomRotate',
|
234 |
+
angle=[-0.015625, 0.015625],
|
235 |
+
axis='y',
|
236 |
+
p=0.5),
|
237 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
238 |
+
dict(type='RandomFlip', p=0.5),
|
239 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
240 |
+
dict(
|
241 |
+
type='ChromaticAutoContrast', p=0.2,
|
242 |
+
blend_factor=None),
|
243 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
244 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
245 |
+
dict(
|
246 |
+
type='GridSample',
|
247 |
+
grid_size=0.02,
|
248 |
+
hash_type='fnv',
|
249 |
+
mode='train',
|
250 |
+
return_grid_coord=True),
|
251 |
+
dict(type='SphereCrop', sample_rate=0.6, mode='random'),
|
252 |
+
dict(type='SphereCrop', point_max=204800, mode='random'),
|
253 |
+
dict(type='CenterShift', apply_z=False),
|
254 |
+
dict(type='NormalizeColor'),
|
255 |
+
dict(type='Add', keys_dict=dict(condition='S3DIS')),
|
256 |
+
dict(type='ToTensor'),
|
257 |
+
dict(
|
258 |
+
type='Collect',
|
259 |
+
keys=('coord', 'grid_coord', 'segment', 'condition'),
|
260 |
+
feat_keys=('color', 'normal'))
|
261 |
+
],
|
262 |
+
test_mode=False,
|
263 |
+
loop=1)
|
264 |
+
],
|
265 |
+
loop=1),
|
266 |
+
val=dict(
|
267 |
+
type='S3DISDataset',
|
268 |
+
split='Area_5',
|
269 |
+
data_root='data/s3dis',
|
270 |
+
transform=[
|
271 |
+
dict(type='CenterShift', apply_z=True),
|
272 |
+
dict(
|
273 |
+
type='Copy',
|
274 |
+
keys_dict=dict(coord='origin_coord',
|
275 |
+
segment='origin_segment')),
|
276 |
+
dict(
|
277 |
+
type='GridSample',
|
278 |
+
grid_size=0.02,
|
279 |
+
hash_type='fnv',
|
280 |
+
mode='train',
|
281 |
+
return_grid_coord=True),
|
282 |
+
dict(type='CenterShift', apply_z=False),
|
283 |
+
dict(type='NormalizeColor'),
|
284 |
+
dict(type='ToTensor'),
|
285 |
+
dict(type='Add', keys_dict=dict(condition='S3DIS')),
|
286 |
+
dict(
|
287 |
+
type='Collect',
|
288 |
+
keys=('coord', 'grid_coord', 'origin_coord', 'segment',
|
289 |
+
'origin_segment', 'condition'),
|
290 |
+
offset_keys_dict=dict(
|
291 |
+
offset='coord', origin_offset='origin_coord'),
|
292 |
+
feat_keys=('color', 'normal'))
|
293 |
+
],
|
294 |
+
test_mode=False),
|
295 |
+
test=dict(
|
296 |
+
type='S3DISDataset',
|
297 |
+
split='Area_5',
|
298 |
+
data_root='data/s3dis',
|
299 |
+
transform=[
|
300 |
+
dict(type='CenterShift', apply_z=True),
|
301 |
+
dict(type='NormalizeColor')
|
302 |
+
],
|
303 |
+
test_mode=True,
|
304 |
+
test_cfg=dict(
|
305 |
+
voxelize=dict(
|
306 |
+
type='GridSample',
|
307 |
+
grid_size=0.02,
|
308 |
+
hash_type='fnv',
|
309 |
+
mode='test',
|
310 |
+
keys=('coord', 'color', 'normal'),
|
311 |
+
return_grid_coord=True),
|
312 |
+
crop=None,
|
313 |
+
post_transform=[
|
314 |
+
dict(type='CenterShift', apply_z=False),
|
315 |
+
dict(type='Add', keys_dict=dict(condition='S3DIS')),
|
316 |
+
dict(type='ToTensor'),
|
317 |
+
dict(
|
318 |
+
type='Collect',
|
319 |
+
keys=('coord', 'grid_coord', 'index', 'condition'),
|
320 |
+
feat_keys=('color', 'normal'))
|
321 |
+
],
|
322 |
+
aug_transform=[[{
|
323 |
+
'type': 'RandomRotateTargetAngle',
|
324 |
+
'angle': [0],
|
325 |
+
'axis': 'z',
|
326 |
+
'center': [0, 0, 0],
|
327 |
+
'p': 1
|
328 |
+
}],
|
329 |
+
[{
|
330 |
+
'type': 'RandomRotateTargetAngle',
|
331 |
+
'angle': [0.5],
|
332 |
+
'axis': 'z',
|
333 |
+
'center': [0, 0, 0],
|
334 |
+
'p': 1
|
335 |
+
}],
|
336 |
+
[{
|
337 |
+
'type': 'RandomRotateTargetAngle',
|
338 |
+
'angle': [1],
|
339 |
+
'axis': 'z',
|
340 |
+
'center': [0, 0, 0],
|
341 |
+
'p': 1
|
342 |
+
}],
|
343 |
+
[{
|
344 |
+
'type': 'RandomRotateTargetAngle',
|
345 |
+
'angle': [1.5],
|
346 |
+
'axis': 'z',
|
347 |
+
'center': [0, 0, 0],
|
348 |
+
'p': 1
|
349 |
+
}],
|
350 |
+
[{
|
351 |
+
'type': 'RandomRotateTargetAngle',
|
352 |
+
'angle': [0],
|
353 |
+
'axis': 'z',
|
354 |
+
'center': [0, 0, 0],
|
355 |
+
'p': 1
|
356 |
+
}, {
|
357 |
+
'type': 'RandomScale',
|
358 |
+
'scale': [0.95, 0.95]
|
359 |
+
}],
|
360 |
+
[{
|
361 |
+
'type': 'RandomRotateTargetAngle',
|
362 |
+
'angle': [0.5],
|
363 |
+
'axis': 'z',
|
364 |
+
'center': [0, 0, 0],
|
365 |
+
'p': 1
|
366 |
+
}, {
|
367 |
+
'type': 'RandomScale',
|
368 |
+
'scale': [0.95, 0.95]
|
369 |
+
}],
|
370 |
+
[{
|
371 |
+
'type': 'RandomRotateTargetAngle',
|
372 |
+
'angle': [1],
|
373 |
+
'axis': 'z',
|
374 |
+
'center': [0, 0, 0],
|
375 |
+
'p': 1
|
376 |
+
}, {
|
377 |
+
'type': 'RandomScale',
|
378 |
+
'scale': [0.95, 0.95]
|
379 |
+
}],
|
380 |
+
[{
|
381 |
+
'type': 'RandomRotateTargetAngle',
|
382 |
+
'angle': [1.5],
|
383 |
+
'axis': 'z',
|
384 |
+
'center': [0, 0, 0],
|
385 |
+
'p': 1
|
386 |
+
}, {
|
387 |
+
'type': 'RandomScale',
|
388 |
+
'scale': [0.95, 0.95]
|
389 |
+
}],
|
390 |
+
[{
|
391 |
+
'type': 'RandomRotateTargetAngle',
|
392 |
+
'angle': [0],
|
393 |
+
'axis': 'z',
|
394 |
+
'center': [0, 0, 0],
|
395 |
+
'p': 1
|
396 |
+
}, {
|
397 |
+
'type': 'RandomScale',
|
398 |
+
'scale': [1.05, 1.05]
|
399 |
+
}],
|
400 |
+
[{
|
401 |
+
'type': 'RandomRotateTargetAngle',
|
402 |
+
'angle': [0.5],
|
403 |
+
'axis': 'z',
|
404 |
+
'center': [0, 0, 0],
|
405 |
+
'p': 1
|
406 |
+
}, {
|
407 |
+
'type': 'RandomScale',
|
408 |
+
'scale': [1.05, 1.05]
|
409 |
+
}],
|
410 |
+
[{
|
411 |
+
'type': 'RandomRotateTargetAngle',
|
412 |
+
'angle': [1],
|
413 |
+
'axis': 'z',
|
414 |
+
'center': [0, 0, 0],
|
415 |
+
'p': 1
|
416 |
+
}, {
|
417 |
+
'type': 'RandomScale',
|
418 |
+
'scale': [1.05, 1.05]
|
419 |
+
}],
|
420 |
+
[{
|
421 |
+
'type': 'RandomRotateTargetAngle',
|
422 |
+
'angle': [1.5],
|
423 |
+
'axis': 'z',
|
424 |
+
'center': [0, 0, 0],
|
425 |
+
'p': 1
|
426 |
+
}, {
|
427 |
+
'type': 'RandomScale',
|
428 |
+
'scale': [1.05, 1.05]
|
429 |
+
}], [{
|
430 |
+
'type': 'RandomFlip',
|
431 |
+
'p': 1
|
432 |
+
}]])))
|
s3dis-semseg-pt-v3m1-1-ppt-extreme/events.out.tfevents.1708160591.s3dis-semseg-pt-v3m1-1-ppt-extreme
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f9235ae197b5ab037f76568dfc5e7001f1531674dfc560d5e8549aec44e7a0c
|
3 |
+
size 15249020
|
s3dis-semseg-pt-v3m1-1-ppt-extreme/model/model_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7725bc5c847f7b5492b244a85bd5c0725d638b30e2dada2db01e4cc5a4f5e019
|
3 |
+
size 445523390
|
s3dis-semseg-pt-v3m1-1-ppt-extreme/model/model_last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26242bc8dbe3449d9754587e672c4b626dde66bca971804224bdded27c4fce8e
|
3 |
+
size 445523390
|
s3dis-semseg-pt-v3m1-1-ppt-extreme/train.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92483bd7093a08b9a3a4ea07036c3c935c403b61cf8c15b89116b2baab980ffb
|
3 |
+
size 25517235
