Porridge9243
commited on
Commit
·
c1c33e1
1
Parent(s):
00365a5
model from unit 1 exercise
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_ppo_default_steps_1E6.zip +3 -0
- lunar_ppo_default_steps_1E6/_stable_baselines3_version +1 -0
- lunar_ppo_default_steps_1E6/data +94 -0
- lunar_ppo_default_steps_1E6/policy.optimizer.pth +3 -0
- lunar_ppo_default_steps_1E6/policy.pth +3 -0
- lunar_ppo_default_steps_1E6/pytorch_variables.pth +3 -0
- lunar_ppo_default_steps_1E6/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 228.20 +/- 57.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcde5ed28b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcde5ed2940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcde5ed29d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcde5ed2a60>", "_build": "<function ActorCriticPolicy._build at 0x7fcde5ed2af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcde5ed2b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcde5ed2c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcde5ed2ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcde5ed2d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcde5ed2dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcde5ed2e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcde5ecacc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673089117887256698, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADpser4e1KE+gg+kPchGgr5P30S94mqsvAAAAAAAAAAA7XNEPrbjILx2qlYzEjVMsGxbiL1POr+zAACAPwAAgD/j34U+gTPPvIngnbcOaAk20QIzvoL0wjYAAIA/AACAPw3owj0EoLQ9OEHhvUeDMr6MIGG8XBwFvQAAAAAAAAAAGldAvmRNjj/+ohO/OiEIv1KaRb4UqT2+AAAAAAAAAAB2E54+HVZcPiaM4b3d7Wq+jdUdPauXe7sAAAAAAAAAACBiBr7bWgU/CJ+DPZHurr5QhdC8nbTeugAAAAAAAAAAAM4JPqm/AT+QN7q9c0egvkE/MjvyjYS9AAAAAAAAAABm5q875LS4PwWu6Dy1xTm+jgQnvJNaarwAAAAAAAAAALo/IT62JgK86GFKPIUQc7qBHWO986ZLuwAAgD8AAIA/WpdRPuEysrzvc4Q8fhXnuqwAIb5d3LS7AACAPwAAgD8tFDq+KPLMvPHxjDrzywI5E70yPoKNv7kAAIA/AACAPzO9/zwOe9A9UFgkPUcZVL5jJTA7MyO