Ponce-01 commited on
Commit
3ae37a8
1 Parent(s): 38bada7

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-generation-inference
5
+ - text-generation
6
+ - peft
7
+ library_name: transformers
8
+ widget:
9
+ - messages:
10
+ - role: user
11
+ content: What is your favorite condiment?
12
+ license: other
13
+ ---
14
+
15
+ # Model Trained Using AutoTrain
16
+
17
+ This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
18
+
19
+ # Usage
20
+
21
+ ```python
22
+
23
+ from transformers import AutoModelForCausalLM, AutoTokenizer
24
+
25
+ model_path = "PATH_TO_THIS_REPO"
26
+
27
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
28
+ model = AutoModelForCausalLM.from_pretrained(
29
+ model_path,
30
+ device_map="auto",
31
+ torch_dtype='auto'
32
+ ).eval()
33
+
34
+ # Prompt content: "hi"
35
+ messages = [
36
+ {"role": "user", "content": "hi"}
37
+ ]
38
+
39
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
40
+ output_ids = model.generate(input_ids.to('cuda'))
41
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
42
+
43
+ # Model response: "Hello! How can I assist you today?"
44
+ print(response)
45
+ ```
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abf6245cfabca86f5f92e466574a55d5aa2e2a1f7daedebb32fbd71f3722a064
3
+ size 9022864
checkpoint-2727/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-2727/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-2727/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abf6245cfabca86f5f92e466574a55d5aa2e2a1f7daedebb32fbd71f3722a064
3
+ size 9022864
checkpoint-2727/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f925838e714bbb5948d42d248b6aac131b6688a34d8466fb889b39769acfe129
3
+ size 18096570
checkpoint-2727/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049c26b844b79121ddd8379f7f69194e63f6fbf6aa007eeac0c66f17eebb8893
3
+ size 888
checkpoint-2727/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0100c9bbee45d1b1ed84834d0052e4d095914155c0fe7516ff38ade7e7ed6ce7
3
+ size 14244
checkpoint-2727/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86317a93c4ee327ce7a7995d093fc399e0212ec59d3fb966eca87d43d63b2cc3
3
+ size 1064
checkpoint-2727/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-2727/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2727/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-2727/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
checkpoint-2727/trainer_state.json ADDED
@@ -0,0 +1,973 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9998166819431714,
5
+ "eval_steps": 500,
6
+ "global_step": 2727,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 1.4652014652014653e-05,
15
+ "loss": 0.0,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 0.0,
21
+ "learning_rate": 2.9304029304029305e-05,
22
+ "loss": 0.0,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "grad_norm": 0.0,
28
+ "learning_rate": 4.3956043956043955e-05,
29
+ "loss": 0.0,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.03,
34
+ "grad_norm": 0.0,
35
+ "learning_rate": 5.860805860805861e-05,
36
+ "loss": 0.0,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.04,
41
+ "grad_norm": 0.0,
42
+ "learning_rate": 7.326007326007326e-05,
43
+ "loss": 0.0,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.04,
48
+ "grad_norm": 0.0,
49
+ "learning_rate": 8.791208791208791e-05,
50
+ "loss": 0.0,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "grad_norm": 0.0,
56
+ "learning_rate": 0.00010256410256410256,
57
