PratikSahu
commited on
Commit
·
d0bbb46
1
Parent(s):
2d58ff6
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.18 +/- 0.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7936de91bc18c99f653e0ef4d487b798bb6e3827ad660f878c81bb9b2a694a3e
|
3 |
+
size 106916
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b724ede4040>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b724ede8080>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1696582623945878514,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzed3P9BpgD8maY6/LLF3Pv2CDzyvRN4+FJGuv670Y78ei46/hssoPy86tT9i95c/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATyi2P5pFUT+ojLW/zKHGPzbIfL5e02c/FOOAv6hf076m/sW+xieEP0c8rD/CDUk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADN53c/0GmAPyZpjr8/Te0+EdkYPX4C0b8ssXc+/YIPPK9E3j5jjfQ+/PAmuQvXxD4Uka6/rvRjvx6Ljr+Yh6G/pr68PeHhl76Gyyg/Lzq1P2L3lz8vpSI/hup/P1U5xT+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.96838075 1.0032291 -1.1125839 ]\n [ 0.2418868 0.00875926 0.43411776]\n [-1.3638024 -0.89045227 -1.1136205 ]\n [ 0.6593555 1.4158381 1.187237 ]]",
|
34 |
+
"desired_goal": "[[ 1.4231051 0.8174683 -1.418355 ]\n [ 1.5518126 -0.2468575 0.90556896]\n [-1.0069299 -0.41283917 -0.38670844]\n [ 1.0324638 1.3455895 0.7853662 ]]",
|
35 |
+
"observation": "[[ 9.6838075e-01 1.0032291e+00 -1.1125839e+00 4.6347997e-01\n 3.7316386e-02 -1.6328886e+00]\n [ 2.4188679e-01 8.7592574e-03 4.3411776e-01 4.7764120e-01\n -1.5920767e-04 3.8445315e-01]\n [-1.3638024e+00 -8.9045227e-01 -1.1136205e+00 -1.2619505e+00\n 9.2160508e-02 -2.9664519e-01]\n [ 6.5935552e-01 1.4158381e+00 1.1872370e+00 6.3533300e-01\n 9.9967229e-01 1.5408121e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAllS4vHyYFL7MKyQ+p3P8vSj57r2mPkM+i6bxvZYXB73bXTE9NyIuvVFUALqwcK47lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.02250127 -0.14511293 0.16032332]\n [-0.12326746 -0.11668617 0.19066867]\n [-0.11799344 -0.03298148 0.0433024 ]\n [-0.0425131 -0.00048954 