--- tags: - generated_from_trainer model-index: - name: ner_model_ep3 results: [] --- # ner_model_ep3 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3874 - allergy Name F1: 0.7968 - allergy Name Pres: 0.7706 - allergy Name Rec: 0.8249 - cancer F1: 0.7556 - cancer Pres: 0.7589 - cancer Rec: 0.7524 - chronic Disease F1: 0.7776 - chronic Disease Pres: 0.7562 - chronic Disease Rec: 0.8002 - treatment F1: 0.7804 - treatmen Prest: 0.7620 - treatment Rec: 0.7996 - Over All Precision: 0.7596 - Over All Recall: 0.7936 - Over All F1: 0.7762 - Over All Accuracy: 0.8806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | allergy Name F1 | allergy Name Pres | allergy Name Rec | cancer F1 | cancer Pres | cancer Rec | chronic Disease F1 | chronic Disease Pres | chronic Disease Rec | treatment F1 | treatmen Prest | treatment Rec | Over All Precision | Over All Recall | Over All F1 | Over All Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:------------------:|:-----------------:|:----------:|:------------:|:-----------:|:-------------------:|:---------------------:|:--------------------:|:-------------:|:---------------:|:--------------:|:------------------:|:---------------:|:-----------:|:-----------------:| | 0.3761 | 1.0 | 324 | 0.3480 | 0.7346 | 0.6720 | 0.8099 | 0.7108 | 0.7584 | 0.6688 | 0.7657 | 0.7619 | 0.7695 | 0.7700 | 0.7437 | 0.7983 | 0.7499 | 0.7687 | 0.7592 | 0.8738 | | 0.29 | 2.0 | 648 | 0.3548 | 0.7593 | 0.7023 | 0.8263 | 0.7406 | 0.7683 | 0.7149 | 0.7710 | 0.7608 | 0.7816 | 0.7738 | 0.7435 | 0.8067 | 0.7519 | 0.7842 | 0.7677 | 0.8775 | | 0.232 | 3.0 | 972 | 0.3579 | 0.8046 | 0.7787 | 0.8323 | 0.7446 | 0.7472 | 0.7421 | 0.7763 | 0.7568 | 0.7968 | 0.7798 | 0.7658 | 0.7944 | 0.7601 | 0.7887 | 0.7741 | 0.8809 | | 0.1945 | 4.0 | 1296 | 0.3829 | 0.7942 | 0.7645 | 0.8263 | 0.7463 | 0.7678 | 0.7260 | 0.7749 | 0.7584 | 0.7920 | 0.7808 | 0.7683 | 0.7938 | 0.7643 | 0.7840 | 0.7741 | 0.8792 | | 0.1734 | 5.0 | 1620 | 0.3874 | 0.7968 | 0.7706 | 0.8249 | 0.7556 | 0.7589 | 0.7524 | 0.7776 | 0.7562 | 0.8002 | 0.7804 | 0.7620 | 0.7996 | 0.7596 | 0.7936 | 0.7762 | 0.8806 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1