|
scannet-semseg-pt-v3m1-0-base/config.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weight = None
|
2 |
+
resume = False
|
3 |
+
evaluate = True
|
4 |
+
test_only = False
|
5 |
+
seed = 43244662
|
6 |
+
save_path = 'exp/scannet/semseg-pt-v3m1-0-base'
|
7 |
+
num_worker = 24
|
8 |
+
batch_size = 12
|
9 |
+
batch_size_val = None
|
10 |
+
batch_size_test = None
|
11 |
+
epoch = 800
|
12 |
+
eval_epoch = 100
|
13 |
+
sync_bn = False
|
14 |
+
enable_amp = True
|
15 |
+
empty_cache = False
|
16 |
+
find_unused_parameters = False
|
17 |
+
mix_prob = 0.8
|
18 |
+
param_dicts = [dict(keyword='block', lr=0.0006)]
|
19 |
+
hooks = [
|
20 |
+
dict(type='CheckpointLoader'),
|
21 |
+
dict(type='IterationTimer', warmup_iter=2),
|
22 |
+
dict(type='InformationWriter'),
|
23 |
+
dict(type='SemSegEvaluator'),
|
24 |
+
dict(type='CheckpointSaver', save_freq=None),
|
25 |
+
dict(type='PreciseEvaluator', test_last=False)
|
26 |
+
]
|
27 |
+
train = dict(type='DefaultTrainer')
|
28 |
+
test = dict(type='SemSegTester', verbose=True)
|
29 |
+
model = dict(
|
30 |
+
type='DefaultSegmentorV2',
|
31 |
+
num_classes=20,
|
32 |
+
backbone_out_channels=64,
|
33 |
+
backbone=dict(
|
34 |
+
type='PT-v3m1',
|
35 |
+
in_channels=6,
|
36 |
+
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'],
|
37 |
+
stride=(2, 2, 2, 2),
|
38 |
+
enc_depths=(2, 2, 2, 6, 2),
|
39 |
+
enc_channels=(32, 64, 128, 256, 512),
|
40 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
41 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
42 |
+
dec_depths=(2, 2, 2, 2),
|
43 |
+
dec_channels=(64, 64, 128, 256),
|
44 |
+
dec_num_head=(4, 4, 8, 16),
|
45 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
46 |
+
mlp_ratio=4,
|
47 |
+
qkv_bias=True,
|
48 |
+
qk_scale=None,
|
49 |
+
attn_drop=0.0,
|
50 |
+
proj_drop=0.0,
|
51 |
+
drop_path=0.3,
|
52 |
+
shuffle_orders=True,
|
53 |
+
pre_norm=True,
|
54 |
+
enable_rpe=False,
|
55 |
+
enable_flash=True,
|
56 |
+
upcast_attention=False,
|
57 |
+
upcast_softmax=False,
|
58 |
+
cls_mode=False,
|
59 |
+
pdnorm_bn=False,
|
60 |
+
pdnorm_ln=False,
|
61 |
+
pdnorm_decouple=True,
|
62 |
+
pdnorm_adaptive=False,
|
63 |
+
pdnorm_affine=True,
|
64 |
+
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')),
|
65 |
+
criteria=[
|
66 |
+
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1),
|
67 |
+
dict(
|
68 |
+
type='LovaszLoss',
|
69 |
+
mode='multiclass',
|
70 |
+
loss_weight=1.0,
|
71 |
+
ignore_index=-1)
|
72 |
+
])
|
73 |
+
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05)
|
74 |
+
scheduler = dict(
|
75 |
+
type='OneCycleLR',
|
76 |
+
max_lr=[0.006, 0.0006],
|
77 |
+
pct_start=0.05,
|
78 |
+
anneal_strategy='cos',
|
79 |
+
div_factor=10.0,
|
80 |
+
final_div_factor=1000.0)
|
81 |
+
dataset_type = 'ScanNetDataset'
|
82 |
+
data_root = 'data/scannet'
|
83 |
+
data = dict(
|
84 |
+
num_classes=20,
|
85 |
+
ignore_index=-1,
|
86 |
+
names=[
|
87 |
+
'wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
|
88 |
+
'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain',
|
89 |
+
'refridgerator', 'shower curtain', 'toilet', 'sink', 'bathtub',
|
90 |
+
'otherfurniture'
|
91 |
+
],
|
92 |
+
train=dict(
|
93 |
+
type='ScanNetDataset',
|
94 |
+
split='train',
|
95 |
+
data_root='data/scannet',
|
96 |
+
transform=[
|
97 |
+
dict(type='CenterShift', apply_z=True),
|
98 |
+
dict(
|
99 |
+
type='RandomDropout',
|
100 |
+
dropout_ratio=0.2,
|
101 |
+
dropout_application_ratio=0.2),
|
102 |
+
dict(
|
103 |
+
type='RandomRotate',
|
104 |
+
angle=[-1, 1],
|
105 |
+
axis='z',
|
106 |
+
center=[0, 0, 0],
|
107 |
+
p=0.5),
|
108 |
+
dict(
|
109 |
+
type='RandomRotate',
|
110 |
+
angle=[-0.015625, 0.015625],
|
111 |
+
axis='x',
|
112 |
+
p=0.5),
|
113 |
+
dict(
|
114 |
+
type='RandomRotate',
|
115 |
+
angle=[-0.015625, 0.015625],
|
116 |
+
axis='y',
|
117 |
+
p=0.5),
|
118 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
119 |
+
dict(type='RandomFlip', p=0.5),
|
120 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
121 |
+
dict(
|
122 |
+
type='ElasticDistortion',
|
123 |
+
distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
124 |
+
dict(type='ChromaticAutoContrast', p=0.2, blend_factor=None),
|
125 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
126 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
127 |
+
dict(
|
128 |
+
type='GridSample',
|
129 |
+
grid_size=0.02,
|
130 |
+
hash_type='fnv',
|
131 |
+
mode='train',
|
132 |
+
return_grid_coord=True),
|
133 |
+
dict(type='SphereCrop', point_max=102400, mode='random'),
|
134 |
+
dict(type='CenterShift', apply_z=False),
|
135 |
+
dict(type='NormalizeColor'),
|
136 |
+
dict(type='ToTensor'),
|
137 |
+
dict(
|
138 |
+
type='Collect',
|
139 |
+
keys=('coord', 'grid_coord', 'segment'),
|
140 |
+
feat_keys=('color', 'normal'))
|
141 |
+
],
|
142 |
+
test_mode=False,
|
143 |
+
loop=8),
|
144 |
+
val=dict(
|
145 |
+
type='ScanNetDataset',
|
146 |
+
split='val',
|
147 |
+
data_root='data/scannet',
|
148 |
+
transform=[
|
149 |
+
dict(type='CenterShift', apply_z=True),
|
150 |
+
dict(
|
151 |
+
type='GridSample',
|
152 |
+
grid_size=0.02,
|
153 |
+
hash_type='fnv',
|
154 |
+
mode='train',
|
155 |
+
return_grid_coord=True),
|
156 |
+
dict(type='CenterShift', apply_z=False),
|
157 |
+
dict(type='NormalizeColor'),
|
158 |
+
dict(type='ToTensor'),
|
159 |
+
dict(
|
160 |
+
type='Collect',
|
161 |
+
keys=('coord', 'grid_coord', 'segment'),
|
162 |
+
feat_keys=('color', 'normal'))
|
163 |
+
],
|
164 |
+
test_mode=False),
|
165 |
+
test=dict(
|
166 |
+
type='ScanNetDataset',
|
167 |
+
split='val',
|
168 |
+
data_root='data/scannet',
|
169 |
+
transform=[
|
170 |
+
dict(type='CenterShift', apply_z=True),
|
171 |
+
dict(type='NormalizeColor')
|
172 |
+
],
|
173 |
+
test_mode=True,
|
174 |
+
test_cfg=dict(
|
175 |
+
voxelize=dict(
|
176 |
+
type='GridSample',
|
177 |
+
grid_size=0.02,
|
178 |
+
hash_type='fnv',
|
179 |
+
mode='test',
|
180 |
+
keys=('coord', 'color', 'normal'),
|
181 |
+
return_grid_coord=True),
|
182 |
+
crop=None,
|
183 |
+
post_transform=[
|
184 |
+
dict(type='CenterShift', apply_z=False),
|
185 |
+
dict(type='ToTensor'),
|
186 |
+
dict(
|
187 |
+
type='Collect',
|
188 |
+
keys=('coord', 'grid_coord', 'index'),
|
189 |
+
feat_keys=('color', 'normal'))
|
190 |
+
],
|
191 |
+
aug_transform=[[{
|
192 |
+
'type': 'RandomRotateTargetAngle',
|
193 |
+
'angle': [0],
|
194 |
+
'axis': 'z',
|
195 |
+
'center': [0, 0, 0],
|
196 |
+
'p': 1
|
197 |
+
}],
|
198 |
+
[{
|
199 |
+
'type': 'RandomRotateTargetAngle',
|
200 |
+
'angle': [0.5],
|
201 |
+
'axis': 'z',