4PAAAAAAAAAAAU4xLPtqsAL0R+Cy6PHGtOJCaX77LE3A5AACAPwAAgD96fkw+AcXYvEppITt/Uqm5LS1Evr7iXLoAAIA/AACAP3rfnz5NNKc+dqoMvrtreL52H2c9HiNpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYHXkSGfCcECUhpRSlIwBbJRNCAGMAXSUR0CpTsXiBGx2dX2UKGgGaAloD0MIXWqEfiYvb0CUhpRSlGgVTRYBaBZHQKlO9J8v25B1fZQoaAZoCWgPQwh0KENVTF5vQJSGlFKUaBVL1mgWR0CpT6i2DxsmdX2UKGgGaAloD0MI7WZGPxq5cECUhpRSlGgVTYwBaBZHQKlP4W2PT5R1fZQoaAZoCWgPQwjs3R/v1VlvQJSGlFKUaBVNDAFoFkdAqVA0Xm/34HV9lChoBmgJaA9DCDYiGAeXJGxAlIaUUpRoFU0QAWgWR0CpUD/Zdv87dX2UKGgGaAloD0MIuB6F69EraECUhpRSlGgVTQABaBZHQKlSqpfhMrV1fZQoaAZoCWgPQwhIh4cw/kJtQJSGlFKUaBVL8WgWR0CpUu2w/xDtdX2UKGgGaAloD0MI7/54r9pkYUCUhpRSlGgVTegDaBZHQKlS/Kyv9tN1fZQoaAZoCWgPQwjQmEnUSwVwQJSGlFKUaBVNDQFoFkdAqVOUurZJ1HV9lChoBmgJaA9DCEHWU6uv7j5AlIaUUpRoFUvraBZHQKmDPNIK+i91fZQoaAZoCWgPQwgG19zRP79wQJSGlFKUaBVNQgFoFkdAqYNKUxEfDHV9lChoBmgJaA9DCHCyDdwB5nBAlIaUUpRoFUvyaBZHQKmDmM5wOvt1fZQoaAZoCWgPQwgnT1lNV9xxQJSGlFKUaBVNUQFoFkdAqYQypLmITHV9lChoBmgJaA9DCNEeL6QD+nBAlIaUUpRoFU0MAWgWR0CphK+2d/aydX2UKGgGaAloD0MITn/2I0WAb0CUhpRSlGgVTQYBaBZHQKmExG1hLGt1fZQoaAZoCWgPQwhh3Xh3JMRwQJSGlFKUaBVNPgFoFkdAqYTggieNDXV9lChoBmgJaA9DCKWeBaE82G9AlIaUUpRoFU0PAWgWR0CphTGaYu01dX2UKGgGaAloD0MI8UV7vNDtcUCUhpRSlGgVTSABaBZHQKmFhcafjCJ1fZQoaAZoCWgPQwiJeyx9aIluQJSGlFKUaBVL42gWR0CphkTqbBoFdX2UKGgGaAloD0MISu1FtF1Cc0CUhpRSlGgVTSMBaBZHQKmHUkleF+N1fZQoaAZoCWgPQwiGOUGbHEI5QJSGlFKUaBVLo2gWR0Cph6/grH2idX2UKGgGaAloD0MIhZm2f2XHbUCUhpRSlGgVS+poFkdAqYf3sRg7YHV9lChoBmgJaA9DCGuDE9EvJG1AlIaUUpRoFU0GAWgWR0CpiDGtITXbdX2UKGgGaAloD0MIsTVbeYlQcECUhpRSlGgVS+JoFkdAqYh4ZCOWB3V9lChoBmgJaA9DCDbM0Hgi/EpAlIaUUpRoFUvRaBZHQKmItgIhQnB1fZQoaAZoCWgPQwjZ690fbwFxQJSGlFKUaBVNJAFoFkdAqYi7TMJQcnV9lChoBmgJaA9DCNEF9S1zMjxAlIaUUpRoFUvcaBZHQKmJvJsfq5d1fZQoaAZoCWgPQwhda+9T1VtsQJSGlFKUaBVNgwFoFkdAqYnle0G/vnV9lChoBmgJaA9DCJEnSdcMrnBAlIaUUpRoFU0NAWgWR0CpifrWZqmCdX2UKGgGaAloD0MIcEOM1zwXZECUhpRSlGgVTegDaBZHQKmKHZcLSeB1fZQoaAZoCWgPQwgnaJPDJzlwQJSGlFKUaBVNWQFoFkdAqYubK7qY7nV9lChoBmgJaA9DCJZdMLgmbXFAlIaUUpRoFU1JAWgWR