+ "loss": 0.0,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.06,
62
+ "grad_norm": 0.0,
63
+ "learning_rate": 0.00011721611721611722,
64
+ "loss": 0.0,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.07,
69
+ "grad_norm": 0.0,
70
+ "learning_rate": 0.00013186813186813188,
71
+ "loss": 0.0,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.07,
76
+ "grad_norm": 0.0,
77
+ "learning_rate": 0.00014652014652014652,
78
+ "loss": 0.0,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.08,
83
+ "grad_norm": 0.0,
84
+ "learning_rate": 0.00016117216117216118,
85
+ "loss": 0.0,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.09,
90
+ "grad_norm": 0.0,
91
+ "learning_rate": 0.00017582417582417582,
92
+ "loss": 0.0,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "grad_norm": 0.0,
98
+ "learning_rate": 0.00019047619047619048,
99
+ "loss": 0.0,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.1,
104
+ "grad_norm": 0.0,
105
+ "learning_rate": 0.00019942950285248574,
106
+ "loss": 0.0,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.11,
111
+ "grad_norm": 0.0,
112
+ "learning_rate": 0.000197799511002445,
113
+ "loss": 0.0,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.12,
118
+ "grad_norm": 0.0,
119
+ "learning_rate": 0.00019616951915240425,
120
+ "loss": 0.0,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.12,
125
+ "grad_norm": 0.0,
126
+ "learning_rate": 0.00019453952730236348,
127
+ "loss": 0.0,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.13,
132
+ "grad_norm": 0.0,
133
+ "learning_rate": 0.00019290953545232276,
134
+ "loss": 0.0,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "grad_norm": 0.0,
140
+ "learning_rate": 0.00019127954360228199,
141
+ "loss": 0.0,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.15,
146
+ "grad_norm": 0.0,
147
+ "learning_rate": 0.00018964955175224124,
148
+ "loss": 0.0,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.15,
153
+ "grad_norm": 0.0,
154
+ "learning_rate": 0.0001880195599022005,
155
+ "loss": 0.0,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.16,
160
+ "grad_norm": 0.0,
161
+ "learning_rate": 0.00018638956805215975,
162
+ "loss": 0.0,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.17,
167
+ "grad_norm": 0.0,
168
+ "learning_rate": 0.000184759576202119,
169
+ "loss": 0.0,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.18,
174
+ "grad_norm": 0.0,
175
+ "learning_rate": 0.00018312958435207826,
176
+ "loss": 0.0,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "grad_norm": 0.0,
182
+ "learning_rate": 0.0001814995925020375,
183
+ "loss": 0.0,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.19,
188
+ "grad_norm": 0.0,
189
+ "learning_rate": 0.00017986960065199674,
190
+ "loss": 0.0,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.2,
195
+ "grad_norm": 0.0,
196
+ "learning_rate": 0.000178239608801956,
197
+ "loss": 0.0,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.21,
202
+ "grad_norm": 0.0,
203
+ "learning_rate": 0.00017660961695191524,
204
+ "loss": 0.0,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.21,
209
+ "grad_norm": 0.0,
210
+ "learning_rate": 0.0001749796251018745,
211
+ "loss": 0.0,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.22,
216
+ "grad_norm": 0.0,
217
+ "learning_rate": 0.00017334963325183375,
218
+ "loss": 0.0,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "grad_norm": 0.0,
224
+ "learning_rate": 0.000171719641401793,
225