|
202 |
+
'center': [0, 0, 0],
|
203 |
+
'p': 1
|
204 |
+
}],
|
205 |
+
[{
|
206 |
+
'type': 'RandomRotateTargetAngle',
|
207 |
+
'angle': [1],
|
208 |
+
'axis': 'z',
|
209 |
+
'center': [0, 0, 0],
|
210 |
+
'p': 1
|
211 |
+
}],
|
212 |
+
[{
|
213 |
+
'type': 'RandomRotateTargetAngle',
|
214 |
+
'angle': [1.5],
|
215 |
+
'axis': 'z',
|
216 |
+
'center': [0, 0, 0],
|
217 |
+
'p': 1
|
218 |
+
}],
|
219 |
+
[{
|
220 |
+
'type': 'RandomRotateTargetAngle',
|
221 |
+
'angle': [0],
|
222 |
+
'axis': 'z',
|
223 |
+
'center': [0, 0, 0],
|
224 |
+
'p': 1
|
225 |
+
}, {
|
226 |
+
'type': 'RandomScale',
|
227 |
+
'scale': [0.95, 0.95]
|
228 |
+
}],
|
229 |
+
[{
|
230 |
+
'type': 'RandomRotateTargetAngle',
|
231 |
+
'angle': [0.5],
|
232 |
+
'axis': 'z',
|
233 |
+
'center': [0, 0, 0],
|
234 |
+
'p': 1
|
235 |
+
}, {
|
236 |
+
'type': 'RandomScale',
|
237 |
+
'scale': [0.95, 0.95]
|
238 |
+
}],
|
239 |
+
[{
|
240 |
+
'type': 'RandomRotateTargetAngle',
|
241 |
+
'angle': [1],
|
242 |
+
'axis': 'z',
|
243 |
+
'center': [0, 0, 0],
|
244 |
+
'p': 1
|
245 |
+
}, {
|
246 |
+
'type': 'RandomScale',
|
247 |
+
'scale': [0.95, 0.95]
|
248 |
+
}],
|
249 |
+
[{
|
250 |
+
'type': 'RandomRotateTargetAngle',
|
251 |
+
'angle': [1.5],
|
252 |
+
'axis': 'z',
|
253 |
+
'center': [0, 0, 0],
|
254 |
+
'p': 1
|
255 |
+
}, {
|
256 |
+
'type': 'RandomScale',
|
257 |
+
'scale': [0.95, 0.95]
|
258 |
+
}],
|
259 |
+
[{
|
260 |
+
'type': 'RandomRotateTargetAngle',
|
261 |
+
'angle': [0],
|
262 |
+
'axis': 'z',
|
263 |
+
'center': [0, 0, 0],
|
264 |
+
'p': 1
|
265 |
+
}, {
|
266 |
+
'type': 'RandomScale',
|
267 |
+
'scale': [1.05, 1.05]
|
268 |
+
}],
|
269 |
+
[{
|
270 |
+
'type': 'RandomRotateTargetAngle',
|
271 |
+
'angle': [0.5],
|
272 |
+
'axis': 'z',
|
273 |
+
'center': [0, 0, 0],
|
274 |
+
'p': 1
|
275 |
+
}, {
|
276 |
+
'type': 'RandomScale',
|
277 |
+
'scale': [1.05, 1.05]
|
278 |
+
}],
|
279 |
+
[{
|
280 |
+
'type': 'RandomRotateTargetAngle',
|
281 |
+
'angle': [1],
|
282 |
+
'axis': 'z',
|
283 |
+
'center': [0, 0, 0],
|
284 |
+
'p': 1
|
285 |
+
}, {
|
286 |
+
'type': 'RandomScale',
|
287 |
+
'scale': [1.05, 1.05]
|
288 |
+
}],
|
289 |
+
[{
|
290 |
+
'type': 'RandomRotateTargetAngle',
|
291 |
+
'angle': [1.5],
|
292 |
+
'axis': 'z',
|
293 |
+
'center': [0, 0, 0],
|
294 |
+
'p': 1
|
295 |
+
}, {
|
296 |
+
'type': 'RandomScale',
|
297 |
+
'scale': [1.05, 1.05]
|
298 |
+
}], [{
|
299 |
+
'type': 'RandomFlip',
|
300 |
+
'p': 1
|
301 |
+
}]])))
|
scannet-semseg-pt-v3m1-0-base/events.out.tfevents.1703049730.scannet-semseg-pt-v3m1-0-base
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9b318c5aa9d8fb1b0dde05c04cf8cd51cc22e08b4f2bac241cd790f021de75d
|
3 |
+
size 7830420
|
scannet-semseg-pt-v3m1-0-base/model/model_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40206376ff2f83f48e4d1bc27d5c5d96be7c87c5d11eb45fe7be501959040e7f
|
3 |
+
size 554618088
|
scannet-semseg-pt-v3m1-0-base/model/model_last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e33d7718f6a9a52465a43e6122d7873630bcd10b626a3452199d2b36006a4ec
|
3 |
+
size 554618088
|
scannet-semseg-pt-v3m1-0-base/train.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cac65e2f316033b21d79cb89f2ee700f41a388b5dbe85bf910bd303549ab01b1
|
3 |
+
size 14778054
|
scannet-semseg-pt-v3m1-1-ppt-extreme/config.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weight = 'exp/scannet/semseg-pt-v3m1-1-ppt-extreme/model/model_best.pth'
|
2 |
+
resume = False
|
3 |
+
evaluate = True
|
4 |
+
test_only = False
|
5 |
+
seed = 44350923
|
6 |
+
save_path = 'exp/scannet/semseg-pt-v3m1-1-ppt-extreme'
|
7 |
+
num_worker = 48
|
8 |
+
batch_size = 24
|
9 |
+
batch_size_val = None
|
10 |
+
batch_size_test = None
|
11 |
+
epoch = 100
|
12 |
+
eval_epoch = 100
|
13 |
+
sync_bn = False
|
14 |
+
enable_amp = True
|
15 |
+
empty_cache = False
|
16 |
+
find_unused_parameters = True
|
17 |
+
mix_prob = 0.8
|
18 |
+
param_dicts = [dict(keyword='block', lr=0.0005)]
|
19 |
+
hooks = [
|
20 |
+
dict(type='CheckpointLoader'),
|
21 |
+
dict(type='IterationTimer', warmup_iter=2),
|
22 |
+
dict(type='InformationWriter'),
|
23 |
+
dict(type='SemSegEvaluator'),
|
24 |
+
dict(type='CheckpointSaver', save_freq=None),
|
25 |
+
dict(type='PreciseEvaluator', test_last=False)
|
26 |
+
]
|
27 |
+
train = dict(type='MultiDatasetTrainer')
|
28 |
+
test = dict(type='SemSegTester', verbose=True)
|
29 |
+
model = dict(
|
30 |
+
type='PPT-v1m1',
|
31 |
+
backbone=dict(
|
32 |
+
type='PT-v3m1',
|
33 |
+
in_channels=6,
|
34 |
+
order=('z', 'z-trans', 'hilbert', 'hilbert-trans'),
|
35 |
+
stride=(2, 2, 2, 2),
|
36 |
+
enc_depths=(3, 3, 3, 6, 3),
|
37 |
+
enc_channels=(48, 96, 192, 384, 512),
|
38 |
+
enc_num_head=(3, 6, 12, 24, 32),
|
39 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
40 |
+
dec_depths=(3, 3, 3, 3),
|
41 |
+
dec_channels=(64, 96, 192, 384),
|
42 |
+
dec_num_head=(4, 6, 12, 24),
|
43 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
44 |
+
mlp_ratio=4,
|
45 |
+
qkv_bias=True,
|
46 |
+
qk_scale=None,
|
47 |
+
attn_drop=0.0,
|
48 |
+
proj_drop=0.0,
|
49 |
+
drop_path=0.3,
|
50 |
+
shuffle_orders=True,
|
51 |
+
pre_norm=True,
|
52 |
+
enable_rpe=False,
|
53 |
+
enable_flash=True,
|
54 |
+
upcast_attention=False,
|
55 |
+
upcast_softmax=False,
|
56 |
+
cls_mode=False,
|
57 |
+
pdnorm_bn=True,
|
58 |
+
pdnorm_ln=True,
|
59 |
+
pdnorm_decouple=True,
|
60 |
+
pdnorm_adaptive=False,
|
61 |
+
pdnorm_affine=True,
|
62 |
+
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')),
|
63 |
+
criteria=[
|
64 |
+
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1),
|
65 |
+
dict(
|
66 |
+
type='LovaszLoss',
|
67 |
+
mode='multiclass',
|
68 |
+
loss_weight=1.0,
|
69 |
+
ignore_index=-1)
|
70 |
+
],
|
71 |
+
backbone_out_channels=64,
|
72 |
+
context_channels=256,
|
73 |
+
conditions=('Structured3D', 'ScanNet', 'S3DIS'),
|
74 |
+
template='[x]',
|
75 |
+
clip_model='ViT-B/16',
|
76 |
+
class_name=('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
|
77 |
+
'door', 'window', 'bookshelf', 'bookcase', 'picture',
|
78 |
+
'counter', 'desk', 'shelves', 'curtain', 'dresser', 'pillow',
|
79 |
+
'mirror', 'ceiling', 'refrigerator', 'television',
|
80 |
+
'shower curtain', 'nightstand', 'toilet', 'sink', 'lamp',
|
81 |
+
'bathtub', 'garbagebin', 'board', 'beam', 'column', 'clutter',
|
82 |
+
'otherstructure', 'otherfurniture', 'otherprop'),
|
83 |
+
valid_index=((0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19,
|
84 |
+
20, 21, 23, 25, 26, 33, 34, 35),
|
85 |
+
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25,
|
86 |
+