0CpjIsURFqjdX2UKGgGaAloD0MIGFqdnGGccUCUhpRSlGgVTQgBaBZHQKmM+QTVUdd1fZQoaAZoCWgPQwi/mZguRGZxQJSGlFKUaBVNJgFoFkdAqY1YVj7Q9nV9lChoBmgJaA9DCAEUI0ummXBAlIaUUpRoFU0PAWgWR0Cpja16u4gBdX2UKGgGaAloD0MIsmZkkPurcUCUhpRSlGgVTUgBaBZHQKmNumce8wp1fZQoaAZoCWgPQwhVF/AyQ6RwQJSGlFKUaBVNIwFoFkdAqY5eVu76HnV9lChoBmgJaA9DCNQP6iJFdnBAlIaUUpRoFU0sAWgWR0CpjojPnjhldX2UKGgGaAloD0MIzApFup+MbkCUhpRSlGgVS/doFkdAqY6ynLq2SnV9lChoBmgJaA9DCPYKC+4HumFAlIaUUpRoFU3oA2gWR0Cpjr0m+j/NdX2UKGgGaAloD0MIIxEawcbubUCUhpRSlGgVS/toFkdAqY7XqoqCpXV9lChoBmgJaA9DCDhlbr4RhVxAlIaUUpRoFU3oA2gWR0Cpj4+98JD3dX2UKGgGaAloD0MIww34/PCqcECUhpRSlGgVTRMBaBZHQKmQuRLbpNd1fZQoaAZoCWgPQwjhJM0fUwlqQJSGlFKUaBVL82gWR0CpkVWac7QtdX2UKGgGaAloD0MIUrgehSuxcECUhpRSlGgVS/toFkdAqZLF+TeO43V9lChoBmgJaA9DCPz89+A1FW9AlIaUUpRoFUvtaBZHQKmTBKGtZFJ1fZQoaAZoCWgPQwjecvVjEyxvQJSGlFKUaBVNKgFoFkdAqZMV7dBSk3V9lChoBmgJaA9DCHZsBOJ1nXBAlIaUUpRoFU0tAWgWR0CpkzIL5RCQdX2UKGgGaAloD0MIP62iP3RLcECUhpRSlGgVTQQBaBZHQKmTY1tO2y91fZQoaAZoCWgPQwibOo+Kv81wQJSGlFKUaBVNEQFoFkdAqZNuP/7zkXV9lChoBmgJaA9DCERRoE/k1XFAlIaUUpRoFU0rAWgWR0CplBc5sCT2dX2UKGgGaAloD0MIkJ4ih4icbUCUhpRSlGgVTQABaBZHQKmURC+De0p1fZQoaAZoCWgPQwgC1xUzwqZiQJSGlFKUaBVN6ANoFkdAqZTUMTewcHV9lChoBmgJaA9DCDqvsUsULHNAlIaUUpRoFU3UAWgWR0CplSkbxVhkdX2UKGgGaAloD0MIU5J1ODo3cUCUhpRSlGgVTR8BaBZHQKmV83Jgb6x1fZQoaAZoCWgPQwjL2NDNvlhwQJSGlFKUaBVL2mgWR0Cplt8twrDqdX2UKGgGaAloD0MIkKD4MaafcECUhpRSlGgVS/NoFkdAqZcguCf6GnV9lChoBmgJaA9DCIANiBBXq25AlIaUUpRoFUv1aBZHQKmXiG7Bfrt1fZQoaAZoCWgPQwhHjQkxlzpvQJSGlFKUaBVL/WgWR0Cpl5eJgsshdX2UKGgGaAloD0MIBtfc0f9ZbUCUhpRSlGgVS/9oFkdAqZfp6IFeOXV9lChoBmgJaA9DCNC2mnVGUnBAlIaUUpRoFU0TAWgWR0CpmFEsz2vjdX2UKGgGaAloD0MIQKIJFHGbcECUhpRSlGgVS/doFkdAqZhxBzFMqXV9lChoBmgJaA9DCG73cp+cqGBAlIaUUpRoFU3oA2gWR0CpmtDklu3udX2UKGgGaAloD0MINe84RQdDckCUhpRSlGgVTVQBaBZHQKmbN3h4t6J1fZQoaAZoCWgPQwiYNbHAF1RwQJSGlFKUaBVNEQFoFkdAqZtBKL8763V9lChoBmgJaA9DCC/h0Fs8SG1AlIaUUpRoFU19AWgWR0Cpm1b+Lm6odX2UKGgGaAloD0MI+HDJceffcECUhpRSlGgVTQUBaBZHQKmb/v/BFd91fZQoaAZoCWgPQwhPzeUGQ6tbQJSGlFKUaBVN6ANoFkdAqZxrcXWOInV9lChoBmgJaA9DCLTKTGn9bmxAlIaUUpRoFUv5aBZHQKmcgiPhhph1fZQoaAZoCWgPQwjNA1jkV4RwQJSGlFKUaBVL/2gWR0CpnI/k/8l5dX2UKGgGaAloD0MIV2DI6tZFYECUhpRSlGgVTegDaBZHQKmcwYR/ViF1fZQoaAZoCWgPQwjoMF9eQNtwQJSGlFKUaBVNJwFoFkdAqZzireZXuHV9lChoBmgJaA9DCByVm6il925AlIaUUpRoFU0AAWgWR0CpnThRAKOUdX2UKGgGaAloD0MIs2FNZRHqcECUhpRSlGgVTRoBaBZHQKmdtLA57w91fZQoaAZoCWgPQwgy5UNQNWZyQJSGlFKUaBVNRgFoFkdAqZ3y3AmAsnV9lChoBmgJaA9DCIoEU83sHnBAlIaUUpRoFUvlaBZHQKmfKcXFcY91fZQoaAZoCWgPQwjGMv0S8WxtQJSGlFKUaBVL8GgWR0Cpn2sVLzwudX2UKGgGaAloD0MIO1J95xfiYkCUhpRSlGgVTegDaBZHQKmflhc7heh1fZQoaAZoCWgPQwgUIApmTL1wQJSGlFKUaBVNTwFoFkdAqaDTRc/t6XV9lChoBmgJaA9DCPNxbagYCz1AlIaUUpRoFUvVaBZHQKmg+7U5MlF1fZQoaAZoCWgPQwg82jhibQByQJSGlFKUaBVNKgFoFkdAqaE/L9uP3nV9lChoBmgJaA9DCE1p/S0BYHFAlIaUUpRoFU0RAWgWR0CpoVHt4RmLdX2UKGgGaAloD0MIn+QOm0j4bUCUhpRSlGgVTScBaBZHQKmiHnKW9lF1fZQoaAZoCWgPQwiiluZWiLltQJSGlFKUaBVNSAFoFkdAqaI+912aD3V9lChoBmgJaA9DCG/Tn/0IeHBAlIaUUpRoFU2sA2gWR0Cporx8D0UXdX2UKGgGaAloD0MICHWRQplTcUCUhpRSlGgVTSkBaBZHQKmjJCqIacZ1fZQoaAZoCWgPQwivWwTGOjdxQJSGlFKUaBVNKwFoFkdAqaNtN+LFXXV9lChoBmgJaA9DCFDG+DD7I3BAlIaUUpRoFUvzaBZHQKmjp7cfvF51fZQoaAZoCWgPQwhk6UMXVOdvQJSGlFKUaBVL6WgWR0Cpo9nkcS5BdX2UKGgGaAloD0MIoFIlyl43bECUhpRSlGgVTT8DaBZHQKmkXJaq0dB1fZQoaAZoCWgPQwg0nZ0MDqhxQJSGlFKUaBVNQgFoFkdAqaU7Yh+vyXV9lChoBmgJaA9DCLu3IjFBE3BAlIaUUpRoFU0HAWgWR0CppX6naWX1dX2UKGgGaAloD0MInFHzVTLacECUhpRSlGgVTQsBaBZHQKmls4Ajps51fZQoaAZoCWgPQwgceLXc2XFxQJSGlFKUaBVL+2gWR0CppbqtYB/7dX2UKGgGaAloD0MIXOhKBCr9bUCUhpRSlGgVTRkBaBZHQKmmMQ8OkLx1fZQoaAZoCWgPQwgkmdU7XD1uQJSGlFKUaBVL7mgWR0CpplRjBl+WdX2UKGgGaAloD0MIIqmFkklycUCUhpRSlGgVS+hoFkdAqaarhUBGQXV9lChoBmgJaA9DCEBPAwZJkG9AlIaUUpRoFU0IAWgWR0Cpp+QrMC9zdX2UKGgGaAloD0MIIgA49iyxcECUhpRSlGgVS9hoFkdAqagELc9GJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_ppo_default_steps_1E6.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ba1cbb038dbd6735f6359cc5cf8520e430d178daec4011231ccae4db1de24b3
|
3 |
+
size 147179
|
lunar_ppo_default_steps_1E6/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