+ "loss": 0.0,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.23,
230
+ "grad_norm": 0.0,
231
+ "learning_rate": 0.00017008964955175223,
232
+ "loss": 0.0,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.24,
237
+ "grad_norm": 0.0,
238
+ "learning_rate": 0.00016845965770171151,
239
+ "loss": 0.0,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.25,
244
+ "grad_norm": 0.0,
245
+ "learning_rate": 0.00016682966585167074,
246
+ "loss": 0.0,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.26,
251
+ "grad_norm": 0.0,
252
+ "learning_rate": 0.00016519967400163,
253
+ "loss": 0.0,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.26,
258
+ "grad_norm": 0.0,
259
+ "learning_rate": 0.00016356968215158925,
260
+ "loss": 0.0,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "grad_norm": 0.0,
266
+ "learning_rate": 0.0001619396903015485,
267
+ "loss": 0.0,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.28,
272
+ "grad_norm": 0.0,
273
+ "learning_rate": 0.00016030969845150773,
274
+ "loss": 0.0,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.29,
279
+ "grad_norm": 0.0,
280
+ "learning_rate": 0.000158679706601467,
281
+ "loss": 0.0,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.29,
286
+ "grad_norm": 0.0,
287
+ "learning_rate": 0.00015704971475142624,
288
+ "loss": 0.0,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.3,
293
+ "grad_norm": 0.0,
294
+ "learning_rate": 0.00015541972290138552,
295
+ "loss": 0.0,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.31,
300
+ "grad_norm": 0.0,
301
+ "learning_rate": 0.00015378973105134475,
302
+ "loss": 0.0,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "grad_norm": 0.0,
308
+ "learning_rate": 0.000152159739201304,
309
+ "loss": 0.0,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.32,
314
+ "grad_norm": 0.0,
315
+ "learning_rate": 0.00015052974735126325,
316
+ "loss": 0.0,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.33,
321
+ "grad_norm": 0.0,
322
+ "learning_rate": 0.0001488997555012225,
323
+ "loss": 0.0,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.34,
328
+ "grad_norm": 0.0,
329
+ "learning_rate": 0.00014726976365118173,
330
+ "loss": 0.0,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.34,
335
+ "grad_norm": 0.0,
336
+ "learning_rate": 0.00014563977180114102,
337
+ "loss": 0.0,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.35,
342
+ "grad_norm": 0.0,
343
+ "learning_rate": 0.00014400977995110024,
344
+ "loss": 0.0,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "grad_norm": 0.0,
350
+ "learning_rate": 0.0001423797881010595,
351
+ "loss": 0.0,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.37,
356
+ "grad_norm": 0.0,
357
+ "learning_rate": 0.00014074979625101875,
358
+ "loss": 0.0,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 0.37,
363
+ "grad_norm": 0.0,
364
+ "learning_rate": 0.000139119804400978,
365
+ "loss": 0.0,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 0.38,
370
+ "grad_norm": 0.0,
371
+ "learning_rate": 0.00013748981255093726,
372
+ "loss": 0.0,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 0.39,
377
+ "grad_norm": 0.0,
378
+ "learning_rate": 0.0001358598207008965,
379
+ "loss": 0.0,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 0.4,
384
+ "grad_norm": 0.0,
385
+ "learning_rate": 0.00013422982885085577,
386
+ "loss": 0.0,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 0.4,
391
+ "grad_norm": 0.0,
392
+ "learning_rate": 0.000132599837000815,