27, 34), (0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32)),
|
87 |
+
backbone_mode=False)
|
88 |
+
optimizer = dict(type='AdamW', lr=0.005, weight_decay=0.05)
|
89 |
+
scheduler = dict(
|
90 |
+
type='OneCycleLR',
|
91 |
+
max_lr=[0.005, 0.0005],
|
92 |
+
pct_start=0.05,
|
93 |
+
anneal_strategy='cos',
|
94 |
+
div_factor=10.0,
|
95 |
+
final_div_factor=1000.0)
|
96 |
+
data = dict(
|
97 |
+
num_classes=20,
|
98 |
+
ignore_index=-1,
|
99 |
+
names=[
|
100 |
+
'wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
|
101 |
+
'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain',
|
102 |
+
'refridgerator', 'shower curtain', 'toilet', 'sink', 'bathtub',
|
103 |
+
'otherfurniture'
|
104 |
+
],
|
105 |
+
train=dict(
|
106 |
+
type='ConcatDataset',
|
107 |
+
datasets=[
|
108 |
+
dict(
|
109 |
+
type='Structured3DDataset',
|
110 |
+
split=['train', 'val', 'test'],
|
111 |
+
data_root='data/structured3d',
|
112 |
+
transform=[
|
113 |
+
dict(type='CenterShift', apply_z=True),
|
114 |
+
dict(
|
115 |
+
type='RandomDropout',
|
116 |
+
dropout_ratio=0.2,
|
117 |
+
dropout_application_ratio=0.2),
|
118 |
+
dict(
|
119 |
+
type='RandomRotate',
|
120 |
+
angle=[-1, 1],
|
121 |
+
axis='z',
|
122 |
+
center=[0, 0, 0],
|
123 |
+
p=0.5),
|
124 |
+
dict(
|
125 |
+
type='RandomRotate',
|
126 |
+
angle=[-0.015625, 0.015625],
|
127 |
+
axis='x',
|
128 |
+
p=0.5),
|
129 |
+
dict(
|
130 |
+
type='RandomRotate',
|
131 |
+
angle=[-0.015625, 0.015625],
|
132 |
+
axis='y',
|
133 |
+
p=0.5),
|
134 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
135 |
+
dict(type='RandomFlip', p=0.5),
|
136 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
137 |
+
dict(
|
138 |
+
type='ElasticDistortion',
|
139 |
+
distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
140 |
+
dict(
|
141 |
+
type='ChromaticAutoContrast', p=0.2,
|
142 |
+
blend_factor=None),
|
143 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
144 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
145 |
+
dict(
|
146 |
+
type='GridSample',
|
147 |
+
grid_size=0.02,
|
148 |
+
hash_type='fnv',
|
149 |
+
mode='train',
|
150 |
+
return_grid_coord=True),
|
151 |
+
dict(type='SphereCrop', sample_rate=0.8, mode='random'),
|
152 |
+
dict(type='SphereCrop', point_max=102400, mode='random'),
|
153 |
+
dict(type='CenterShift', apply_z=False),
|
154 |
+
dict(type='NormalizeColor'),
|
155 |
+
dict(type='Add', keys_dict=dict(condition='Structured3D')),
|
156 |
+
dict(type='ToTensor'),
|
157 |
+
dict(
|
158 |
+
type='Collect',
|
159 |
+
keys=('coord', 'grid_coord', 'segment', 'condition'),
|
160 |
+
feat_keys=('color', 'normal'))
|
161 |
+
],
|
162 |
+
test_mode=False,
|
163 |
+
loop=2),
|
164 |
+
dict(
|
165 |
+
type='ScanNetDataset',
|
166 |
+
split='train',
|
167 |
+
data_root='data/scannet',
|
168 |
+
transform=[
|
169 |
+
dict(type='CenterShift', apply_z=True),
|
170 |
+
dict(
|
171 |
+
type='RandomDropout',
|
172 |
+
dropout_ratio=0.2,
|
173 |
+
dropout_application_ratio=0.2),
|
174 |
+
dict(
|
175 |
+
type='RandomRotate',
|
176 |
+
angle=[-1, 1],
|
177 |
+
axis='z',
|
178 |
+
center=[0, 0, 0],
|
179 |
+
p=0.5),
|
180 |
+
dict(
|
181 |
+
type='RandomRotate',
|
182 |
+
angle=[-0.015625, 0.015625],
|
183 |
+
axis='x',
|
184 |
+
p=0.5),
|
185 |
+
dict(
|
186 |
+
type='RandomRotate',
|
187 |
+
angle=[-0.015625, 0.015625],
|
188 |
+
axis='y',
|
189 |
+
p=0.5),
|
190 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
191 |
+
dict(type='RandomFlip', p=0.5),
|
192 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
193 |
+
dict(
|
194 |
+
type='ElasticDistortion',
|
195 |
+
distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
196 |
+
dict(
|
197 |
+
type='ChromaticAutoContrast', p=0.2,
|
198 |
+
blend_factor=None),
|
199 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
200 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
201 |
+
dict(
|
202 |
+
type='GridSample',
|
203 |
+
grid_size=0.02,
|
204 |
+
hash_type='fnv',
|
205 |
+
mode='train',
|
206 |
+
return_grid_coord=True),
|
207 |
+
dict(type='SphereCrop', point_max=102400, mode='random'),
|
208 |
+
dict(type='CenterShift', apply_z=False),
|
209 |
+
dict(type='NormalizeColor'),
|
210 |
+
dict(type='ShufflePoint'),
|
211 |
+
dict(type='Add', keys_dict=dict(condition='ScanNet')),
|
212 |
+
dict(type='ToTensor'),
|
213 |
+
dict(
|
214 |
+
type='Collect',
|
215 |
+
keys=('coord', 'grid_coord', 'segment', 'condition'),
|
216 |
+
feat_keys=('color', 'normal'))
|
217 |
+
],
|
218 |
+
test_mode=False,
|
219 |
+
loop=1)
|
220 |
+
],
|
221 |
+
loop=1),
|
222 |
+
val=dict(
|
223 |
+
type='ScanNetDataset',
|
224 |
+
split='val',
|
225 |
+
data_root='data/scannet',
|
226 |
+
transform=[
|
227 |
+
dict(type='CenterShift', apply_z=True),
|
228 |
+
dict(
|
229 |
+
type='GridSample',
|
230 |
+
grid_size=0.02,
|
231 |
+
hash_type='fnv',
|
232 |
+
mode='train',
|
233 |
+
return_grid_coord=True),
|
234 |
+
dict(type='CenterShift', apply_z=False),
|
235 |
+
dict(type='NormalizeColor'),
|
236 |
+
dict(type='ToTensor'),
|
237 |
+
dict(type='Add', keys_dict=dict(condition='ScanNet')),
|
238 |
+
dict(
|
239 |
+
type='Collect',
|
240 |
+
keys=('coord', 'grid_coord', 'segment', 'condition'),
|
241 |
+
feat_keys=('color', 'normal'))
|
242 |
+
],
|
243 |
+
test_mode=False),
|
244 |
+
test=dict(
|
245 |
+
type='ScanNetDataset',
|
246 |
+
split='val',
|
247 |
+
data_root='data/scannet',
|
248 |
+
transform=[
|
249 |
+
dict(type='CenterShift', apply_z=True),
|
250 |
+
dict(type='NormalizeColor')
|
251 |
+
],
|
252 |
+
test_mode=True,
|
253 |
+
test_cfg=dict(
|
254 |
+
voxelize=dict(
|
255 |
+
type='GridSample',
|
256 |
+
grid_size=0.02,
|
257 |
+
hash_type='fnv',
|
258 |
+
mode='test',
|
259 |
+
keys=('coord', 'color', 'normal'),
|
260 |
+
return_grid_coord=True),
|
261 |
+
crop=None,
|
262 |
+
post_transform=[
|
263 |
+
dict(type='CenterShift', apply_z=False),
|
264 |
+
dict(type='Add', keys_dict=dict(condition='ScanNet')),
|
265 |
+
dict(type='ToTensor'),
|
266 |
+
dict(
|
267 |
+
type='Collect',
|
268 |
+
keys=('coord', 'grid_coord', 'index', 'condition'),
|
269 |
+
feat_keys=('color', 'normal'))
|
270 |
+
],
|
271 |
+
aug_transform=[[{
|
272 |
+
'type': 'RandomRotateTargetAngle',
|
273 |
+
'angle': [0],
|
274 |
+
'axis': 'z',
|
275 |
+
'center': [0, 0, 0],
|
276 |
+
'p': 1
|
277 |
+
}],
|
278 |
+
[{
|
279 |
+
'type': 'RandomRotateTargetAngle',
|
280 |
+
'angle': [0.5],
|
281 |
+
'axis': 'z',
|
282 |
+
'center': [0, 0, 0],
|
283 |
+
'p': 1
|
284 |
+
}],
|
285 |
+
[{
|
286 |
+
'type': 'RandomRotateTargetAngle',
|
287 |
+
'angle': [1],