0.00532349]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv656lchTwUiMAWyUSwKMAXSUR0CocxELx7RfdX2UKGgGR7/AiBXjlxOtaAdLAmgIR0Coc1Jg1FYudX2UKGgGR7/Ct6ol2NedaAdLAmgIR0Coc5f1pTMrdX2UKGgGR7/Ty4Wk8A7xaAdLA2gIR0Coc9wyRB/rdX2UKGgGR7+8EU0vXbudaAdLAmgIR0Coc116/qPfdX2UKGgGR7/Nk+5e7cwhaAdLA2gIR0CocyBwl0HRdX2UKGgGR7+iMir1dxACaAdLAWgIR0CocyVAiV0LdX2UKGgGR7+uFSKm8/UwaAdLAmgIR0Coc+XIuGsWdX2UKGgGR7/Qs+3Ytg8baAdLA2gIR0Coc6YVIqb0dX2UKGgGR7+/ch1Tzd1uaAdLAmgIR0Coc2d2ovSMdX2UKGgGR7+6bvw3HaN/aAdLAmgIR0Cocy6eXiR5dX2UKGgGR7+9j5KvmozfaAdLAmgIR0Coc/F6JIlMdX2UKGgGR7/Aa1kUbkwOaAdLAmgIR0Coc7GDcuandX2UKGgGR7/Kh2W6bvw3aAdLA2gIR0Coc3avq1PWdX2UKGgGR7+1V/+bVjI8aAdLAmgIR0Coc7nXVbzLdX2UKGgGR7/MGSIP9UCJaAdLA2gIR0Cocz5HEuQIdX2UKGgGR7/KwaBI4EOiaAdLA2gIR0Coc//BnBcidX2UKGgGR7/CDzyz5XU6aAdLA2gIR0Coc4WP1ct5dX2UKGgGR7/BDUmUnogWaAdLAmgIR0Coc0icoYvWdX2UKGgGR7/XZ/CqIacaaAdLA2gIR0Coc8v3i704dX2UKGgGR7+pciW3Sa3JaAdLAWgIR0Coc40PH1e0dX2UKGgGR7/ZlenhsImgaAdLBGgIR0CodBRhMJyAdX2UKGgGR7/HRR/EwWWQaAdLA2gIR0Coc1hreqJedX2UKGgGR7/bCaZx7zClaAdLBGgIR0Coc90T+NtJdX2UKGgGR7/YDcdo371qaAdLBGgIR0Coc54/3WWhdX2UKGgGR7+4nrpqynk1aAdLAmgIR0Coc2FM7EHddX2UKGgGR7+njjrAxi5NaAdLAWgIR0Coc2gAyVOcdX2UKGgGR7/V+uvECNjtaAdLBGgIR0CodCim2sq8dX2UKGgGR7+4arFOwgTzaAdLAmgIR0Coc+jAaef7dX2UKGgGR7+SSmqHXVbzaAdLAWgIR0CodC0jLSuydX2UKGgGR7/PBJqZc9nsaAdLA2gIR0Coc67GNrCWdX2UKGgGR7/Br8BMi8nNaAdLAmgIR0Coc3HqVyFPdX2UKGgGR7/QKWszVMEiaAdLA2gIR0CodD6EJ0GNdX2UKGgGR7/VRhttQ9A5aAdLBGgIR0Coc/6asp5NdX2UKGgGR7/QONHYpUgkaAdLA2gIR0Coc4Lvb48EdX2UKGgGR7/VCEYfnwG4aAdLBGgIR0Coc8SUkfLcdX2UKGgGR7++JXQtz0YkaAdLAmgIR0CodAfaYeDGdX2UKGgGR7+w6DGtITXbaAdLAmgIR0Coc80euFHsdX2UKGgGR7/TOP/7zkIYaAdLBGgIR0CodFCj+JgtdX2UKGgGR7/Wqj8DSw4baAdLBGgIR0Coc5R33YcvdX2UKGgGR7/OZkTYdyT7aAdLA2gIR0CodBc4o7V8dX2UKGgGR7/BYISlFc6eaAdLAmgIR0CodFuQhfShdX2UKGgGR7/JcgyM1jy4aAdLA2gIR0Coc9zPBzmwdX2UKGgGR7/B0W/JvHcUaAdLAmgIR0CodCAQxvehdX2UKGgGR7/HJHRTjvNNaAdLA2gIR0Coc6Q/oq0/dX2UKGgGR7/MWqLjxTbWaAdLA2gIR0CodGk2P1cudX2UKGgGR7/KCMglnh86aAdLA2gIR0Coc+pqIrOJdX2UKGgGR7/YFmWdEsreaAdLA2gIR0Coc7RN7BwddX2UKGgGR7/fyqMm4RVZaAdLBGgIR0CodDUR3/xUdX2UKGgGR7+9bzK9wm3OaAdLAmgIR0Coc/YwqRU4dX2UKGgGR7/P7CSA6MisaAdLA2gIR0CodHmXgLqmdX2UKGgGR7+/aTOgQHzIaAdLAmgIR0CodD3d9Dx9dX2UKGgGR7/GZzgdfb9IaAdLA2gIR0Coc8Ix59mZdX2UKGgGR7/JOclPacqfaAdLA2gIR0CodInc1wYMdX2UKGgGR7/WEBsANoalaAdLBGgIR0CodAuEdvKmdX2UKGgGR7/QpWFN+LFXaAdLA2gIR0CodFBtLteEdX2UKGgGR7/WPBBRhttRaAdLBGgIR0Coc9j+717IdX2UKGgGR7/UTspobn5jaAdLA2gIR0CodJmQSzw+dX2UKGgGR7/JLbHp8neBaAdLA2gIR0CodBrDZUT+dX2UKGgGR7+XnIQvpQk5aAdLAWgIR0CodJ4jB2wFdX2UKGgGR7/Sp3X7Lt/naAdLA2gIR0CodF5I6KcedX2UKGgGR7+XFcY64lQeaAdLAWgIR0CodB9+5OJtdX2UKGgGR7+f0qYqoZQ6aAdLAWgIR0CodGZv99+gdX2UKGgGR7/WvugHu7YkaAdLBGgIR0Coc+8gQpWndX2UKGgGR7/OThYNiH6/aAdLA2gIR0CodLAGSpzcdX2UKGgGR7/AyNXHR1HOaAdLAmgIR0CodHBkZrHmdX2UKGgGR7/Uki2UjcEeaAdLA2gIR0CodDF23azvdX2UKGgGR7/PwXqJMxoJaAdLA2gIR0CodAJjMFEBdX2UKGgGR7/G6ErXlKbsaAdLA2gIR0CodMXWnTAndX2UKGgGR7/RVfeDWbw0aAdLA2gIR0CodIXrleWwdX2UKGgGR7/QneSB9TgmaAdLA2gIR0CodEb9Q40edX2UKGgGR7++VxCIDYAbaAdLAmgIR0CodM4yGi5/dX2UKGgGR7/LMg2ZRbbDaAdLA2gIR0CodBIGyHEddX2UKGgGR7/QpaiblRxcaAdLA2gIR0CodJLXcxj8dX2UKGgGR7/RlbeMyad+aAdLA2gIR0CodFQQlKK6dX2UKGgGR7/BjuKGcnVoaAdLAmgIR0CodNg3Lmp3dX2UKGgGR7+78IiTt9hJaAdLAmgIR0CodJ+4TbnHdX2UKGgGR7+5fjS5RTCMaAdLAmgIR0CodGC/oJRgdX2UKGgGR7/RW56MR6F/aAdLA2gIR0CodCOuzQeFdX2UKGgGR7+7Lr5ZbILgaAdLAmgIR0CodOSZ0CA+dX2UKGgGR796b4Ju2qkuaAdLAWgIR0CodOhPbfxddX2UKGgGR7/Ch7E5yU9qaAdLAmgIR0CodGlLnLaFdX2UKGgGR7/D4QBgeA/caAdLAmgIR0CodCxArxy5dX2UKGgGR7+plnRLK3d9aAdLAWgIR0CodOy39aUzdX2UKGgGR7/GUVzp5eJIaAdLA2gIR0CodKzAN5MUdX2UKGgGR7/BlIVdonKGaAdLAmgIR0CodPcwYcebdX2UKGgGR7+9LBbfP5YYaAdLAmgIR0CodLdTYNAkdX2UKGgGR7/Gv1UVBUrDaAdLA2gIR0CodHhvitJWdX2UKGgGR7/QjNY8uBczaAdLA2gIR0CodDtb1RLsdX2UKGgGR7/C2aUiY9gXaAdLAmgIR0CodP96sySFdX2UKGgGR7/CvHtF8XvZaAdLAmgIR0CodENKRMewdX2UKGgGR7/H6vaDf3vhaAdLA2gIR0CodMPMjeKsdX2UKGgGR7/IjMV1wHZ9aAdLA2gIR0CodIWsaKk3dX2UKGgGR7/H3YcvM8oyaAdLA2gIR0CodQ+UpuuSdX2UKGgGR7/TTwlSjxkNaAdLA2gIR0CodFNkWhysdX2UKGgGR7/O9h7VrhzeaAdLA2gIR0CodNPsAvL6dX2UKGgGR7++bMHKOktVaAdLAmgIR0CodRgckt2+dX2UKGgGR7/dGRmseXAuaAdLBGgIR0CodJkDhcZ+dX2UKGgGR7/CioKlYU35aAdLAmgIR0CodFvuPV/ddX2UKGgGR7/KN/e+Eh7maAdLA2gIR0CodOAYgq3FdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9769c9bdf46a521a55e4262660cede739bf25b0608314f0e3492f6a823054ef9