393
+ "loss": 0.0,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 0.41,
398
+ "grad_norm": 0.0,
399
+ "learning_rate": 0.00013096984515077427,
400
+ "loss": 0.0,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 0.42,
405
+ "grad_norm": 0.0,
406
+ "learning_rate": 0.0001293398533007335,
407
+ "loss": 0.0,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 0.43,
412
+ "grad_norm": 0.0,
413
+ "learning_rate": 0.00012770986145069276,
414
+ "loss": 0.0,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 0.43,
419
+ "grad_norm": 0.0,
420
+ "learning_rate": 0.000126079869600652,
421
+ "loss": 0.0,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 0.44,
426
+ "grad_norm": 0.0,
427
+ "learning_rate": 0.00012444987775061126,
428
+ "loss": 0.0,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "grad_norm": 0.0,
434
+ "learning_rate": 0.0001228198859005705,
435
+ "loss": 0.0,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 0.45,
440
+ "grad_norm": 0.0,
441
+ "learning_rate": 0.00012118989405052976,
442
+ "loss": 0.0,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 0.46,
447
+ "grad_norm": 0.0,
448
+ "learning_rate": 0.000119559902200489,
449
+ "loss": 0.0,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 0.47,
454
+ "grad_norm": 0.0,
455
+ "learning_rate": 0.00011792991035044825,
456
+ "loss": 0.0,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 0.48,
461
+ "grad_norm": 0.0,
462
+ "learning_rate": 0.0001162999185004075,
463
+ "loss": 0.0,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 0.48,
468
+ "grad_norm": 0.0,
469
+ "learning_rate": 0.00011466992665036676,
470
+ "loss": 0.0,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 0.49,
475
+ "grad_norm": 0.0,
476
+ "learning_rate": 0.000113039934800326,
477
+ "loss": 0.0,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 0.5,
482
+ "grad_norm": 0.0,
483
+ "learning_rate": 0.00011140994295028527,
484
+ "loss": 0.0,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 0.51,
489
+ "grad_norm": 0.0,
490
+ "learning_rate": 0.00010977995110024451,
491
+ "loss": 0.0,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 0.51,
496
+ "grad_norm": 0.0,
497
+ "learning_rate": 0.00010814995925020375,
498
+ "loss": 0.0,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 0.52,
503
+ "grad_norm": 0.0,
504
+ "learning_rate": 0.00010651996740016302,
505
+ "loss": 0.0,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 0.53,
510
+ "grad_norm": 0.0,
511
+ "learning_rate": 0.00010488997555012226,
512
+ "loss": 0.0,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "grad_norm": 0.0,
518
+ "learning_rate": 0.0001032599837000815,
519
+ "loss": 0.0,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 0.54,
524
+ "grad_norm": 0.0,
525
+ "learning_rate": 0.00010162999185004076,
526
+ "loss": 0.0,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 0.55,
531
+ "grad_norm": 0.0,
532
+ "learning_rate": 0.0001,
533
+ "loss": 0.0,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 0.56,
538
+ "grad_norm": 0.0,
539
+ "learning_rate": 9.837000814995926e-05,
540
+ "loss": 0.0,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 0.56,
545
+ "grad_norm": 0.0,
546
+ "learning_rate": 9.67400162999185e-05,
547
+ "loss": 0.0,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 0.57,
552
+ "grad_norm": 0.0,
553
+ "learning_rate": 9.511002444987775e-05,
554
+ "loss": 0.0,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 0.58,