|
288 |
+
'axis': 'z',
|
289 |
+
'center': [0, 0, 0],
|
290 |
+
'p': 1
|
291 |
+
}],
|
292 |
+
[{
|
293 |
+
'type': 'RandomRotateTargetAngle',
|
294 |
+
'angle': [1.5],
|
295 |
+
'axis': 'z',
|
296 |
+
'center': [0, 0, 0],
|
297 |
+
'p': 1
|
298 |
+
}],
|
299 |
+
[{
|
300 |
+
'type': 'RandomRotateTargetAngle',
|
301 |
+
'angle': [0],
|
302 |
+
'axis': 'z',
|
303 |
+
'center': [0, 0, 0],
|
304 |
+
'p': 1
|
305 |
+
}, {
|
306 |
+
'type': 'RandomScale',
|
307 |
+
'scale': [0.95, 0.95]
|
308 |
+
}],
|
309 |
+
[{
|
310 |
+
'type': 'RandomRotateTargetAngle',
|
311 |
+
'angle': [0.5],
|
312 |
+
'axis': 'z',
|
313 |
+
'center': [0, 0, 0],
|
314 |
+
'p': 1
|
315 |
+
}, {
|
316 |
+
'type': 'RandomScale',
|
317 |
+
'scale': [0.95, 0.95]
|
318 |
+
}],
|
319 |
+
[{
|
320 |
+
'type': 'RandomRotateTargetAngle',
|
321 |
+
'angle': [1],
|
322 |
+
'axis': 'z',
|
323 |
+
'center': [0, 0, 0],
|
324 |
+
'p': 1
|
325 |
+
}, {
|
326 |
+
'type': 'RandomScale',
|
327 |
+
'scale': [0.95, 0.95]
|
328 |
+
}],
|
329 |
+
[{
|
330 |
+
'type': 'RandomRotateTargetAngle',
|
331 |
+
'angle': [1.5],
|
332 |
+
'axis': 'z',
|
333 |
+
'center': [0, 0, 0],
|
334 |
+
'p': 1
|
335 |
+
}, {
|
336 |
+
'type': 'RandomScale',
|
337 |
+
'scale': [0.95, 0.95]
|
338 |
+
}],
|
339 |
+
[{
|
340 |
+
'type': 'RandomRotateTargetAngle',
|
341 |
+
'angle': [0],
|
342 |
+
'axis': 'z',
|
343 |
+
'center': [0, 0, 0],
|
344 |
+
'p': 1
|
345 |
+
}, {
|
346 |
+
'type': 'RandomScale',
|
347 |
+
'scale': [1.05, 1.05]
|
348 |
+
}],
|
349 |
+
[{
|
350 |
+
'type': 'RandomRotateTargetAngle',
|
351 |
+
'angle': [0.5],
|
352 |
+
'axis': 'z',
|
353 |
+
'center': [0, 0, 0],
|
354 |
+
'p': 1
|
355 |
+
}, {
|
356 |
+
'type': 'RandomScale',
|
357 |
+
'scale': [1.05, 1.05]
|
358 |
+
}],
|
359 |
+
[{
|
360 |
+
'type': 'RandomRotateTargetAngle',
|
361 |
+
'angle': [1],
|
362 |
+
'axis': 'z',
|
363 |
+
'center': [0, 0, 0],
|
364 |
+
'p': 1
|
365 |
+
}, {
|
366 |
+
'type': 'RandomScale',
|
367 |
+
'scale': [1.05, 1.05]
|
368 |
+
}],
|
369 |
+
[{
|
370 |
+
'type': 'RandomRotateTargetAngle',
|
371 |
+
'angle': [1.5],
|
372 |
+
'axis': 'z',
|
373 |
+
'center': [0, 0, 0],
|
374 |
+
'p': 1
|
375 |
+
}, {
|
376 |
+
'type': 'RandomScale',
|
377 |
+
'scale': [1.05, 1.05]
|
378 |
+
}], [{
|
379 |
+
'type': 'RandomFlip',
|
380 |
+
'p': 1
|
381 |
+
}]])))
|
scannet-semseg-pt-v3m1-1-ppt-extreme/events.out.tfevents.1706979139.scannet-semseg-pt-v3m1-1-ppt-extreme
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4e134e4c23aa8dcdaaecd36af85046c3e8b80e7790487aba03e0c51665ba3cb
|
3 |
+
size 13080438
|
scannet-semseg-pt-v3m1-1-ppt-extreme/model/model_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d964d10112a13a7fddadad16f37a940ed26e09b9e9799f78e8386cff8f2ae771
|
3 |
+
size 1170271282
|
scannet-semseg-pt-v3m1-1-ppt-extreme/model/model_last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a53e368f93975164f9fbb95fe1e6d1d9efab663990ba4d88410d36768aef71bd
|
3 |
+
size 1170271282
|
scannet-semseg-pt-v3m1-1-ppt-extreme/test.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scannet-semseg-pt-v3m1-1-ppt-extreme/train.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:050a681c6530ae807a1b4966b78bbebb101ea4f98b916979b380c4e933c6be79
|
3 |
+
size 22084602
|
scannet200-semseg-pt-v3m1-0-base/config.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weight = None
|
2 |
+
resume = False
|
3 |
+
evaluate = True
|
4 |
+
test_only = False
|
5 |
+
seed = 1023306
|
6 |
+
save_path = 'exp/scannet200/semseg-pt-v3m1-0-base'
|
7 |
+
num_worker = 24
|
8 |
+
batch_size = 12
|
9 |
+
batch_size_val = None
|
10 |
+
batch_size_test = None
|
11 |
+
epoch = 800
|
12 |
+
eval_epoch = 100
|
13 |
+
sync_bn = False
|
14 |
+
enable_amp = True
|
15 |
+
empty_cache = False
|
16 |
+
find_unused_parameters = False
|
17 |
+
mix_prob = 0.8
|
18 |
+
param_dicts = [dict(keyword='block', lr=0.0006)]
|
19 |
+
hooks = [
|
20 |
+
dict(type='CheckpointLoader'),
|
21 |
+
dict(type='IterationTimer', warmup_iter=2),
|
22 |
+
dict(type='InformationWriter'),
|
23 |
+
dict(type='SemSegEvaluator'),
|
24 |
+
dict(type='CheckpointSaver', save_freq=None),
|
25 |
+
dict(type='PreciseEvaluator', test_last=False)
|
26 |
+
]
|
27 |
+
train = dict(type='DefaultTrainer')
|
28 |
+
test = dict(type='SemSegTester', verbose=True)
|
29 |
+
CLASS_LABELS_200 = (
|
30 |
+
'wall', 'chair', 'floor', 'table', 'door', 'couch', 'cabinet', 'shelf',
|
31 |
+
'desk', 'office chair', 'bed', 'pillow', 'sink', 'picture', 'window',
|
32 |
+
'toilet', 'bookshelf', 'monitor', 'curtain', 'book', 'armchair',
|
33 |
+
'coffee table', 'box', 'refrigerator', 'lamp', 'kitchen cabinet', 'towel',
|
34 |
+
'clothes', 'tv', 'nightstand', 'counter', 'dresser', 'stool', 'cushion',
|
35 |
+
'plant', 'ceiling', 'bathtub', 'end table', 'dining table', 'keyboard',
|
36 |
+
'bag', 'backpack', 'toilet paper', 'printer', 'tv stand', 'whiteboard',
|
37 |
+
'blanket', 'shower curtain', 'trash can', 'closet', 'stairs', 'microwave',
|
38 |
+
'stove', 'shoe', 'computer tower', 'bottle', 'bin', 'ottoman', 'bench',
|
39 |
+
'board', 'washing machine', 'mirror', 'copier', 'basket', 'sofa chair',
|
40 |
+
'file cabinet', 'fan', 'laptop', 'shower', 'paper', 'person',
|
41 |
+
'paper towel dispenser', 'oven', 'blinds', 'rack', 'plate', 'blackboard',
|
42 |
+
'piano', 'suitcase', 'rail', 'radiator', 'recycling bin', 'container',
|
43 |
+
'wardrobe', 'soap dispenser', 'telephone', 'bucket', 'clock', 'stand',
|
44 |
+
'light', 'laundry basket', 'pipe', 'clothes dryer', 'guitar',
|
45 |
+
'toilet paper holder', 'seat', 'speaker', 'column', 'bicycle', 'ladder',
|
46 |
+
'bathroom stall', 'shower wall', 'cup', 'jacket', 'storage bin',
|
47 |
+
'coffee maker', 'dishwasher', 'paper towel roll', 'machine', 'mat',
|
48 |
+
'windowsill', 'bar', 'toaster', 'bulletin board', 'ironing board',
|
49 |
+
'fireplace', 'soap dish', 'kitchen counter', 'doorframe',
|
50 |
+
'toilet paper dispenser', 'mini fridge', 'fire extinguisher', 'ball',
|
51 |
+
'hat', 'shower curtain rod', 'water cooler', 'paper cutter', 'tray',
|
52 |
+
'shower door', 'pillar', 'ledge', 'toaster oven', 'mouse',
|
53 |
+
'toilet seat cover dispenser', 'furniture', 'cart', 'storage container',
|
54 |
+
'scale', 'tissue box', 'light switch', 'crate', 'power outlet',
|
55 |
+
'decoration', 'sign', 'projector', 'closet door', 'vacuum cleaner',
|
56 |
+
'candle', 'plunger', 'stuffed animal', 'headphones', 'dish rack', 'broom',
|
57 |
+
'guitar case', 'range hood', 'dustpan', 'hair dryer', 'water bottle',
|
58 |
+
'handicap bar', 'purse', 'vent', 'shower floor', 'water pitcher',