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fea3ce299694b8abe941b9a5e601904f84e8b54b81cd21957b892ff327164c8
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b724ede4040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b724ede8080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696582623945878514, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzed3P9BpgD8maY6/LLF3Pv2CDzyvRN4+FJGuv670Y78ei46/hssoPy86tT9i95c/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATyi2P5pFUT+ojLW/zKHGPzbIfL5e02c/FOOAv6hf076m/sW+xieEP0c8rD/CDUk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADN53c/0GmAPyZpjr8/Te0+EdkYPX4C0b8ssXc+/YIPPK9E3j5jjfQ+/PAmuQvXxD4Uka6/rvRjvx6Ljr+Yh6G/pr68PeHhl76Gyyg/Lzq1P2L3lz8vpSI/hup/P1U5xT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.96838075 1.0032291 -1.1125839 ]\n [ 0.2418868 0.00875926 0.43411776]\n [-1.3638024 -0.89045227 -1.1136205 ]\n [ 0.6593555 1.4158381 1.187237 ]]", "desired_goal": "[[ 1.4231051 0.8174683 -1.418355 ]\n [ 1.5518126 -0.2468575 0.90556896]\n [-1.0069299 -0.41283917 -0.38670844]\n [ 1.0324638 1.3455895 0.7853662 ]]", "observation": "[[ 9.6838075e-01 1.0032291e+00 -1.1125839e+00 4.6347997e-01\n 3.7316386e-02 -1.6328886e+00]\n [ 2.4188679e-01 8.7592574e-03 4.3411776e-01 4.7764120e-01\n -1.5920767e-04 3.8445315e-01]\n [-1.3638024e+00 -8.9045227e-01 -1.1136205e+00 -1.2619505e+00\n 9.2160508e-02 -2.9664519e-01]\n [ 6.5935552e-01 1.4158381e+00 1.1872370e+00 6.3533300e-01\n 9.9967229e-01 1.5408121e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAllS4vHyYFL7MKyQ+p3P8vSj57r2mPkM+i6bxvZYXB73bXTE9NyIuvVFUALqwcK47lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02250127 -0.14511293 0.16032332]\n [-0.12326746 -0.11668617 0.19066867]\n [-0.11799344 -0.03298148 0.0433024 ]\n [-0.0425131 -0.00048954 0.00532349]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv656lchTwUiMAWyUSwKMAXSUR0CocxELx7RfdX2UKGgGR7/AiBXjlxOtaAdLAmgIR0Coc1Jg1FYudX2UKGgGR7/Ct6ol2NedaAdLAmgIR0Coc5f1pTMrdX2UKGgGR7/Ty4Wk8A7xaAdLA2gIR0Coc9wyRB/rdX2UKGgGR7+8EU0vXbudaAdLAmgIR0Coc116/qPfdX2UKGgGR7/Nk+5e7cwhaAdLA2gIR0CocyBwl0HRdX2UKGgGR7+iMir