559
+ "grad_norm": 0.0,
560
+ "learning_rate": 9.348003259983701e-05,
561
+ "loss": 0.0,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 0.59,
566
+ "grad_norm": 0.0,
567
+ "learning_rate": 9.185004074979625e-05,
568
+ "loss": 0.0,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 0.59,
573
+ "grad_norm": 0.0,
574
+ "learning_rate": 9.02200488997555e-05,
575
+ "loss": 0.0,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 0.6,
580
+ "grad_norm": 0.0,
581
+ "learning_rate": 8.859005704971476e-05,
582
+ "loss": 0.0,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 0.61,
587
+ "grad_norm": 0.0,
588
+ "learning_rate": 8.6960065199674e-05,
589
+ "loss": 0.0,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 0.62,
594
+ "grad_norm": 0.0,
595
+ "learning_rate": 8.533007334963325e-05,
596
+ "loss": 0.0,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 0.62,
601
+ "grad_norm": 0.0,
602
+ "learning_rate": 8.37000814995925e-05,
603
+ "loss": 0.0,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 0.63,
608
+ "grad_norm": 0.0,
609
+ "learning_rate": 8.207008964955176e-05,
610
+ "loss": 0.0,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 0.64,
615
+ "grad_norm": 0.0,
616
+ "learning_rate": 8.044009779951101e-05,
617
+ "loss": 0.0,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 0.65,
622
+ "grad_norm": 0.0,
623
+ "learning_rate": 7.881010594947025e-05,
624
+ "loss": 0.0,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 0.65,
629
+ "grad_norm": 0.0,
630
+ "learning_rate": 7.71801140994295e-05,
631
+ "loss": 0.0,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 0.66,
636
+ "grad_norm": 0.0,
637
+ "learning_rate": 7.555012224938876e-05,
638
+ "loss": 0.0,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 0.67,
643
+ "grad_norm": 0.0,
644
+ "learning_rate": 7.392013039934801e-05,
645
+ "loss": 0.0,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 0.67,
650
+ "grad_norm": 0.0,
651
+ "learning_rate": 7.229013854930725e-05,
652
+ "loss": 0.0,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 0.68,
657
+ "grad_norm": 0.0,
658
+ "learning_rate": 7.066014669926651e-05,
659
+ "loss": 0.0,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 0.69,
664
+ "grad_norm": 0.0,
665
+ "learning_rate": 6.903015484922576e-05,
666
+ "loss": 0.0,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 0.7,
671
+ "grad_norm": 0.0,
672
+ "learning_rate": 6.740016299918502e-05,
673
+ "loss": 0.0,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 0.7,
678
+ "grad_norm": 0.0,
679
+ "learning_rate": 6.577017114914426e-05,
680
+ "loss": 0.0,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 0.71,
685
+ "grad_norm": 0.0,
686
+ "learning_rate": 6.414017929910351e-05,
687
+ "loss": 0.0,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 0.72,
692
+ "grad_norm": 0.0,
693
+ "learning_rate": 6.251018744906276e-05,
694
+ "loss": 0.0,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 0.73,
699
+ "grad_norm": 0.0,
700
+ "learning_rate": 6.0880195599022005e-05,
701
+ "loss": 0.0,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 0.73,
706
+ "grad_norm": 0.0,
707
+ "learning_rate": 5.925020374898126e-05,
708
+ "loss": 0.0,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 0.74,
713
+ "grad_norm": 0.0,
714
+ "learning_rate": 5.762021189894051e-05,
715
+ "loss": 0.0,
716
+ "step": 2020
717
+ },
718
+ {
719
+ "epoch": 0.75,
720
+ "grad_norm": 0.0,
721
+ "learning_rate": 5.5990220048899754e-05,