|
59 |
+
'mailbox', 'bowl', 'paper bag', 'alarm clock', 'music stand',
|
60 |
+
'projector screen', 'divider', 'laundry detergent', 'bathroom counter',
|
61 |
+
'object', 'bathroom vanity', 'closet wall', 'laundry hamper',
|
62 |
+
'bathroom stall door', 'ceiling light', 'trash bin', 'dumbbell',
|
63 |
+
'stair rail', 'tube', 'bathroom cabinet', 'cd case', 'closet rod',
|
64 |
+
'coffee kettle', 'structure', 'shower head', 'keyboard piano',
|
65 |
+
'case of water bottles', 'coat rack', 'storage organizer', 'folded chair',
|
66 |
+
'fire alarm', 'power strip', 'calendar', 'poster', 'potted plant',
|
67 |
+
'luggage', 'mattress')
|
68 |
+
model = dict(
|
69 |
+
type='DefaultSegmentorV2',
|
70 |
+
num_classes=200,
|
71 |
+
backbone_out_channels=64,
|
72 |
+
backbone=dict(
|
73 |
+
type='PT-v3m1',
|
74 |
+
in_channels=6,
|
75 |
+
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'],
|
76 |
+
stride=(2, 2, 2, 2),
|
77 |
+
enc_depths=(2, 2, 2, 6, 2),
|
78 |
+
enc_channels=(32, 64, 128, 256, 512),
|
79 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
80 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
81 |
+
dec_depths=(2, 2, 2, 2),
|
82 |
+
dec_channels=(64, 64, 128, 256),
|
83 |
+
dec_num_head=(4, 4, 8, 16),
|
84 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
85 |
+
mlp_ratio=4,
|
86 |
+
qkv_bias=True,
|
87 |
+
qk_scale=None,
|
88 |
+
attn_drop=0.0,
|
89 |
+
proj_drop=0.0,
|
90 |
+
drop_path=0.3,
|
91 |
+
shuffle_orders=True,
|
92 |
+
pre_norm=True,
|
93 |
+
enable_rpe=False,
|
94 |
+
enable_flash=True,
|
95 |
+
upcast_attention=False,
|
96 |
+
upcast_softmax=False,
|
97 |
+
cls_mode=False,
|
98 |
+
pdnorm_bn=False,
|
99 |
+
pdnorm_ln=False,
|
100 |
+
pdnorm_decouple=True,
|
101 |
+
pdnorm_adaptive=False,
|
102 |
+
pdnorm_affine=True,
|
103 |
+
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')),
|
104 |
+
criteria=[
|
105 |
+
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1),
|
106 |
+
dict(
|
107 |
+
type='LovaszLoss',
|
108 |
+
mode='multiclass',
|
109 |
+
loss_weight=1.0,
|
110 |
+
ignore_index=-1)
|
111 |
+
])
|
112 |
+
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05)
|
113 |
+
scheduler = dict(
|
114 |
+
type='OneCycleLR',
|
115 |
+
max_lr=[0.006, 0.0006],
|
116 |
+
pct_start=0.05,
|
117 |
+
anneal_strategy='cos',
|
118 |
+
div_factor=10.0,
|
119 |
+
final_div_factor=1000.0)
|
120 |
+
dataset_type = 'ScanNet200Dataset'
|
121 |
+
data_root = 'data/scannet'
|
122 |
+
data = dict(
|
123 |
+
num_classes=200,
|
124 |
+
ignore_index=-1,
|
125 |
+
names=(
|
126 |
+
'wall', 'chair', 'floor', 'table', 'door', 'couch', 'cabinet', 'shelf',
|
127 |
+
'desk', 'office chair', 'bed', 'pillow', 'sink', 'picture', 'window',
|
128 |
+
'toilet', 'bookshelf', 'monitor', 'curtain', 'book', 'armchair',
|
129 |
+
'coffee table', 'box', 'refrigerator', 'lamp', 'kitchen cabinet',
|
130 |
+
'towel', 'clothes', 'tv', 'nightstand', 'counter', 'dresser', 'stool',
|
131 |
+
'cushion', 'plant', 'ceiling', 'bathtub', 'end table', 'dining table',
|
132 |
+
'keyboard', 'bag', 'backpack', 'toilet paper', 'printer', 'tv stand',
|
133 |
+
'whiteboard', 'blanket', 'shower curtain', 'trash can', 'closet',
|
134 |
+
'stairs', 'microwave', 'stove', 'shoe', 'computer tower', 'bottle',
|
135 |
+
'bin', 'ottoman', 'bench', 'board', 'washing machine', 'mirror',
|
136 |
+
'copier', 'basket', 'sofa chair', 'file cabinet', 'fan', 'laptop',
|
137 |
+
'shower', 'paper', 'person', 'paper towel dispenser', 'oven', 'blinds',
|
138 |
+
'rack', 'plate', 'blackboard', 'piano', 'suitcase', 'rail', 'radiator',
|
139 |
+
'recycling bin', 'container', 'wardrobe', 'soap dispenser',
|
140 |
+
'telephone', 'bucket', 'clock', 'stand', 'light', 'laundry basket',
|
141 |
+
'pipe', 'clothes dryer', 'guitar', 'toilet paper holder', 'seat',
|
142 |
+
'speaker', 'column', 'bicycle', 'ladder', 'bathroom stall',
|
143 |
+
'shower wall', 'cup', 'jacket', 'storage bin', 'coffee maker',
|
144 |
+
'dishwasher', 'paper towel roll', 'machine', 'mat', 'windowsill',
|
145 |
+
'bar', 'toaster', 'bulletin board', 'ironing board', 'fireplace',
|
146 |
+
'soap dish', 'kitchen counter', 'doorframe', 'toilet paper dispenser',
|
147 |
+
'mini fridge', 'fire extinguisher', 'ball', 'hat',
|
148 |
+
'shower curtain rod', 'water cooler', 'paper cutter', 'tray',
|
149 |
+
'shower door', 'pillar', 'ledge', 'toaster oven', 'mouse',
|
150 |
+
'toilet seat cover dispenser', 'furniture', 'cart',
|
151 |
+
'storage container', 'scale', 'tissue box', 'light switch', 'crate',
|
152 |
+
'power outlet', 'decoration', 'sign', 'projector', 'closet door',
|
153 |
+
'vacuum cleaner', 'candle', 'plunger', 'stuffed animal', 'headphones',
|
154 |
+
'dish rack', 'broom', 'guitar case', 'range hood', 'dustpan',
|
155 |
+
'hair dryer', 'water bottle', 'handicap bar', 'purse', 'vent',
|
156 |
+
'shower floor', 'water pitcher', 'mailbox', 'bowl', 'paper bag',
|
157 |
+
'alarm clock', 'music stand', 'projector screen', 'divider',
|
158 |
+
'laundry detergent', 'bathroom counter', 'object', 'bathroom vanity',
|
159 |
+
'closet wall', 'laundry hamper', 'bathroom stall door',
|
160 |
+
'ceiling light', 'trash bin', 'dumbbell', 'stair rail', 'tube',
|
161 |
+
'bathroom cabinet', 'cd case', 'closet rod', 'coffee kettle',
|
162 |
+
'structure', 'shower head', 'keyboard piano', 'case of water bottles',
|
163 |
+
'coat rack', 'storage organizer', 'folded chair', 'fire alarm',
|
164 |
+
'power strip', 'calendar', 'poster', 'potted plant', 'luggage',
|
165 |
+
'mattress'),
|
166 |
+
train=dict(
|
167 |
+
type='ScanNet200Dataset',
|
168 |
+
split='train',
|
169 |
+
data_root='data/scannet',
|
170 |
+
transform=[
|
171 |
+
dict(type='CenterShift', apply_z=True),
|
172 |
+
dict(
|
173 |
+
type='RandomDropout',
|
174 |
+
dropout_ratio=0.2,
|
175 |
+
dropout_application_ratio=0.2),
|
176 |
+
dict(
|
177 |
+
type='RandomRotate',
|
178 |
+
angle=[-1, 1],
|
179 |
+
axis='z',
|
180 |
+
center=[0, 0, 0],
|
181 |
+
p=0.5),
|
182 |
+
dict(
|
183 |
+
type='RandomRotate',
|
184 |
+
angle=[-0.015625, 0.015625],
|
185 |
+
axis='x',
|
186 |
+
p=0.5),
|
187 |
+
dict(
|
188 |
+
type='RandomRotate',
|
189 |
+
angle=[-0.015625, 0.015625],
|
190 |
+
axis='y',
|
191 |
+
p=0.5),
|
192 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
193 |
+
dict(type='RandomFlip', p=0.5),
|
194 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
195 |
+
dict(
|
196 |
+
type='ElasticDistortion',
|
197 |
+
distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
198 |
+
dict(type='ChromaticAutoContrast', p=0.2, blend_factor=None),