lunar_ppo_default_steps_1E6/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcde5ed28b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcde5ed2940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcde5ed29d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcde5ed2a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcde5ed2af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcde5ed2b80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcde5ed2c10>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcde5ed2ca0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcde5ed2d30>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcde5ed2dc0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcde5ed2e50>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcde5ecacc0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673089117887256698,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADpser4e1KE+gg+kPchGgr5P30S94mqsvAAAAAAAAAAA7XNEPrbjILx2qlYzEjVMsGxbiL1POr+zAACAPwAAgD/j34U+gTPPvIngnbcOaAk20QIzvoL0wjYAAIA/AACAPw3owj0EoLQ9OEHhvUeDMr6MIGG8XBwFvQAAAAAAAAAAGldAvmRNjj/+ohO/OiEIv1KaRb4UqT2+AAAAAAAAAAB2E54+HVZcPiaM4b3d7Wq+jdUdPauXe7sAAAAAAAAAACBiBr7bWgU/CJ+DPZHurr5QhdC8nbTeugAAAAAAAAAAAM4JPqm/AT+QN7q9c0egvkE/MjvyjYS9AAAAAAAAAABm5q875LS4PwWu6Dy1xTm+jgQnvJNaarwAAAAAAAAAALo/IT62JgK86GFKPIUQc7qBHWO986ZLuwAAgD8AAIA/WpdRPuEysrzvc4Q8fhXnuqwAIb5d3LS7AACAPwAAgD8tFDq+KPLMvPHxjDrzywI5E70yPoKNv7kAAIA/AACAPzO9/zwOe9A9UFgkPUcZVL5jJTA7MyO4PAAAAAAAAAAAU4xLPtqsAL0R+Cy6PHGtOJCaX77LE3A5AACAPwAAgD96fkw+AcXYvEppITt/Uqm5LS1Evr7iXLoAAIA/AACAP3rfnz5NNKc+dqoMvrtreL52H2c9HiNpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYHXkSGfCcECUhpRSlIwBbJRNCAGMAXSUR0CpTsXiBGx2dX2UKGgGaAloD0MIXWqEfiYvb0CUhpRSlGgVTRYBaBZHQKlO9J8v25B1fZQoaAZoCWgPQwh0KENVTF5vQJSGlFKUaBVL1mgWR0CpT6i2DxsmdX2UKGgGaAloD0MI7WZGPxq5cECUhpRSlGgVTYwBaBZHQKlP4W2PT5R1fZQoaAZoCWgPQwjs3R/v1VlvQJSGlFKUaBVNDAFoFkdAqVA0Xm/34HV9lChoBmgJaA9DCDYiGAeXJGxAlIaUUpRoFU0QAWgWR0CpUD/Zdv87dX2UKGgGaAloD0MIuB6F69EraECUhpRSlGgVTQABaBZHQKlSqpfhMrV1fZQoaAZoCWgPQwhIh4cw/kJtQJSGlFKUaBVL8WgWR0CpUu2w/xDtdX2UKGgGaAloD0MI7/54r9pkYUCUhpRSlGgVTegDaBZHQKlS/Kyv9tN1fZQoaAZoCWgPQwjQmEnUSwVwQJSGlFKUaBVNDQFoFkdAqVOUurZJ1HV9lChoBmgJaA9DCEHWU6uv7j5AlIaUUpRoFUvraBZHQKmDPNIK+i91fZQoaAZoCWgPQwgG19zRP79wQJSGlFKUaBVNQgFoFkdAqYNKUxEfDHV9lChoBmgJaA9DCHCyDdwB5nBAlIaUUpRoFUvyaBZHQKmDmM5wOvt1fZQoaAZoCWgPQwgnT1lNV9xxQJSGlFKUaBVNUQFoFkdAqYQypLmITHV9lChoBmgJaA9DCNEeL6QD+nBAlIaUUpRoFU0MAWgWR0CphK+2d/aydX2UKGgGaAloD0MITn/2I0WAb0CUhpRSlGgVTQYBaBZHQKmExG1hLGt1fZQoaAZoCWgPQwhh3Xh3JMRwQJSGlFKUaBVNPgFoFkdAqYTggieNDXV9lChoBmgJaA9DCKWeBaE82G9AlIaUUpRoFU0PAWgWR0CphTGaYu01dX2UKGgGaAloD0MI8UV7vNDtcUCUhpRSlGgVTSABaBZHQKmFhcafjCJ1fZQoaAZoCWgPQwiJeyx9aIluQJSGlFKUaBVL42gWR0CphkTqbBoFdX2UKGgGaAloD0MISu1FtF1Cc0CUhpRSlGgVTSMBaBZHQKmHUkleF+N1fZQoaAZoCWgPQwiGOUGbHEI5QJSGlFKUaBVLo2gWR0Cph6/grH2idX2UKGgGaAloD0MIhZm2f2XHbUCUhpRSlGgVS+poFkdAqYf3sRg7YHV9lChoBmgJaA9DCGuDE9EvJG1AlIaUUpRoFU0GAWgWR0CpiDGtITXbdX2UKGgGaAloD0MIsTVbeYlQcECUhpRSlGgVS+JoFkdAqYh4ZCOWB3V9lChoBmgJaA9DCDbM0Hgi/EpAlIaUUpRoFUvRaBZHQKmItgIhQnB1fZQoaAZoCWgPQwjZ690fbwFxQJSGlFKUaBVNJAFoFkdAqYi7TMJQcnV9lChoBmgJaA9DCNEF9S1zMjxAlIaUUpRoFUvcaBZHQKmJvJsfq5d1fZQoaAZoCWgPQwhda+9T1VtsQJSGlFKUaBVNgwFoFkdAqYnle0G/vnV9lChoBmgJaA9DCJEnSdcMrnBAlIaUUpRoFU0NAWgWR0CpifrWZqmCdX2UKGgGaAloD0MIcEOM1zwXZECUhpRSlGgVTegDaBZHQKmKHZcLSeB1fZQoaAZoCWgPQwgnaJPDJzlwQJSGlFKUaBVNWQFoFkdAqYubK7qY7nV9lChoBmgJaA9DCJZdMLgmbXFAlIaUUpRoFU1JAWgWR0CpjIsURFqjdX2UKGgGaAloD0MIGFqdnGGccUCUhpRSlGgVTQgBaBZHQKmM+QTVUdd1fZQoaAZoCWgPQwi/mZguRGZxQJSGlFKUaBVNJgFoFkdAqY1YVj7Q9nV9lChoBmgJaA9DCAEUI0ummXBAlIaUUpRoFU0PAWgWR0Cpja16u4gBdX2UKGgGaAloD0MIsmZkkPurcUCUhpRSlGgVTUgBaBZHQKmNumce8wp1fZQoaAZoCWgPQwhVF/AyQ6RwQJSGlFKUaBVNIwFoFkdAqY5eVu76HnV9lChoBmgJaA9DCNQP6iJFdnBAlIaUUpRoFU0sAWgWR0CpjojPnjhldX2UKGgGaAloD0MIzApFup+MbkCUhpRSlGgVS/doFkdAqY6ynLq2SnV9lChoBmgJaA9DCPYKC+4HumFAlIaUUpRoFU3oA2gWR0Cpjr0m+j/NdX2UKGgGaAloD0MIIxEawcbubUCUhpRSlGgVS/toFkdAqY7XqoqCpXV9lChoBmgJaA9DCDhlbr4RhVxAlIaUUpRoFU3oA2gWR0Cpj4+98JD3dX2UKGgGaAloD0MIww34/PCqcECUhpRSlGgVTRMBaBZHQKmQuRLbpNd1fZQoaAZoCWgPQwjhJM0fUwlqQJSGlFKUaBVL82gWR0CpkVWac7QtdX2UKGgGaAloD0MIUrgehSuxcECUhpRSlGgVS/toFkdAqZLF+TeO43V9lChoBmgJaA9DCPz89+A1FW9AlIaUUpRoFUvtaBZHQKmTBKGtZFJ1fZQoaAZoCWgPQwjecvVjEyxvQJSGlFKUaBVNKgFoFkdAqZMV7dBSk3V9lChoBmgJaA9DCHZsBOJ1nXBAlIaUUpRoFU0tAWgWR0CpkzIL5RCQdX2UKGgGaAloD0MIP62iP3RLcECUhpRSlGgVTQQBaBZHQKmTY1tO2y91fZQoaAZoCWgPQwibOo+Kv81wQJSGlFKUaBVNEQFoFkdAqZNuP/7zkXV9lChoBmgJaA9DCERRoE/k1XFAlIaUUpRoFU0rAWgWR0CplBc5sCT2dX2UKGgGaAloD0MIkJ4ih4icbUCUhpRSlGgVTQABaBZHQKmURC+De0p1fZQoaAZoCWgPQwgC1xUzwqZiQJSGlFKUaBVN6ANoFkdAqZTUMTewcHV9lChoBmgJaA9DCDqvsUsULHNAlIaUUpRoFU3UAWgWR0CplSkbxVhkdX2UKGgGaAloD0MIU5J1ODo3cUCUhpRSlGgVTR8BaBZHQKmV83Jgb6x1fZQoaAZoCWgPQwjL2NDNvlhwQJSGlFKUaBVL2mgWR0Cplt8twrDqdX2UKGgGaAloD0MIkKD4MaafcECUhpRSlGgVS/NoFkdAqZcguCf6GnV9lChoBmgJaA9DCIANiBBXq25AlIaUUpRoFUv1aBZHQKmXiG7Bfrt1fZQoaAZoCWgPQwhHjQkxlzpvQJSGlFKUaBVL/WgWR0Cpl5eJgsshdX2UKGgGaAloD0MIBtfc0f9ZbUCUhpRSlGgVS/9oFkdAqZfp6IFeOXV9lChoBmgJaA9DCNC2mnVGUnBAlIaUUpRoFU0TAWgWR0CpmFEsz2vjdX2UKGgGaAloD0MIQKIJFHGbcECUhpRSlGgVS/doFkdAqZhxBzFMqXV9lChoBmgJaA9DCG73cp+cqGBAlIaUUpRoFU3oA2gWR0CpmtDklu3udX2UKGgGaAloD0MINe84RQdDckCUhpRSlGgVTVQBaBZHQKmbN3h4t6J1fZQoaAZoCWgPQwiYNbHAF1RwQJSGlFKUaBVNEQFoFkdAqZtBKL8763V9lChoBmgJaA9DCC/h0Fs8SG1AlIaUUpRoFU19AWgWR0Cpm1b+Lm6odX2UKGgGaAloD0MI+HDJceffcECUhpRSlGgVTQUBaBZHQKmb/v/BFd91fZQoaAZoCWgPQwhPzeUGQ6tbQJSGlFKUaBVN6ANoFkdAqZxrcXWOInV9lChoBmgJaA9DCLTKTGn9bmxAlIaUUpRoFUv5aBZHQKmcgiPhhph1fZQoaAZoCWgPQwjNA1jkV4RwQJSGlFKUaBVL/2gWR0CpnI/k/8l5dX2UKGgGaAloD0MIV2DI6tZFYECUhpRSlGgVTegDaBZHQKmcwYR/ViF1fZQoaAZoCWgPQwjoMF9eQNtwQJSGlFKUaBVNJwFoFkdAqZzireZXuHV9lChoBmgJaA9DCByVm6il925AlIaUUpRoFU0AAWgWR0CpnThRAKOUdX2UKGgGaAloD0MIs2FNZRHqcECUhpRSlGgVTRoBaBZHQKmdtLA57w91fZQoaAZoCWgPQwgy5UNQNWZyQJSGlFKUaBVNRgFoFkdAqZ3y3AmAsnV9lChoBmgJaA9DCIoEU83sHnBAlIaUUpRoFUvlaBZHQKmfKcXFcY91fZQoaAZoCWgPQwjGMv0S8WxtQJSGlFKUaBVL8GgWR0Cpn2sVLzwudX2UKGgGaAloD0MIO1J95xfiYkCUhpRSlGgVTegDaBZHQKmflhc7heh1fZQoaAZoCWgPQwgUIApmTL1wQJSGlFKUaBVNTwFoFkdAqaDTRc/t6XV9lChoBmgJaA9DCPNxbagYCz1AlIaUUpRoFUvVaBZHQKmg+7U5MlF1fZQoaAZoCWgPQwg82jhibQByQJSGlFKUaBVNKgFoFkdAqaE/L9uP3nV9lChoBmgJaA9DCE1p/S0BYHFAlIaUUpRoFU0RAWgWR0CpoVHt4RmLdX2UKGgGaAloD0MIn+QOm0j4bUCUhpRSlGgVTScBaBZHQKmiHnKW9lF1fZQoaAZoCWgPQwiiluZWiLltQJSGlFKUaBVNSAFoFkdAqaI+912aD3V9lChoBmgJaA9DCG/Tn/0IeHBAlIaUUpRoFU2sA2gWR0Cporx8D0UXdX2UKGgGaAloD0MICHWRQplTcUCUhpRSlGgVTSkBaBZHQKmjJCqIacZ1fZQoaAZoCWgPQwivWwTGOjdxQJSGlFKUaBVNKwFoFkdAqaNtN+LFXXV9lChoBmgJaA9DCFDG+DD7I3BAlIaUUpRoFUvzaBZHQKmjp7cfvF51fZQoaAZoCWgPQwhk6UMXVOdvQJSGlFKUaBVL6WgWR0Cpo9nkcS5BdX2UKGgGaAloD0MIoFIlyl43bECUhpRSlGgVTT8DaBZHQKmkXJaq0dB1fZQoaAZoCWgPQwg0nZ0MDqhxQJSGlFKUaBVNQgFoFkdAqaU7Yh+vyXV9lChoBmgJaA9DCLu3IjFBE3BAlIaUUpRoFU0HAWgWR0CppX6naWX1dX2UKGgGaAloD0MInFHzVTLacECUhpRSlGgVTQsBaBZHQKmls4Ajps51fZQoaAZoCWgPQwgceLXc2XFxQJSGlFKUaBVL+2gWR0CppbqtYB/7dX2UKGgGaAloD0MIXOhKBCr9bUCUhpRSlGgVTRkBaBZHQKmmMQ8OkLx1fZQoaAZoCWgPQwgkmdU7XD1uQJSGlFKUaBVL7mgWR0CpplRjBl+WdX2UKGgGaAloD0MIIqmFkklycUCUhpRSlGgVS+hoFkdAqaarhUBGQXV9lChoBmgJaA9DCEBPAwZJkG9AlIaUUpRoFU0IAWgWR0Cpp+QrMC9zdX2UKGgGaAloD0MIIgA49iyxcECUhpRSlGgVS9hoFkdAqagELc9GJHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_ppo_default_steps_1E6/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46522819db6311d17c4bb6c2f63718ead4180eefa367acc54a1bd76c04a56127
|
3 |
+
size 87929
|
lunar_ppo_default_steps_1E6/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e71d89eaf341088bc062ff6f5f1ce6aef4fa79019bb0c4216d310b18ac361378
|
3 |
+
size 43201
|
lunar_ppo_default_steps_1E6/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_ppo_default_steps_1E6/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (228 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 228.20250459775548, "std_reward": 57.53748040744918, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T11:41:00.579747"}
|