722
+ "loss": 0.0,
723
+ "step": 2040
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "grad_norm": 0.0,
728
+ "learning_rate": 5.436022819885901e-05,
729
+ "loss": 0.0,
730
+ "step": 2060
731
+ },
732
+ {
733
+ "epoch": 0.76,
734
+ "grad_norm": 0.0,
735
+ "learning_rate": 5.273023634881826e-05,
736
+ "loss": 0.0,
737
+ "step": 2080
738
+ },
739
+ {
740
+ "epoch": 0.77,
741
+ "grad_norm": 0.0,
742
+ "learning_rate": 5.110024449877751e-05,
743
+ "loss": 0.0,
744
+ "step": 2100
745
+ },
746
+ {
747
+ "epoch": 0.78,
748
+ "grad_norm": 0.0,
749
+ "learning_rate": 4.9470252648736756e-05,
750
+ "loss": 0.0,
751
+ "step": 2120
752
+ },
753
+ {
754
+ "epoch": 0.78,
755
+ "grad_norm": 0.0,
756
+ "learning_rate": 4.784026079869601e-05,
757
+ "loss": 0.0,
758
+ "step": 2140
759
+ },
760
+ {
761
+ "epoch": 0.79,
762
+ "grad_norm": 0.0,
763
+ "learning_rate": 4.6210268948655264e-05,
764
+ "loss": 0.0,
765
+ "step": 2160
766
+ },
767
+ {
768
+ "epoch": 0.8,
769
+ "grad_norm": 0.0,
770
+ "learning_rate": 4.458027709861451e-05,
771
+ "loss": 0.0,
772
+ "step": 2180
773
+ },
774
+ {
775
+ "epoch": 0.81,
776
+ "grad_norm": 0.0,
777
+ "learning_rate": 4.295028524857376e-05,
778
+ "loss": 0.0,
779
+ "step": 2200
780
+ },
781
+ {
782
+ "epoch": 0.81,
783
+ "grad_norm": 0.0,
784
+ "learning_rate": 4.132029339853301e-05,
785
+ "loss": 0.0,
786
+ "step": 2220
787
+ },
788
+ {
789
+ "epoch": 0.82,
790
+ "grad_norm": 0.0,
791
+ "learning_rate": 3.969030154849226e-05,
792
+ "loss": 0.0,
793
+ "step": 2240
794
+ },
795
+ {
796
+ "epoch": 0.83,
797
+ "grad_norm": 0.0,
798
+ "learning_rate": 3.8060309698451507e-05,
799
+ "loss": 0.0,
800
+ "step": 2260
801
+ },
802
+ {
803
+ "epoch": 0.84,
804
+ "grad_norm": 0.0,
805
+ "learning_rate": 3.643031784841076e-05,
806
+ "loss": 0.0,
807
+ "step": 2280
808
+ },
809
+ {
810
+ "epoch": 0.84,
811
+ "grad_norm": 0.0,
812
+ "learning_rate": 3.480032599837001e-05,
813
+ "loss": 0.0,
814
+ "step": 2300
815
+ },
816
+ {
817
+ "epoch": 0.85,
818
+ "grad_norm": 0.0,
819
+ "learning_rate": 3.3170334148329255e-05,
820
+ "loss": 0.0,
821
+ "step": 2320
822
+ },
823
+ {
824
+ "epoch": 0.86,
825
+ "grad_norm": 0.0,
826
+ "learning_rate": 3.154034229828851e-05,
827
+ "loss": 0.0,
828
+ "step": 2340
829
+ },
830
+ {
831
+ "epoch": 0.87,
832
+ "grad_norm": 0.0,
833
+ "learning_rate": 2.991035044824776e-05,
834
+ "loss": 0.0,
835
+ "step": 2360
836
+ },
837
+ {
838
+ "epoch": 0.87,
839
+ "grad_norm": 0.0,
840
+ "learning_rate": 2.8280358598207013e-05,
841
+ "loss": 0.0,
842
+ "step": 2380
843
+ },
844
+ {
845
+ "epoch": 0.88,
846
+ "grad_norm": 0.0,
847
+ "learning_rate": 2.665036674816626e-05,
848
+ "loss": 0.0,
849
+ "step": 2400
850
+ },
851
+ {
852
+ "epoch": 0.89,
853
+ "grad_norm": 0.0,
854
+ "learning_rate": 2.5020374898125508e-05,
855
+ "loss": 0.0,
856
+ "step": 2420
857
+ },
858
+ {
859
+ "epoch": 0.89,
860
+ "grad_norm": 0.0,
861
+ "learning_rate": 2.3390383048084762e-05,
862
+ "loss": 0.0,
863
+ "step": 2440
864
+ },
865
+ {
866
+ "epoch": 0.9,
867
+ "grad_norm": 0.0,
868
+ "learning_rate": 2.1760391198044012e-05,
869
+ "loss": 0.0,
870
+ "step": 2460
871
+ },
872
+ {
873
+ "epoch": 0.91,
874
+ "grad_norm": 0.0,
875
+ "learning_rate": 2.0130399348003263e-05,
876
+ "loss": 0.0,
877
+ "step": 2480
878
+ },
879
+ {
880
+ "epoch": 0.92,
881
+ "grad_norm": 0.0,
882
+ "learning_rate": 1.850040749796251e-05,
883
+ "loss": 0.0,
884
+ "step": 2500
885
+ },
886
+ {
887
+ "epoch": 0.92,