|
199 |
+
dict(type='ChromaticTranslation', p=0.95, ratio=0.05),
|
200 |
+
dict(type='ChromaticJitter', p=0.95, std=0.05),
|
201 |
+
dict(
|
202 |
+
type='GridSample',
|
203 |
+
grid_size=0.02,
|
204 |
+
hash_type='fnv',
|
205 |
+
mode='train',
|
206 |
+
return_grid_coord=True),
|
207 |
+
dict(type='SphereCrop', point_max=102400, mode='random'),
|
208 |
+
dict(type='CenterShift', apply_z=False),
|
209 |
+
dict(type='NormalizeColor'),
|
210 |
+
dict(type='ToTensor'),
|
211 |
+
dict(
|
212 |
+
type='Collect',
|
213 |
+
keys=('coord', 'grid_coord', 'segment'),
|
214 |
+
feat_keys=('color', 'normal'))
|
215 |
+
],
|
216 |
+
test_mode=False,
|
217 |
+
loop=8),
|
218 |
+
val=dict(
|
219 |
+
type='ScanNet200Dataset',
|
220 |
+
split='val',
|
221 |
+
data_root='data/scannet',
|
222 |
+
transform=[
|
223 |
+
dict(type='CenterShift', apply_z=True),
|
224 |
+
dict(
|
225 |
+
type='GridSample',
|
226 |
+
grid_size=0.02,
|
227 |
+
hash_type='fnv',
|
228 |
+
mode='train',
|
229 |
+
return_grid_coord=True),
|
230 |
+
dict(type='CenterShift', apply_z=False),
|
231 |
+
dict(type='NormalizeColor'),
|
232 |
+
dict(type='ToTensor'),
|
233 |
+
dict(
|
234 |
+
type='Collect',
|
235 |
+
keys=('coord', 'grid_coord', 'segment'),
|
236 |
+
feat_keys=('color', 'normal'))
|
237 |
+
],
|
238 |
+
test_mode=False),
|
239 |
+
test=dict(
|
240 |
+
type='ScanNet200Dataset',
|
241 |
+
split='val',
|
242 |
+
data_root='data/scannet',
|
243 |
+
transform=[
|
244 |
+
dict(type='CenterShift', apply_z=True),
|
245 |
+
dict(type='NormalizeColor')
|
246 |
+
],
|
247 |
+
test_mode=True,
|
248 |
+
test_cfg=dict(
|
249 |
+
voxelize=dict(
|
250 |
+
type='GridSample',
|
251 |
+
grid_size=0.02,
|
252 |
+
hash_type='fnv',
|
253 |
+
mode='test',
|
254 |
+
keys=('coord', 'color', 'normal'),
|
255 |
+
return_grid_coord=True),
|
256 |
+
crop=None,
|
257 |
+
post_transform=[
|
258 |
+
dict(type='CenterShift', apply_z=False),
|
259 |
+
dict(type='ToTensor'),
|
260 |
+
dict(
|
261 |
+
type='Collect',
|
262 |
+
keys=('coord', 'grid_coord', 'index'),
|
263 |
+
feat_keys=('color', 'normal'))
|
264 |
+
],
|
265 |
+
aug_transform=[[{
|
266 |
+
'type': 'RandomRotateTargetAngle',
|
267 |
+
'angle': [0],
|
268 |
+
'axis': 'z',
|
269 |
+
'center': [0, 0, 0],
|
270 |
+
'p': 1
|
271 |
+
}],
|
272 |
+
[{
|
273 |
+
'type': 'RandomRotateTargetAngle',
|
274 |
+
'angle': [0.5],
|
275 |
+
'axis': 'z',
|
276 |
+
'center': [0, 0, 0],
|
277 |
+
'p': 1
|
278 |
+
}],
|
279 |
+
[{
|
280 |
+
'type': 'RandomRotateTargetAngle',
|
281 |
+
'angle': [1],
|
282 |
+
'axis': 'z',
|
283 |
+
'center': [0, 0, 0],
|
284 |
+
'p': 1
|
285 |
+
}],
|
286 |
+
[{
|
287 |
+
'type': 'RandomRotateTargetAngle',
|
288 |
+
'angle': [1.5],
|
289 |
+
'axis': 'z',
|
290 |
+
'center': [0, 0, 0],
|
291 |
+
'p': 1
|
292 |
+
}],
|
293 |
+
[{
|
294 |
+
'type': 'RandomRotateTargetAngle',
|
295 |
+
'angle': [0],
|
296 |
+
'axis': 'z',
|
297 |
+
'center': [0, 0, 0],
|
298 |
+
'p': 1
|
299 |
+
}, {
|
300 |
+
'type': 'RandomScale',
|
301 |
+
'scale': [0.95, 0.95]
|
302 |
+
}],
|
303 |
+
[{
|
304 |
+
'type': 'RandomRotateTargetAngle',
|
305 |
+
'angle': [0.5],
|
306 |
+
'axis': 'z',
|
307 |
+
'center': [0, 0, 0],
|
308 |
+
'p': 1
|
309 |
+
}, {
|
310 |
+
'type': 'RandomScale',
|
311 |
+
'scale': [0.95, 0.95]
|
312 |
+
}],
|
313 |
+
[{
|
314 |
+
'type': 'RandomRotateTargetAngle',
|
315 |
+
'angle': [1],
|
316 |
+
'axis': 'z',
|
317 |
+
'center': [0, 0, 0],
|
318 |
+
'p': 1
|
319 |
+
}, {
|
320 |
+
'type': 'RandomScale',
|
321 |
+
'scale': [0.95, 0.95]
|
322 |
+
}],
|
323 |
+
[{
|
324 |
+
'type': 'RandomRotateTargetAngle',
|
325 |
+
'angle': [1.5],
|
326 |
+
'axis': 'z',
|
327 |
+
'center': [0, 0, 0],
|
328 |
+
'p': 1
|
329 |
+
}, {
|
330 |
+
'type': 'RandomScale',
|
331 |
+
'scale': [0.95, 0.95]
|
332 |
+
}],
|
333 |
+
[{
|
334 |
+
'type': 'RandomRotateTargetAngle',
|
335 |
+
'angle': [0],
|
336 |
+
'axis': 'z',
|
337 |
+
'center': [0, 0, 0],
|
338 |
+
'p': 1
|
339 |
+
}, {
|
340 |
+
'type': 'RandomScale',
|
341 |
+
'scale': [1.05, 1.05]
|
342 |
+
}],
|
343 |
+
[{
|
344 |
+
'type': 'RandomRotateTargetAngle',
|
345 |
+
'angle': [0.5],
|
346 |
+
'axis': 'z',
|
347 |
+
'center': [0, 0, 0],
|
348 |
+
'p': 1
|
349 |
+
}, {
|
350 |
+
'type': 'RandomScale',
|
351 |
+
'scale': [1.05, 1.05]
|
352 |
+
}],
|
353 |
+
[{
|
354 |
+
'type': 'RandomRotateTargetAngle',
|
355 |
+
'angle': [1],
|
356 |
+
'axis': 'z',
|
357 |
+
'center': [0, 0, 0],
|
358 |
+
'p': 1
|
359 |
+
}, {
|
360 |
+
'type': 'RandomScale',
|
361 |
+
'scale': [1.05, 1.05]
|
362 |
+
}],
|
363 |
+
[{
|
364 |
+
'type': 'RandomRotateTargetAngle',
|
365 |
+
'angle': [1.5],
|
366 |
+
'axis': 'z',
|
367 |
+
'center': [0, 0, 0],
|
368 |
+
'p': 1
|
369 |
+
}, {
|
370 |
+
'type': 'RandomScale',
|
371 |
+
'scale': [1.05, 1.05]
|
372 |
+
}], [{
|
373 |
+
'type': 'RandomFlip',
|
374 |
+
'p': 1
|
375 |
+
}]])))
|
scannet200-semseg-pt-v3m1-0-base/events.out.tfevents.1703049688.scannet200-semseg-pt-v3m1-0-base
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:698d33e2e356f7bd59b996e01a2253f3c34b5cbfaf96ea62adf0ddcee4269341
|
3 |
+
size 7830420
|
scannet200-semseg-pt-v3m1-0-base/model/model_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:426355a950a4c86abdd191a464bc3598241a23601fde17b42f08d536a08fab88
|
3 |
+
size 554758440
|
scannet200-semseg-pt-v3m1-0-base/model/model_last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:212755e4debd8fe1b04c8acb64c353eb2450346b23b500b8cba1c471c14e737a
|
3 |
+
size 554758440
|
scannet200-semseg-pt-v3m1-0-base/train.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bda295e03c9d08880bb35475e91434c92973e1d447866f490e19e63bbbf5fb7
|
3 |
+
size 16866313
|
waymo-semseg-pt-v3m1-0-base/config.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weight = None
|
2 |
+
resume = False
|
3 |
+
evaluate = True
|
4 |
+
test_only = False
|
5 |
+
seed = 2311533
|
6 |
+
save_path = 'exp/waymo/semseg-pt-v3m1-0-base'
|
7 |
+
num_worker = 16
|
8 |
+
batch_size = 12
|
9 |
+
batch_size_val = None
|
10 |
+
batch_size_test = None
|
11 |
+
epoch = 50
|
12 |
+
eval_epoch = 50
|
13 |
+
sync_bn = False
|
14 |
+
enable_amp = True
|
15 |
+
empty_cache = False
|
16 |
+
find_unused_parameters = False
|
17 |
+
mix_prob = 0.8
|
18 |
+
param_dicts = [dict(keyword='block', lr=0.0002)]
|
19 |
+
hooks = [
|
20 |
+
dict(type='CheckpointLoader'),
|
21 |
+
dict(type='IterationTimer', warmup_iter=2),
|
22 |
+
dict(type='InformationWriter'),
|
23 |
+
dict(type='SemSegEvaluator'),
|
24 |
+
dict(type='CheckpointSaver', save_freq=None),
|
25 |
+