1dxACaAdLAWgIR0CocyVAiV0LdX2UKGgGR7+uFSKm8/UwaAdLAmgIR0Coc+XIuGsWdX2UKGgGR7/Qs+3Ytg8baAdLA2gIR0Coc6YVIqb0dX2UKGgGR7+/ch1Tzd1uaAdLAmgIR0Coc2d2ovSMdX2UKGgGR7+6bvw3HaN/aAdLAmgIR0Cocy6eXiR5dX2UKGgGR7+9j5KvmozfaAdLAmgIR0Coc/F6JIlMdX2UKGgGR7/Aa1kUbkwOaAdLAmgIR0Coc7GDcuandX2UKGgGR7/Kh2W6bvw3aAdLA2gIR0Coc3avq1PWdX2UKGgGR7+1V/+bVjI8aAdLAmgIR0Coc7nXVbzLdX2UKGgGR7/MGSIP9UCJaAdLA2gIR0Cocz5HEuQIdX2UKGgGR7/KwaBI4EOiaAdLA2gIR0Coc//BnBcidX2UKGgGR7/CDzyz5XU6aAdLA2gIR0Coc4WP1ct5dX2UKGgGR7/BDUmUnogWaAdLAmgIR0Coc0icoYvWdX2UKGgGR7/XZ/CqIacaaAdLA2gIR0Coc8v3i704dX2UKGgGR7+pciW3Sa3JaAdLAWgIR0Coc40PH1e0dX2UKGgGR7/ZlenhsImgaAdLBGgIR0CodBRhMJyAdX2UKGgGR7/HRR/EwWWQaAdLA2gIR0Coc1hreqJedX2UKGgGR7/bCaZx7zClaAdLBGgIR0Coc90T+NtJdX2UKGgGR7/YDcdo371qaAdLBGgIR0Coc54/3WWhdX2UKGgGR7+4nrpqynk1aAdLAmgIR0Coc2FM7EHddX2UKGgGR7+njjrAxi5NaAdLAWgIR0Coc2gAyVOcdX2UKGgGR7/V+uvECNjtaAdLBGgIR0CodCim2sq8dX2UKGgGR7+4arFOwgTzaAdLAmgIR0Coc+jAaef7dX2UKGgGR7+SSmqHXVbzaAdLAWgIR0CodC0jLSuydX2UKGgGR7/PBJqZc9nsaAdLA2gIR0Coc67GNrCWdX2UKGgGR7/Br8BMi8nNaAdLAmgIR0Coc3HqVyFPdX2UKGgGR7/QKWszVMEiaAdLA2gIR0CodD6EJ0GNdX2UKGgGR7/VRhttQ9A5aAdLBGgIR0Coc/6asp5NdX2UKGgGR7/QONHYpUgkaAdLA2gIR0Coc4Lvb48EdX2UKGgGR7/VCEYfnwG4aAdLBGgIR0Coc8SUkfLcdX2UKGgGR7++JXQtz0YkaAdLAmgIR0CodAfaYeDGdX2UKGgGR7+w6DGtITXbaAdLAmgIR0Coc80euFHsdX2UKGgGR7/TOP/7zkIYaAdLBGgIR0CodFCj+JgtdX2UKGgGR7/Wqj8DSw4baAdLBGgIR0Coc5R33YcvdX2UKGgGR7/OZkTYdyT7aAdLA2gIR0CodBc4o7V8dX2UKGgGR7/BYISlFc6eaAdLAmgIR0CodFuQhfShdX2UKGgGR7/JcgyM1jy4aAdLA2gIR0Coc9zPBzmwdX2UKGgGR7/B0W/JvHcUaAdLAmgIR0CodCAQxvehdX2UKGgGR7/HJHRTjvNNaAdLA2gIR0Coc6Q/oq0/dX2UKGgGR7/MWqLjxTbWaAdLA2gIR0CodGk2P1cudX2UKGgGR7/KCMglnh86aAdLA2gIR0Coc+pqIrOJdX2UKGgGR7/YFmWdEsreaAdLA2gIR0Coc7RN7BwddX2UKGgGR7/fyqMm4RVZaAdLBGgIR0CodDUR3/xUdX2UKGgGR7+9bzK9wm3OaAdLAmgIR0Coc/YwqRU4dX2UKGgGR7/P7CSA6MisaAdLA2gIR0CodHmXgLqmdX2UKGgGR7+/aTOgQHzIaAdLAmgIR0CodD3d9Dx9dX2UKGgGR7/GZzgdfb9IaAdLA2gIR0Coc8Ix59mZdX2UKGgGR7/JOclPacqfaAdLA2gIR0CodInc1wYMdX2UKGgGR7/WEBsANoalaAdLBGgIR0CodAuEdvKmdX2UKGgGR7/QpWFN+LFXaAdLA2gIR0CodFBtLteEdX2UKGgGR7/WPBBRhttRaAdLBGgIR0Coc9j+717IdX2UKGgGR7/UTspobn5jaAdLA2gIR0CodJmQSzw+dX2UKGgGR7/JLbHp8neBaAdLA2gIR0CodBrDZUT+dX2UKGgGR7+XnIQvpQk5aAdLAWgIR0CodJ4jB2wFdX2UKGgGR7/Sp3X7Lt/naAdLA2gIR0CodF5I6KcedX2UKGgGR7+XFcY64lQeaAdLAWgIR0CodB9+5OJtdX2UKGgGR7+f0qYqoZQ6aAdLAWgIR0CodGZv99+gdX2UKGgGR7/WvugHu7YkaAdLBGgIR0Coc+8gQpWndX2UKGgGR7/OThYNiH6/aAdLA2gIR0CodLAGSpzcdX2UKGgGR7/AyNXHR1HOaAdLAmgIR0CodHBkZrHmdX2UKGgGR7/Uki2UjcEeaAdLA2gIR0CodDF23azvdX2UKGgGR7/PwXqJMxoJaAdLA2gIR0CodAJjMFEBdX2UKGgGR7/G6ErXlKbsaAdLA2gIR0CodMXWnTAndX2UKGgGR7/RVfeDWbw0aAdLA2gIR0CodIXrleWwdX2UKGgGR7/QneSB9TgmaAdLA2gIR0CodEb9Q40edX2UKGgGR7++VxCIDYAbaAdLAmgIR0CodM4yGi5/dX2UKGgGR7/LMg2ZRbbDaAdLA2gIR0CodBIGyHEddX2UKGgGR7/QpaiblRxcaAdLA2gIR0CodJLXcxj8dX2UKGgGR7/RlbeMyad+aAdLA2gIR0CodFQQlKK6dX2UKGgGR7/BjuKGcnVoaAdLAmgIR0CodNg3Lmp3dX2UKGgGR7+78IiTt9hJaAdLAmgIR0CodJ+4TbnHdX2UKGgGR7+5fjS5RTCMaAdLAmgIR0CodGC/oJRgdX2UKGgGR7/RW56MR6F/aAdLA2gIR0CodCOuzQeFdX2UKGgGR7+7Lr5ZbILgaAdLAmgIR0CodOSZ0CA+dX2UKGgGR796b4Ju2qkuaAdLAWgIR0CodOhPbfxddX2UKGgGR7/Ch7E5yU9qaAdLAmgIR0CodGlLnLaFdX2UKGgGR7/D4QBgeA/caAdLAmgIR0CodCxArxy5dX2UKGgGR7+plnRLK3d9aAdLAWgIR0CodOy39aUzdX2UKGgGR7/GUVzp5eJIaAdLA2gIR0CodKzAN5MUdX2UKGgGR7/BlIVdonKGaAdLAmgIR0CodPcwYcebdX2UKGgGR7+9LBbfP5YYaAdLAmgIR0CodLdTYNAkdX2UKGgGR7/Gv1UVBUrDaAdLA2gIR0CodHhvitJWdX2UKGgGR7/QjNY8uBczaAdLA2gIR0CodDtb1RLsdX2UKGgGR7/C2aUiY9gXaAdLAmgIR0CodP96sySFdX2UKGgGR7/CvHtF8XvZaAdLAmgIR0CodENKRMewdX2UKGgGR7/H6vaDf3vhaAdLA2gIR0CodMPMjeKsdX2UKGgGR7/IjMV1wHZ9aAdLA2gIR0CodIWsaKk3dX2UKGgGR7/H3YcvM8oyaAdLA2gIR0CodQ+UpuuSdX2UKGgGR7/TTwlSjxkNaAdLA2gIR0CodFNkWhysdX2UKGgGR7/O9h7VrhzeaAdLA2gIR0CodNPsAvL6dX2UKGgGR7++bMHKOktVaAdLAmgIR0CodRgckt2+dX2UKGgGR7/dGRmseXAuaAdLBGgIR0CodJkDhcZ+dX2UKGgGR7/CioKlYU35aAdLAmgIR0CodFvuPV/ddX2UKGgGR7/KN/e+Eh7maAdLA2gIR0CodOAYgq3FdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (665 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.1763870820403099, "std_reward": 0.13871116165338904, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-06T10:28:28.175064"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:315aafe2b51ac8b59bdc229cf186e02ad57fc94d5f26d635c6b63d00b8c6e862
|
3 |
+
size 2623
|