888
+ "grad_norm": 0.0,
889
+ "learning_rate": 1.687041564792176e-05,
890
+ "loss": 0.0,
891
+ "step": 2520
892
+ },
893
+ {
894
+ "epoch": 0.93,
895
+ "grad_norm": 0.0,
896
+ "learning_rate": 1.5240423797881013e-05,
897
+ "loss": 0.0,
898
+ "step": 2540
899
+ },
900
+ {
901
+ "epoch": 0.94,
902
+ "grad_norm": 0.0,
903
+ "learning_rate": 1.361043194784026e-05,
904
+ "loss": 0.0,
905
+ "step": 2560
906
+ },
907
+ {
908
+ "epoch": 0.95,
909
+ "grad_norm": 0.0,
910
+ "learning_rate": 1.198044009779951e-05,
911
+ "loss": 0.0,
912
+ "step": 2580
913
+ },
914
+ {
915
+ "epoch": 0.95,
916
+ "grad_norm": 0.0,
917
+ "learning_rate": 1.0350448247758763e-05,
918
+ "loss": 0.0,
919
+ "step": 2600
920
+ },
921
+ {
922
+ "epoch": 0.96,
923
+ "grad_norm": 0.0,
924
+ "learning_rate": 8.720456397718012e-06,
925
+ "loss": 0.0,
926
+ "step": 2620
927
+ },
928
+ {
929
+ "epoch": 0.97,
930
+ "grad_norm": 0.0,
931
+ "learning_rate": 7.090464547677262e-06,
932
+ "loss": 0.0,
933
+ "step": 2640
934
+ },
935
+ {
936
+ "epoch": 0.98,
937
+ "grad_norm": 0.0,
938
+ "learning_rate": 5.460472697636512e-06,
939
+ "loss": 0.0,
940
+ "step": 2660
941
+ },
942
+ {
943
+ "epoch": 0.98,
944
+ "grad_norm": 0.0,
945
+ "learning_rate": 3.830480847595763e-06,
946
+ "loss": 0.0,
947
+ "step": 2680
948
+ },
949
+ {
950
+ "epoch": 0.99,
951
+ "grad_norm": 0.0,
952
+ "learning_rate": 2.2004889975550126e-06,
953
+ "loss": 0.0,
954
+ "step": 2700
955
+ },
956
+ {
957
+ "epoch": 1.0,
958
+ "grad_norm": 0.0,
959
+ "learning_rate": 5.704971475142625e-07,
960
+ "loss": 0.0,
961
+ "step": 2720
962
+ }
963
+ ],
964
+ "logging_steps": 20,
965
+ "max_steps": 2727,
966
+ "num_input_tokens_seen": 0,
967
+ "num_train_epochs": 1,
968
+ "save_steps": 500,
969
+ "total_flos": 67854207762432.0,
970
+ "train_batch_size": 1,
971
+ "trial_name": null,
972
+ "trial_params": null
973
+ }
checkpoint-2727/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48616edb7995550a027fc0ba976fa1c83bde52ee5d36d0b884282a40ce0042d
3
+ size 4920
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48616edb7995550a027fc0ba976fa1c83bde52ee5d36d0b884282a40ce0042d
3
+ size 4920
training_params.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
3
+ "project_name": "DFEP-05",
4
+ "data_path": "DFEP-05/autotrain-data",
5
+ "train_split": "train",
6
+ "valid_split": null,
7
+ "add_eos_token": false,
8
+ "block_size": 1,
9
+ "model_max_length": 1024,
10
+ "padding": null,
11
+ "trainer": "default",
12
+ "use_flash_attention_2": false,
13
+ "log": "none",
14
+ "disable_gradient_checkpointing": false,
15
+ "logging_steps": -1,
16
+ "evaluation_strategy": "epoch",
17
+ "save_total_limit": 1,
18
+ "save_strategy": "epoch",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "lr": 0.0002,
22
+ "epochs": 1,
23
+ "batch_size": 1,
24
+ "warmup_ratio": 0.1,
25
+ "gradient_accumulation": 4,
26
+ "optimizer": "adamw_torch",
27
+ "scheduler": "linear",
28
+ "weight_decay": 0.01,
29
+ "max_grad_norm": 1.0,
30
+ "seed": 42,
31
+ "chat_template": null,
32
+ "quantization": "int4",
33
+ "target_modules": null,
34
+ "merge_adapter": false,
35
+ "peft": true,
36
+ "lora_r": 16,
37
+ "lora_alpha": 32,
38
+ "lora_dropout": 0.05,
39
+ "model_ref": null,
40
+ "dpo_beta": 0.1,
41
+ "prompt_text_column": "autotrain_prompt",
42
+ "text_column": "autotrain_text",
43
+ "rejected_text_column": "autotrain_rejected_text",
44
+ "push_to_hub": true,
45
+ "repo_id": "Ponce-01/DFEP-05",
46
+ "username": null
47
+ }