dict(type='PreciseEvaluator', test_last=False)
|
26 |
+
]
|
27 |
+
train = dict(type='DefaultTrainer')
|
28 |
+
test = dict(type='SemSegTester', verbose=True)
|
29 |
+
model = dict(
|
30 |
+
type='DefaultSegmentorV2',
|
31 |
+
num_classes=22,
|
32 |
+
backbone_out_channels=64,
|
33 |
+
backbone=dict(
|
34 |
+
type='PT-v3m1',
|
35 |
+
in_channels=4,
|
36 |
+
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'],
|
37 |
+
stride=(2, 2, 2, 2),
|
38 |
+
enc_depths=(2, 2, 2, 6, 2),
|
39 |
+
enc_channels=(32, 64, 128, 256, 512),
|
40 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
41 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
42 |
+
dec_depths=(2, 2, 2, 2),
|
43 |
+
dec_channels=(64, 64, 128, 256),
|
44 |
+
dec_num_head=(4, 4, 8, 16),
|
45 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
46 |
+
mlp_ratio=4,
|
47 |
+
qkv_bias=True,
|
48 |
+
qk_scale=None,
|
49 |
+
attn_drop=0.0,
|
50 |
+
proj_drop=0.0,
|
51 |
+
drop_path=0.3,
|
52 |
+
shuffle_orders=True,
|
53 |
+
pre_norm=True,
|
54 |
+
enable_rpe=False,
|
55 |
+
enable_flash=True,
|
56 |
+
upcast_attention=False,
|
57 |
+
upcast_softmax=False,
|
58 |
+
cls_mode=False,
|
59 |
+
pdnorm_bn=False,
|
60 |
+
pdnorm_ln=False,
|
61 |
+
pdnorm_decouple=True,
|
62 |
+
pdnorm_adaptive=False,
|
63 |
+
pdnorm_affine=True,
|
64 |
+
pdnorm_conditions=('nuScenes', 'SemanticKITTI', 'Waymo')),
|
65 |
+
criteria=[
|
66 |
+
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1),
|
67 |
+
dict(
|
68 |
+
type='LovaszLoss',
|
69 |
+
mode='multiclass',
|
70 |
+
loss_weight=1.0,
|
71 |
+
ignore_index=-1)
|
72 |
+
])
|
73 |
+
optimizer = dict(type='AdamW', lr=0.002, weight_decay=0.005)
|
74 |
+
scheduler = dict(
|
75 |
+
type='OneCycleLR',
|
76 |
+
max_lr=[0.002, 0.0002],
|
77 |
+
pct_start=0.04,
|
78 |
+
anneal_strategy='cos',
|
79 |
+
div_factor=10.0,
|
80 |
+
final_div_factor=100.0)
|
81 |
+
dataset_type = 'WaymoDataset'
|
82 |
+
data_root = 'data/waymo'
|
83 |
+
ignore_index = -1
|
84 |
+
names = [
|
85 |
+
'Car', 'Truck', 'Bus', 'Other Vehicle', 'Motorcyclist', 'Bicyclist',
|
86 |
+
'Pedestrian', 'Sign', 'Traffic Light', 'Pole', 'Construction Cone',
|
87 |
+
'Bicycle', 'Motorcycle', 'Building', 'Vegetation', 'Tree Trunk', 'Curb',
|
88 |
+
'Road', 'Lane Marker', 'Other Ground', 'Walkable', 'Sidewalk'
|
89 |
+
]
|
90 |
+
data = dict(
|
91 |
+
num_classes=22,
|
92 |
+
ignore_index=-1,
|
93 |
+
names=[
|
94 |
+
'Car', 'Truck', 'Bus', 'Other Vehicle', 'Motorcyclist', 'Bicyclist',
|
95 |
+
'Pedestrian', 'Sign', 'Traffic Light', 'Pole', 'Construction Cone',
|
96 |
+
'Bicycle', 'Motorcycle', 'Building', 'Vegetation', 'Tree Trunk',
|
97 |
+
'Curb', 'Road', 'Lane Marker', 'Other Ground', 'Walkable', 'Sidewalk'
|
98 |
+
],
|
99 |
+
train=dict(
|
100 |
+
type='WaymoDataset',
|
101 |
+
split='training',
|
102 |
+
data_root='data/waymo',
|
103 |
+
transform=[
|
104 |
+
dict(
|
105 |
+
type='RandomRotate',
|
106 |
+
angle=[-1, 1],
|
107 |
+
axis='z',
|
108 |
+
center=[0, 0, 0],
|
109 |
+
p=0.5),
|
110 |
+
dict(
|
111 |
+
type='PointClip',
|
112 |
+
point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
|
113 |
+
dict(type='RandomScale', scale=[0.9, 1.1]),
|
114 |
+
dict(type='RandomFlip', p=0.5),
|
115 |
+
dict(type='RandomJitter', sigma=0.005, clip=0.02),
|
116 |
+
dict(
|
117 |
+
type='GridSample',
|
118 |
+
grid_size=0.05,
|
119 |
+
hash_type='fnv',
|
120 |
+
mode='train',
|
121 |
+
keys=('coord', 'strength', 'segment'),
|
122 |
+
return_grid_coord=True),
|
123 |
+
dict(type='ToTensor'),
|
124 |
+
dict(
|
125 |
+
type='Collect',
|
126 |
+
keys=('coord', 'grid_coord', 'segment'),
|
127 |
+
feat_keys=('coord', 'strength'))
|
128 |
+
],
|
129 |
+
test_mode=False,
|
130 |
+
ignore_index=-1,
|
131 |
+
loop=1),
|
132 |
+
val=dict(
|
133 |
+
type='WaymoDataset',
|
134 |
+
split='validation',
|
135 |
+
data_root='data/waymo',
|
136 |
+
transform=[
|
137 |
+
dict(
|
138 |
+
type='PointClip',
|
139 |
+
point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
|
140 |
+
dict(
|
141 |
+
type='GridSample',
|
142 |
+
grid_size=0.05,
|
143 |
+
hash_type='fnv',
|
144 |
+
mode='train',
|
145 |
+
keys=('coord', 'strength', 'segment'),
|
146 |
+
return_grid_coord=True),
|
147 |
+
dict(type='ToTensor'),
|
148 |
+
dict(
|
149 |
+
type='Collect',
|
150 |
+
keys=('coord', 'grid_coord', 'segment'),
|
151 |
+
feat_keys=('coord', 'strength'))
|
152 |
+
],
|
153 |
+
test_mode=False,
|
154 |
+
ignore_index=-1),
|
155 |
+
test=dict(
|
156 |
+
type='WaymoDataset',
|
157 |
+
split='validation',
|
158 |
+
data_root='data/waymo',
|
159 |
+
transform=[
|
160 |
+
dict(
|
161 |
+
type='PointClip',
|
162 |
+
point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
|
163 |
+
dict(type='Copy', keys_dict=dict(segment='origin_segment')),
|
164 |
+
dict(
|
165 |
+
type='GridSample',
|
166 |
+
grid_size=0.025,
|
167 |
+
hash_type='fnv',
|
168 |
+
mode='train',
|
169 |
+
keys=('coord', 'strength', 'segment'),
|
170 |
+
return_inverse=True)
|
171 |
+
],
|
172 |
+
test_mode=True,
|
173 |
+
test_cfg=dict(
|
174 |
+
voxelize=dict(
|
175 |
+
type='GridSample',
|
176 |
+
grid_size=0.05,
|
177 |
+
hash_type='fnv',
|
178 |
+
mode='test',
|
179 |
+
return_grid_coord=True,
|
180 |
+
keys=('coord', 'strength')),
|
181 |
+
crop=None,
|
182 |
+
post_transform=[
|
183 |
+
dict(type='ToTensor'),
|
184 |
+
dict(
|
185 |
+
type='Collect',
|
186 |
+
keys=('coord', 'grid_coord', 'index'),
|
187 |
+
feat_keys=('coord', 'strength'))
|
188 |
+
],
|
189 |
+
aug_transform=[[{
|
190 |
+
'type': 'RandomRotateTargetAngle',
|
191 |
+
'angle': [0],
|
192 |
+
'axis': 'z',
|
193 |
+
'center': [0, 0, 0],
|
194 |
+
'p': 1
|
195 |
+
}],
|
196 |
+
[{
|
197 |
+
'type': 'RandomRotateTargetAngle',
|
198 |
+
'angle': [0.5],
|
199 |
+
'axis': 'z',
|
200 |
+
'center': [0, 0, 0],
|
201 |
+
'p': 1
|
202 |
+
}],
|
203 |
+
[{
|
204 |
+
'type': 'RandomRotateTargetAngle',
|
205 |
+
'angle': [1],
|
206 |
+
'axis': 'z',
|
207 |
+
'center': [0, 0, 0],
|
208 |
+
'p': 1
|
209 |
+
}],
|
210 |
+
[{
|
211 |
+
'type': 'RandomRotateTargetAngle',
|
212 |
+
'angle': [1.5],
|
213 |
+
'axis': 'z',
|
214 |
+
'center': [0, 0, 0],
|
215 |
+
'p': 1
|
216 |
+
}]]),
|
217 |
+
ignore_index=-1))
|
waymo-semseg-pt-v3m1-0-base/events.out.tfevents.1708353865.waymo-semseg-pt-v3m1-0-base
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2daba840e4090c8bf1ca66cacce791e1a1550d083e726239320f18daac44adf8
|
3 |
+
size 9651320
|
waymo-semseg-pt-v3m1-0-base/train.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:324e68325525a91d5075ae5a67554276f4454dbade0ea1f8e5d032207fbc68f8
|
3 |
+
size 29365755
|