File size: 1,711 Bytes
25fa113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332e209
 
 
25fa113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332e209
25fa113
 
 
 
 
332e209
 
 
 
 
25fa113
 
 
 
 
 
b5d7585
25fa113
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-query
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-query

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0735
- Accuracy: 0.9643
- F1: 0.9643

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.56          | 1.0   | 24   | 0.4072          | 0.8214   | 0.8248 |
| 0.3144        | 2.0   | 48   | 0.2016          | 0.9286   | 0.9275 |
| 0.1469        | 3.0   | 72   | 0.1103          | 0.9643   | 0.9643 |
| 0.0986        | 4.0   | 96   | 0.0963          | 0.9821   | 0.9822 |
| 0.0768        | 5.0   | 120  | 0.0735          | 0.9643   | 0.9643 |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1