File size: 4,843 Bytes
5b0b9cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5689893
 
 
5b0b9cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- generated_from_trainer
datasets:
- mispeech/speechocean762
metrics:
- wer
model-index:
- name: Whisper Tiny En - speechocean762
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: speechocean762
      type: mispeech/speechocean762
    metrics:
    - name: Wer
      type: wer
      value: 38.84869455803712
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny En - speechocean762

This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the speechocean762 dataset.
It achieves the following results on the evaluation set (Best results):
- Loss: 0.6837
- Wer: 28.3422

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 500

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 4.0683        | 0.2778  | 10   | 4.0618          | 38.3139 |
| 3.9216        | 0.5556  | 20   | 3.8951          | 37.4961 |
| 3.7275        | 0.8333  | 30   | 3.6337          | 45.8635 |
| 3.3621        | 1.1111  | 40   | 3.2960          | 36.4580 |
| 2.9818        | 1.3889  | 50   | 2.8749          | 40.7046 |
| 2.5404        | 1.6667  | 60   | 2.3590          | 44.1648 |
| 1.9537        | 1.9444  | 70   | 1.7972          | 49.4495 |
| 1.4184        | 2.2222  | 80   | 1.3603          | 66.3731 |
| 1.1875        | 2.5     | 90   | 1.1660          | 55.5206 |
| 1.1203        | 2.7778  | 100  | 1.0743          | 44.8569 |
| 1.024         | 3.0556  | 110  | 1.0085          | 44.2277 |
| 0.905         | 3.3333  | 120  | 0.9581          | 42.4347 |
| 0.8787        | 3.6111  | 130  | 0.9169          | 40.9877 |
| 0.8677        | 3.8889  | 140  | 0.8844          | 37.2130 |
| 0.7563        | 4.1667  | 150  | 0.8573          | 36.4895 |
| 0.7497        | 4.4444  | 160  | 0.8324          | 35.9862 |
| 0.7283        | 4.7222  | 170  | 0.8097          | 35.2941 |
| 0.7055        | 5.0     | 180  | 0.7907          | 30.6071 |
| 0.6259        | 5.2778  | 190  | 0.7770          | 30.9531 |
| 0.6115        | 5.5556  | 200  | 0.7601          | 30.3555 |
| 0.5998        | 5.8333  | 210  | 0.7457          | 29.8207 |
| 0.5752        | 6.1111  | 220  | 0.7368          | 29.9465 |
| 0.5031        | 6.3889  | 230  | 0.7284          | 29.7892 |
| 0.5079        | 6.6667  | 240  | 0.7140          | 29.0028 |
| 0.4969        | 6.9444  | 250  | 0.7006          | 29.3174 |
| 0.4285        | 7.2222  | 260  | 0.6951          | 32.5889 |
| 0.466         | 7.5     | 270  | 0.6886          | 31.6766 |
| 0.4101        | 7.7778  | 280  | 0.6837          | 28.3422 |
| 0.4021        | 8.0556  | 290  | 0.6755          | 31.4250 |
| 0.359         | 8.3333  | 300  | 0.6763          | 32.5260 |
| 0.3281        | 8.6111  | 310  | 0.6727          | 32.2114 |
| 0.3604        | 8.8889  | 320  | 0.6695          | 36.1120 |
| 0.3085        | 9.1667  | 330  | 0.6698          | 32.1799 |
| 0.3007        | 9.4444  | 340  | 0.6698          | 32.3372 |
| 0.3313        | 9.7222  | 350  | 0.6659          | 35.7974 |
| 0.2862        | 10.0    | 360  | 0.6638          | 32.0226 |
| 0.278         | 10.2778 | 370  | 0.6639          | 31.9912 |
| 0.2645        | 10.5556 | 380  | 0.6639          | 32.0856 |
| 0.2708        | 10.8333 | 390  | 0.6649          | 32.0541 |
| 0.257         | 11.1111 | 400  | 0.6620          | 32.1799 |
| 0.2455        | 11.3889 | 410  | 0.6621          | 31.8025 |
| 0.2506        | 11.6667 | 420  | 0.6636          | 38.9745 |
| 0.2545        | 11.9444 | 430  | 0.6635          | 38.9116 |
| 0.2266        | 12.2222 | 440  | 0.6644          | 31.8339 |
| 0.2072        | 12.5    | 450  | 0.6652          | 32.1799 |
| 0.2382        | 12.7778 | 460  | 0.6661          | 31.9597 |
| 0.219         | 13.0556 | 470  | 0.6653          | 38.7858 |
| 0.2256        | 13.3333 | 480  | 0.6649          | 38.9431 |
| 0.2178        | 13.6111 | 490  | 0.6652          | 38.9431 |
| 0.2229        | 13.8889 | 500  | 0.6654          | 38.8487 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2.dev0
- Tokenizers 0.19.1